Blog
/
/
April 7, 2021

Uncovering a Cryptocurrency Farm | Crypto-Mining Malware

Uncover the secrets of a cryptocurrency farm hidden in a warehouse. Learn about the rise of crypto-mining and its impact on the global cyber-threat landscape.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Apr 2021

Cryptocurrencies are hitting the headlines every week and quickly becoming accepted as a mainstream investment and method of payment. Across the world, cyber-criminals are leveraging data centers called crypto-mining ‘farms’ to profit from this trend, from China to Iceland, Iran, and even a cardboard box in an empty warehouse.

How does cryptocurrency mining work?

Cryptocurrencies are decentralized digital currencies. Unlike traditional currencies, which can be issued at any time by central banks, cryptocurrency is not controlled by any centralized authority. Instead, it relies on a blockchain, which functions as a digital ledger of transactions, organized and maintained by a peer-to-peer network.

Miners create and secure cryptocurrency by solving cryptographic algorithms. Rather than hammers and chisels, crypto-miners use specialized computers with GPUs or ASICs to validate transactions as quickly as possible, earning cryptocurrency in the process.

Crypto-mining farms in 2021: Reaping the early harvest

Crypto-mining takes up an enormous amount of energy. An analysis by the University of Cambridge estimates that generating Bitcoin consumes as much, if not more, energy than entire countries. For instance, Bitcoin uses approximately 137.9 terawatt hours per year, compared to Ukraine, which uses only 128.8 in the same period. Bitcoin is just one of many cryptocurrencies, alongside Monero and Dogecoin, so the total energy consumed by all cryptocurrencies is far higher.

Given that high-powered mining computers require so much processing power, crypto-mining is lucrative in countries with relatively cheap electricity. However, the energy needed can lead to serious consequences – even shutting down entire cities. In Iran, the outdated energy grid has struggled to provide for cryptocurrency farms, resulting in city-wide blackouts.

While some of these crypto-farms are legal, illegal crypto-miners are also straining Iran’s energy supplies. Illegal crypto-mining is popular in Iran partly because Iranian currency is volatile and subject to inflation, whereas cryptocurrency is (for the moment) immune to both inflationary monetary policy and U.S. sanctions. When used for illegal purposes, cryptocurrency farming can lead to network outages and serious financial harm.

Crypto-mining malware in corporate networks

Crypto-mining malware has the ability to hamper and even crash an organization’s digital environment, if unstopped. Cyber AI has discovered and thwarted hundreds of attacks where devices are infected with crypto-mining malware, including:

  • a server in charge of opening and closing a biometric door;
  • a spectrometer, a medical IoT device which uses wavelengths of light to analyze materials;
  • 12 servers hidden under the floorboards of an Italian bank.

In one instance last year, Darktrace detected anomalous crypto-mining activity on a corporate system. Upon investigation, the organization in question traced the anomalous activity to one of their warehouses, where they found what appeared to be unassuming cardboard boxes sitting on a shelf. Opening these boxes revealed a cryptocurrency farm in disguise, running off the company’s network power.

Figure 1: The unassuming cardboard boxes

Figure 2: The cryptocurrency farm

Figure 3: The threat actors created a stealthy cryptocurrency mining rig with GPUs, running off the company’s network power

Had it remained undiscovered, the crypto-mining farm would have led to financial losses for the client and disruption to business workings. Mining rigs also generate a lot of heat and could have easily caused a fire in the warehouse.

This case demonstrates the covert methods opportunistic individuals may take to hijack corporate infrastructure with crypto-mining malware, as well as the need for a security tool which covers the entire digital estate and detects any new or unusual events. Darktrace’s machine learning flagged the connections being made from the warehouse boxes as highly anomalous, leading to this unexpected discovery.

In organizations with Darktrace RESPOND active, any anomalous crypto-mining devices would be blocked from communicating with the relevant external endpoints, effectively inhibiting mining activity. RESPOND can also enforce the normal ‘pattern of life’ across the digital environment, preventing malicious behavior while allowing normal business activities to continue. As bad actors continue to proliferate and hackers devise new ways to deploy crypto-mining malware, Darktrace’s full visibility and Autonomous Response in every part of the digital environment is more important than ever.

Thanks to Darktrace analyst Chloe Phillips for her insights.

Darktrace model detections:

  • Compliance / Crypto Currency Mining Activity
  • Compromise / High Priority Crypto Currency Mining
  • Compromise / Monero Mining
  • Anomalous Connection / Rare External SSL Self-Signed
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / POS and Beacon to Rare External
  • Compromise / Slow Beaconing Activity to External Rare
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / Sustained TCP Beaconing Activity to Rare Endpoint
  • Anomalous Connection / Multiple Failed Connections to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Anomalous Connection / Connection to New TCP Port
  • Anomalous Connection / Connection to New UDP Port
  • Compromise / Multiple UDP Connections to Rare External Hosts
  • Compromise / SSL or HTTP Beacon
  • Compromise / Quick and Regular HTTP Beaconing
  • Device / Suspicious domains
  • Compromise / Suspicious Beacons to Rare PHP Endpoint
  • Anomalous File / Script from Rare
  • Anomalous Connection / New failed External Windows Connection
  • Device / New Failed External Connection
  • Anomalous Connection / POST to PHP on New External Host
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations

More in this series

No items found.

Blog

/

/

April 16, 2025

Why Data Classification Isn’t Enough to Prevent Data Loss

women looking at laptopDefault blog imageDefault blog image

Why today’s data is fundamentally difficult to protect

Data isn’t what it used to be. It’s no longer confined to neat rows in a database, or tucked away in a secure on-prem server. Today, sensitive information moves freely between cloud platforms, SaaS applications, endpoints, and a globally distributed workforce – often in real time. The sheer volume and diversity of modern data make it inherently harder to monitor, classify, and secure. And the numbers reflect this challenge – 63% of breaches stem from malicious insiders or human error.

This complexity is compounded by an outdated reliance on manual data management. While data classification remains critical – particularly to ensure compliance with regulations like GDPR or HIPAA – the burden of managing this data often falls on overstretched security teams. Security teams are expected to identify, label, and track data across sprawling ecosystems, which can be time-consuming and error-prone. Even with automation, rigid policies that depend on pre-defined data classification miss the mark.

From a data protection perspective, if manual or basic automated classification is the sole methodology for preventing data loss, critical data will likely slip through the cracks. Security teams are left scrambling to fill the gaps, facing compliance risks and increasing operational overhead. Over time, the hidden costs of these inefficiencies pile up, draining resources and reducing the effectiveness of your entire security posture.

What traditional data classification can’t cover

Data classification plays an important role in data loss prevention, but it's only half the puzzle. It’s designed to spot known patterns and apply labels, yet the most common causes of data breaches don’t follow rules. They stem from something far harder to define: human behavior.

When Darktrace began developing its data loss detection capabilities, the question wasn’t what data to protect — it was how to understand the people using it. The numbers pointed clearly to where AI could make the biggest difference: 22% of email data breaches stem directly from user error, while malicious insider threats remain the most expensive, costing organizations an average of $4.99 million per incident.

Data classification is blind to nuance – it can’t grasp intent, context, or the subtle red flags that often precede a breach. And no amount of labeling, policy, or training can fully account for the reality that humans make mistakes. These problems require a system that sees beyond the data itself — one that understands how it’s being used, by whom, and in what context. That’s why Darktrace leans into its core strength: detecting the subtle symptoms of data loss by interpreting human behavior, not just file labels.

Achieving autonomous data protection with behavioral AI

Rather than relying on manual processes to understand what’s important, Darktrace uses its industry-leading AI to learn how your organization uses data — and spot when something looks wrong.

Its understanding of business operations allows it to detect subtle anomalies around data movement for your use cases, whether that’s a misdirected email, an insecure cloud storage link, or suspicious activity from an insider. Crucially, this detection is entirely autonomous, with no need for predefined rules or static labels.

Darktrace uses its contextual understanding of each user to stop all types of sensitive or misdirected data from leaving the organization
Fig 1: Darktrace uses its contextual understanding of each user to stop all types of sensitive or misdirected data from leaving the organization

Darktrace / EMAIL’s DLP add-on continuously learns in real time, enabling:

  • Automatic detection: Identifies risky data behavior to catch threats that traditional approaches miss – from human error to sophisticated insider threats.
  • A dynamic range of actions: Darktrace always aims to avoid business disruption in its blocking actions, but this can be adjusted according to the unique risk appetite of each customer – taking the most appropriate response for that business from a whole scale of possibilities.
  • Enhanced context: While Darktrace doesn’t require sensitivity data labeling, it integrates with Microsoft Purview to ingest sensitivity labels and enrich its understanding of the data – for even more accurate decision-making.

Beyond preventing data loss, Darktrace uses DLP activity to enhance its contextual understanding of the user itself. In other words, outbound activity can be a useful symptom in identifying a potential account compromise, or can be used to give context to that user’s inbound activity. Because Darktrace sees the whole picture of a user across their inbound, outbound, and lateral mail, as well as messaging (and into collaboration tools with Darktrace / IDENTITY), every interaction informs its continuous learning of normal.

With Darktrace, you can achieve dynamic data loss prevention for the most challenging human-related use cases – from accidental misdirected recipients to malicious insiders – that evade detection from manual classification. So don’t stand still on data protection – make the switch to autonomous, adaptive DLP that understands your business, data, and people.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

April 14, 2025

Email bombing exposed: Darktrace’s email defense in action

picture of a computer screen showing a password loginDefault blog imageDefault blog image

What is email bombing?

An email bomb attack, also known as a "spam bomb," is a cyberattack where a large volume of emails—ranging from as few as 100 to as many as several thousand—are sent to victims within a short period.

How does email bombing work?

Email bombing is a tactic that typically aims to disrupt operations and conceal malicious emails, potentially setting the stage for further social engineering attacks. Parallels can be drawn to the use of Domain Generation Algorithm (DGA) endpoints in Command-and-Control (C2) communications, where an attacker generates new and seemingly random domains in order to mask their malicious connections and evade detection.

In an email bomb attack, threat actors typically sign up their targeted recipients to a large number of email subscription services, flooding their inboxes with indirectly subscribed content [1].

Multiple threat actors have been observed utilizing this tactic, including the Ransomware-as-a-Service (RaaS) group Black Basta, also known as Storm-1811 [1] [2].

Darktrace detection of email bombing attack

In early 2025, Darktrace detected an email bomb attack where malicious actors flooded a customer's inbox while also employing social engineering techniques, specifically voice phishing (vishing). The end goal appeared to be infiltrating the customer's network by exploiting legitimate administrative tools for malicious purposes.

The emails in these attacks often bypass traditional email security tools because they are not technically classified as spam, due to the assumption that the recipient has subscribed to the service. Darktrace / EMAIL's behavioral analysis identified the mass of unusual, albeit not inherently malicious, emails that were sent to this user as part of this email bombing attack.

Email bombing attack overview

In February 2025, Darktrace observed an email bombing attack where a user received over 150 emails from 107 unique domains in under five minutes. Each of these emails bypassed a widely used and reputable Security Email Gateway (SEG) but were detected by Darktrace / EMAIL.

Graph showing the unusual spike in unusual emails observed by Darktrace / EMAIL.
Figure 1: Graph showing the unusual spike in unusual emails observed by Darktrace / EMAIL.

The emails varied in senders, topics, and even languages, with several identified as being in German and Spanish. The most common theme in the subject line of these emails was account registration, indicating that the attacker used the victim’s address to sign up to various newsletters and subscriptions, prompting confirmation emails. Such confirmation emails are generally considered both important and low risk by email filters, meaning most traditional security tools would allow them without hesitation.

Additionally, many of the emails were sent using reputable marketing tools, such as Mailchimp’s Mandrill platform, which was used to send almost half of the observed emails, further adding to their legitimacy.

 Darktrace / EMAIL’s detection of an email being sent using the Mandrill platform.
Figure 2: Darktrace / EMAIL’s detection of an email being sent using the Mandrill platform.
Darktrace / EMAIL’s detection of a large number of unusual emails sent during a short period of time.
Figure 3: Darktrace / EMAIL’s detection of a large number of unusual emails sent during a short period of time.

While the individual emails detected were typically benign, such as the newsletter from a legitimate UK airport shown in Figure 3, the harmful aspect was the swarm effect caused by receiving many emails within a short period of time.

Traditional security tools, which analyze emails individually, often struggle to identify email bombing incidents. However, Darktrace / EMAIL recognized the unusual volume of new domain communication as suspicious. Had Darktrace / EMAIL been enabled in Autonomous Response mode, it would have automatically held any suspicious emails, preventing them from landing in the recipient’s inbox.

Example of Darktrace / EMAIL’s response to an email bombing attack taken from another customer environment.
Figure 4: Example of Darktrace / EMAIL’s response to an email bombing attack taken from another customer environment.

Following the initial email bombing, the malicious actor made multiple attempts to engage the recipient in a call using Microsoft Teams, while spoofing the organizations IT department in order to establish a sense of trust and urgency – following the spike in unusual emails the user accepted the Teams call. It was later confirmed by the customer that the attacker had also targeted over 10 additional internal users with email bombing attacks and fake IT calls.

The customer also confirmed that malicious actor successfully convinced the user to divulge their credentials with them using the Microsoft Quick Assist remote management tool. While such remote management tools are typically used for legitimate administrative purposes, malicious actors can exploit them to move laterally between systems or maintain access on target networks. When these tools have been previously observed in the network, attackers may use them to pursue their goals while evading detection, commonly known as Living-off-the-Land (LOTL).

Subsequent investigation by Darktrace’s Security Operations Centre (SOC) revealed that the recipient's device began scanning and performing reconnaissance activities shortly following the Teams call, suggesting that the user inadvertently exposed their credentials, leading to the device's compromise.

Darktrace’s Cyber AI Analyst was able to identify these activities and group them together into one incident, while also highlighting the most important stages of the attack.

Figure 5: Cyber AI Analyst investigation showing the initiation of the reconnaissance/scanning activities.

The first network-level activity observed on this device was unusual LDAP reconnaissance of the wider network environment, seemingly attempting to bind to the local directory services. Following successful authentication, the device began querying the LDAP directory for information about user and root entries. Darktrace then observed the attacker performing network reconnaissance, initiating a scan of the customer’s environment and attempting to connect to other internal devices. Finally, the malicious actor proceeded to make several SMB sessions and NTLM authentication attempts to internal devices, all of which failed.

Device event log in Darktrace / NETWORK, showing the large volume of connections attempts over port 445.
Figure 6: Device event log in Darktrace / NETWORK, showing the large volume of connections attempts over port 445.
Darktrace / NETWORK’s detection of the number of the login attempts via SMB/NTLM.
Figure 7: Darktrace / NETWORK’s detection of the number of the login attempts via SMB/NTLM.

While Darktrace’s Autonomous Response capability suggested actions to shut down this suspicious internal connectivity, the deployment was configured in Human Confirmation Mode. This meant any actions required human approval, allowing the activities to continue until the customer’s security team intervened. If Darktrace had been set to respond autonomously, it would have blocked connections to port 445 and enforced a “pattern of life” to prevent the device from deviating from expected activities, thus shutting down the suspicious scanning.

Conclusion

Email bombing attacks can pose a serious threat to individuals and organizations by overwhelming inboxes with emails in an attempt to obfuscate potentially malicious activities, like account takeovers or credential theft. While many traditional gateways struggle to keep pace with the volume of these attacks—analyzing individual emails rather than connecting them and often failing to distinguish between legitimate and malicious activity—Darktrace is able to identify and stop these sophisticated attacks without latency.

Thanks to its Self-Learning AI and Autonomous Response capabilities, Darktrace ensures that even seemingly benign email activity is not lost in the noise.

Credit to Maria Geronikolou (Cyber Analyst and SOC Shift Supervisor) and Cameron Boyd (Cyber Security Analyst), Steven Haworth (Senior Director of Threat Modeling), Ryan Traill (Analyst Content Lead)

Appendices

[1] https://www.microsoft.com/en-us/security/blog/2024/05/15/threat-actors-misusing-quick-assist-in-social-engineering-attacks-leading-to-ransomware/

[2] https://thehackernews.com/2024/12/black-basta-ransomware-evolves-with.html

Darktrace Models Alerts

Internal Reconnaissance

·      Device / Suspicious SMB Scanning Activity

·      Device / Anonymous NTLM Logins

·      Device / Network Scan

·      Device / Network Range Scan

·      Device / Suspicious Network Scan Activity

·      Device / ICMP Address Scan

·      Anomalous Connection / Large Volume of LDAP Download

·      Device / Suspicious LDAP Search Operation

·      Device / Large Number of Model Alerts

Continue reading
About the author
Maria Geronikolou
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI