Blog
/
/
May 3, 2021

Understanding Modern-Day Cyber Attacks

Discover how Darktrace detects and mitigates threats in IoT ecosystems and globalized supply chains that are constantly evolving.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
May 2021

It’s ten to five on a Friday afternoon. A technician has come in to perform a routine check on an electronic door. She enters the office with no issues – she works for a trusted third-party vendor, employees see her every week. She opens her laptop and connects to the Door Access Control Unit, a small Internet of Things (IoT) device used to operate the smart lock. Minutes later, trojans have been downloaded onto the company network, a crypto-mining operation has begun, and there is evidence of confidential data being exfiltrated. Where did things go wrong?

Threats in a business: A new dawn surfaces

As organizations keep pace with the demands of digital transformation, the attack surface has become broader than ever before. There are numerous points of entry for a cyber-criminal – from vulnerabilities in IoT ecosystems, to blind spots in supply chains, to insiders misusing their access to the business. Darktrace sees these threats every day. Sometimes, like in the real-world example above, which will be examined in this blog, they can occur in the very same attack.

Insider threats can use their familiarity and level of access to a system as a critical advantage when evading detection and launching an attack. But insiders don’t necessarily have to be malicious. Every employee or contractor is a potential threat: clicking on a phishing link or accidentally releasing data often leads to wide-scale breaches.

At the same time, connectivity in the workspace – with each IoT device communicating with the corporate network and the Internet on its own IP address – is an urgent security issue. Access control systems, for example, add a layer of physical security by tracking who enters the office and when. However, these same control systems imperil digital security by introducing a cluster of sensors, locks, alarm systems, and keypads, which hold sensitive user information and connect to company infrastructure.

Furthermore, a significant proportion of IoT devices are built without security in mind. Vendors prioritize time-to-market and often don’t have the resources to invest in baked-in security measures. Consider the number of start-ups which manufacture IoT – over 60% of home automation companies have fewer than ten employees.

Insider threat detected by Cyber AI

In January 2021, a medium-sized North American company suffered a supply chain attack when a third-party vendor connected to the control unit for a smart door.

Figure 1: The attack lasted 3.5 hours in total, commencing 16:50 local time.

The technician from the vendor’s company had come in to perform scheduled maintenance. They had been authorized to connect directly to the Door Access Control Unit, yet were unaware that the laptop they were using, brought in from outside of the organization, had been infected with malware.

As soon as the laptop connected with the control unit, the malware detected an open port, identified the vulnerability, and began moving laterally. Within minutes, the IoT device was seen making highly unusual connections to rare external IP addresses. The connections were made using HTTP and contained suspicious user agents and URIs.

Darktrace then detected that the control unit was attempting to download trojans and other payloads, including upsupx2.exe and 36BB9658.moe. Other connections were used to send base64 encoded strings containing the device name and the organization’s external IP address.

Cryptocurrency mining activity with a Monero (XMR) CPU miner was detected shortly afterwards. The device also utilized an SMB exploit to make external connections on port 445 while searching for vulnerable internal devices using the outdated SMBv1 protocol.

One hour later, the device connected to an endpoint related to the third-party remote access tool TeamViewer. After a few minutes, the device was seen uploading over 15 MB to a 100% rare external IP.

Figure 2: Timeline of the connections made by an example device on the days around an incident (blue). The connections associated with the compromise are a significant deviation from the device’s normal pattern of life, and result in multiple unusual activity events and repeated model breaches (orange).

Security threats in the supply chain

Cyber AI flagged the insider threat to the customer as soon as the control unit had been compromised. The attack had managed to bypass the rest of the organization’s security stack, for the simple reason that it was introduced directly from a trusted external laptop, and the IoT device itself was managed by the third-party vendor, so the customer had little visibility over it.

Traditional security tools are ineffective against supply chain attacks such as this. From the SolarWinds hack to Vendor Email Compromise, 2021 has put the nail in the coffin for signature-based security – proving that we cannot rely on yesterday’s attacks to predict tomorrow’s threats.

International supply chains and the sheer number of different partners and suppliers which modern organizations work with thus pose a serious security dilemma: how can we allow external vendors onto our network and keep an airtight system?

The first answer is zero-trust access. This involves treating every device as malicious, inside and outside the corporate network, and demanding verification at all stages. The second answer is visibility and response. Security products must shed a clear light into cloud and IoT infrastructure, and react autonomously as soon as subtle anomalies emerge across the enterprise.

IoT investigated

Darktrace’s Cyber AI Analyst reported on every stage of the attack, including the download of the first malicious executable file.

Figure 3: Example of Cyber AI Analyst detecting anomalous behavior on a device, including C2 connectivity and suspicious file downloads.

Cyber AI Analyst investigated the C2 connectivity, providing a high-level summary of the activity. The IoT device had accessed suspicious MOE files with randomly generated alphanumeric names.

Figure 4: A Cyber AI Analyst summary of C2 connectivity for a device.

Not only did the AI detect every stage of the activity, but the customer was also alerted via a Proactive Threat Notification following a high scoring model breach at 16:59, just minutes after the attack had commenced.

Stranger danger

Third parties coming in to tweak device settings and adjust the network can have unintended consequences. The hyper-connected world which we’re living in, with the advent of 5G and Industry 4.0, has become a digital playground for cyber-criminals.

In the real-world case study above, the IoT device was unsecured and misconfigured. With rushed creations of IoT ecosystems, intertwining supply chains, and a breadth of individuals and devices connecting to corporate infrastructure, modern-day organizations cannot expect simple security tools which rely on pre-defined rules to stop insider threats and other advanced cyber-attacks.

The organization did not have visibility over the management of the Door Access Control Unit. Despite this, and despite no prior knowledge of the attack type or the vulnerabilities present in the IoT device, Darktrace detected the behavioral anomalies immediately. Without Cyber AI, the infection could have remained on the customer’s environment for weeks or months, escalating privileges, silently crypto-mining, and exfiltrating sensitive company data.

Thanks to Darktrace analyst Grace Carballo for her insights on the above threat find.

Learn more about insider threats

Darktrace model detections:

  • Anomalous File/Anomalous Octet Stream
  • Anomalous Connection/New User Agent to IP Without Hostname
  • Unusual Activity/Unusual External Connectivity
  • Device/Increased External Connectivity
  • Anomalous Server Activity/Outgoing from Server
  • Device/New User Agent and New IP
  • Compliance/Cryptocurrency Mining Activity
  • Compliance/External Windows Connectivity
  • Anomalous File/Multiple EXE from Rare External Locations
  • Anomalous File/EXE from Rare External Location
  • Device/Large Number of Model Breaches
  • Anomalous File/Internet Facing System File Download
  • Device/Initial Breach Chain Compromise
  • Device/SMB Session Bruteforce
  • Device/Network Scan- Low Anomaly Score
  • Device/Large Number of Connections to New Endpoint
  • Anomalous Server Activity/Outgoing from Server
  • Compromise/Beacon to Young Endpoint
  • Anomalous Server Activity/Rare External from Server
  • Device/Multiple C2 Model Breaches
  • Compliance/Remote Management Tool on Server
  • Anomalous Connection/Data Sent to New External Device

No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

/

February 16, 2026

CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding

Default blog imageDefault blog image

Note: Darktrace's Threat Research team is publishing now to help defenders. We will continue updating this blog as our investigations unfold.

Background

On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests.  This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].

A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].

Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from  the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].

Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain  avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.

Darktrace Detections

Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:

-              Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation.  Associated Darktrace models include:

o    Compromise / Possible Tunnelling to Bin Services

-              Suspicious executable file downloads. Associated Darktrace models include:

o    Anomalous File / EXE from Rare External Location

-              Outbound beaconing to rare domains. Associated Darktrace models include:

o   Compromise / Agent Beacon (Medium Period)

o   Compromise / Agent Beacon (Long Period)

o   Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

o   Compromise / Beacon to Young Endpoint

o   Anomalous Server Activity / Rare External from Server

o   Compromise / SSL Beaconing to Rare Destination

-              Unusual cryptocurrency mining activity. Associated Darktrace models include:

o   Compromise / Monero Mining

o   Compromise / High Priority Crypto Currency Mining

And model alerts for:

o    Compromise / Rare Domain Pointing to Internal IP

IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.  

Appendices

Potential indicators of post-exploitation behavior:

·      217.76.57[.]78 – IP address - Likely C2 server

·      hXXp://217.76.57[.]78:8009/index.js - URL -  Likely payload

·      b6a15e1f2f3e1f651a5ad4a18ce39d411d385ac7  - SHA1 - Likely payload

·      195.154.119[.]194 – IP address – Likely C2 server

·      hXXp://195.154.119[.]194/index.js - URL – Likely payload

·      avg.domaininfo[.]top – Hostname – Likely C2 server

·      104.234.174[.]5 – IP address - Possible C2 server

·      35da45aeca4701764eb49185b11ef23432f7162a – SHA1 – Possible payload

·      hXXp://134.122.13[.]34:8979/c - URL – Possible payload

·      134.122.13[.]34 – IP address – Possible C2 server

·      28df16894a6732919c650cc5a3de94e434a81d80 - SHA1 - Possible payload

References:

1.        https://nvd.nist.gov/vuln/detail/CVE-2026-1731

2.        https://www.securityweek.com/beyondtrust-vulnerability-targeted-by-hackers-within-24-hours-of-poc-release/

3.        https://www.rapid7.com/blog/post/etr-cve-2026-1731-critical-unauthenticated-remote-code-execution-rce-beyondtrust-remote-support-rs-privileged-remote-access-pra/

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

/

February 13, 2026

How AI is redefining cybersecurity and the role of today’s CIO

Default blog imageDefault blog image

Why AI is essential to modern security

As attackers use automation and AI to outpace traditional tools and people, our approach to cybersecurity must fundamentally change. That’s why one of my first priorities as Withum's CIO was to elevate cybersecurity from a technical function to a business enabler.

What used to be “IT’s problem” is now a boardroom conversation – and for good reason. Protecting our data, our people, and our clients directly impacts revenue, reputation and competitive positioning.  

As CIOs / CISOs, our responsibilities aren’t just keeping systems running, but enabling trust, protecting our organization's reputation, and giving the business confidence to move forward even as the digital world becomes less predictable. To pull that off, we need to know the business inside-out, understand risk, and anticipate what's coming next. That's where AI becomes essential.

Staying ahead when you’re a natural target

With more than 3,100 team members and over 1,000 CPAs (Certified Public Accountant), Withum’s operates in an industry that naturally attracts attention from attackers. Firms like ours handle highly sensitive financial and personal information, which puts us squarely in the crosshairs for sophisticated phishing, ransomware, and cloud-based attacks.

We’ve built our security program around resilience, visibility, and scale. By using Darktrace’s AI-powered platform, we can defend against both known and unknown threats, across email and network, without slowing our teams down.

Our focus is always on what we’re protecting: our clients’ information, our intellectual property, and the reputation of the firm. With Darktrace, we’re not just keeping up with the massive volume of AI-powered attacks coming our way, we’re staying ahead. The platform defends our digital ecosystem around the clock, detecting potential threats across petabytes of data and autonomously investigating and responding to tens of thousands of incidents every year.

Catching what traditional tools miss

Beyond the sheer scale of attacks, Darktrace ActiveAI Security PlatformTM is critical for identifying threats that matter to our business. Today’s attackers don’t use generic techniques. They leverage automation and AI to craft highly targeted attacks – impersonating trusted colleagues, mimicking legitimate websites, and weaving in real-world details that make their messages look completely authentic.

The platform, covering our network, endpoints, inboxes, cloud and more is so effective because it continuously learns what’s normal for our business: how our users typically behave, the business- and industry-specific language we use, how systems communicate, and how cloud resources are accessed. It picks up on minute details that would sail right past traditional tools and even highly trained security professionals.

Freeing up our team to do what matters

On average, Darktrace autonomously investigates 88% of all our security events, using AI to connect the dots across email, network, and cloud activity to figure out what matters. That shift has changed how our team works. Instead of spending hours sorting through alerts, we can focus on proactive efforts that actually strengthen our security posture.

For example, we saved 1,850 hours on investigating security issues over a ten-day period. We’ve reinvested the time saved into strengthening policies, refining controls, and supporting broader business initiatives, rather than spending endless hours manually piecing together alerts.

Real confidence, real results

The impact of our AI-driven approach goes well beyond threat detection. Today, we operate from a position of confidence, knowing that threats are identified early, investigated automatically, and communicated clearly across our organization.

That confidence was tested when we withstood a major ransomware attack by a well-known threat group. Not only were we able to contain the incident, but we were able to trace attacker activity and provided evidence to law enforcement. That was an exhilarating experience! My team did an outstanding job, and moments like that reinforce exactly why we invest in the right technology and the right people.

Internally, this capability has strengthened trust at the executive level. We share security reporting regularly with leadership, translating technical activity into business-relevant insights. That transparency reinforces cybersecurity as a shared responsibility, one that directly supports growth, continuity, and reputation.

Culturally, we’ve embedded security awareness into daily operations through mandatory monthly training, executive communication, and real-world industry examples that keep cybersecurity top of mind for every employee.

The only headlines we want are positive ones: Withum expanding services, Withum growing year over year. Security plays a huge role in making sure that’s the story we get to tell.

What’s next

Looking ahead, we’re expanding our use of Darktrace, including new cloud capabilities that extend AI-driven visibility and investigation into our AWS and Azure environments.

As I continue shaping our security team, I look for people with passion, curiosity, and a genuine drive to solve problems. Those qualities matter just as much as formal credentials in my view. Combined with AI, these attributes help us build a resilient, engaged security function with low turnover and high impact.

For fellow technology leaders, my advice is simple: be forward-thinking and embrace change. We must understand the business, the threat landscape, and how technology enables both. By augmenting human expertise rather than replacing it, AI allows us to move upstream by anticipating risk, advising the business, and fostering stronger collaboration across teams.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI