Blog
/
/
April 7, 2021

Uncovering a Cryptocurrency Farm | Crypto-Mining Malware

Uncover the secrets of a cryptocurrency farm hidden in a warehouse. Learn about the rise of crypto-mining and its impact on the global cyber-threat landscape.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Apr 2021

Cryptocurrencies are hitting the headlines every week and quickly becoming accepted as a mainstream investment and method of payment. Across the world, cyber-criminals are leveraging data centers called crypto-mining ‘farms’ to profit from this trend, from China to Iceland, Iran, and even a cardboard box in an empty warehouse.

How does cryptocurrency mining work?

Cryptocurrencies are decentralized digital currencies. Unlike traditional currencies, which can be issued at any time by central banks, cryptocurrency is not controlled by any centralized authority. Instead, it relies on a blockchain, which functions as a digital ledger of transactions, organized and maintained by a peer-to-peer network.

Miners create and secure cryptocurrency by solving cryptographic algorithms. Rather than hammers and chisels, crypto-miners use specialized computers with GPUs or ASICs to validate transactions as quickly as possible, earning cryptocurrency in the process.

Crypto-mining farms in 2021: Reaping the early harvest

Crypto-mining takes up an enormous amount of energy. An analysis by the University of Cambridge estimates that generating Bitcoin consumes as much, if not more, energy than entire countries. For instance, Bitcoin uses approximately 137.9 terawatt hours per year, compared to Ukraine, which uses only 128.8 in the same period. Bitcoin is just one of many cryptocurrencies, alongside Monero and Dogecoin, so the total energy consumed by all cryptocurrencies is far higher.

Given that high-powered mining computers require so much processing power, crypto-mining is lucrative in countries with relatively cheap electricity. However, the energy needed can lead to serious consequences – even shutting down entire cities. In Iran, the outdated energy grid has struggled to provide for cryptocurrency farms, resulting in city-wide blackouts.

While some of these crypto-farms are legal, illegal crypto-miners are also straining Iran’s energy supplies. Illegal crypto-mining is popular in Iran partly because Iranian currency is volatile and subject to inflation, whereas cryptocurrency is (for the moment) immune to both inflationary monetary policy and U.S. sanctions. When used for illegal purposes, cryptocurrency farming can lead to network outages and serious financial harm.

Crypto-mining malware in corporate networks

Crypto-mining malware has the ability to hamper and even crash an organization’s digital environment, if unstopped. Cyber AI has discovered and thwarted hundreds of attacks where devices are infected with crypto-mining malware, including:

  • a server in charge of opening and closing a biometric door;
  • a spectrometer, a medical IoT device which uses wavelengths of light to analyze materials;
  • 12 servers hidden under the floorboards of an Italian bank.

In one instance last year, Darktrace detected anomalous crypto-mining activity on a corporate system. Upon investigation, the organization in question traced the anomalous activity to one of their warehouses, where they found what appeared to be unassuming cardboard boxes sitting on a shelf. Opening these boxes revealed a cryptocurrency farm in disguise, running off the company’s network power.

Figure 1: The unassuming cardboard boxes

Figure 2: The cryptocurrency farm

Figure 3: The threat actors created a stealthy cryptocurrency mining rig with GPUs, running off the company’s network power

Had it remained undiscovered, the crypto-mining farm would have led to financial losses for the client and disruption to business workings. Mining rigs also generate a lot of heat and could have easily caused a fire in the warehouse.

This case demonstrates the covert methods opportunistic individuals may take to hijack corporate infrastructure with crypto-mining malware, as well as the need for a security tool which covers the entire digital estate and detects any new or unusual events. Darktrace’s machine learning flagged the connections being made from the warehouse boxes as highly anomalous, leading to this unexpected discovery.

In organizations with Darktrace RESPOND active, any anomalous crypto-mining devices would be blocked from communicating with the relevant external endpoints, effectively inhibiting mining activity. RESPOND can also enforce the normal ‘pattern of life’ across the digital environment, preventing malicious behavior while allowing normal business activities to continue. As bad actors continue to proliferate and hackers devise new ways to deploy crypto-mining malware, Darktrace’s full visibility and Autonomous Response in every part of the digital environment is more important than ever.

Thanks to Darktrace analyst Chloe Phillips for her insights.

Darktrace model detections:

  • Compliance / Crypto Currency Mining Activity
  • Compromise / High Priority Crypto Currency Mining
  • Compromise / Monero Mining
  • Anomalous Connection / Rare External SSL Self-Signed
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / POS and Beacon to Rare External
  • Compromise / Slow Beaconing Activity to External Rare
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / Sustained TCP Beaconing Activity to Rare Endpoint
  • Anomalous Connection / Multiple Failed Connections to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Anomalous Connection / Connection to New TCP Port
  • Anomalous Connection / Connection to New UDP Port
  • Compromise / Multiple UDP Connections to Rare External Hosts
  • Compromise / SSL or HTTP Beacon
  • Compromise / Quick and Regular HTTP Beaconing
  • Device / Suspicious domains
  • Compromise / Suspicious Beacons to Rare PHP Endpoint
  • Anomalous File / Script from Rare
  • Anomalous Connection / New failed External Windows Connection
  • Device / New Failed External Connection
  • Anomalous Connection / POST to PHP on New External Host
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI