Blog
/
Network
/
April 8, 2024

Balada Injector: Darktrace’s Investigation into the Malware Exploiting WordPress Vulnerabilities

This blog explores Darktrace’s detection of Balada Injector, a malware known to exploit vulnerabilities in WordPress to gain unauthorized access to networks. Darktrace was able to define numerous use-cases within customer environments which followed previously identified patterns of activity spikes across multiple weeks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Apr 2024

Introduction

With millions of users relying on digital platforms in their day-to-day lives, and organizations across the world depending on them for their business operations, they have inevitably also become a prime target for threat actors. The widespread exploitation of popular services, websites and platforms in cyber-attacks highlights the pervasive nature of malicious actors in today’s threat landscape.

A prime illustration can be seen within the content management system WordPress. Its widespread use and extensive plug-in ecosystem make it an attractive target for attackers aiming to breach networks and access sensitive data, thus leading to routine exploitation attempts. In the End of Year Threat Report for 2023, for example, Darktrace reported that a vulnerability in one WordPress plug-in, namely an authentication bypass vulnerability in miniOrange's Social Login and Register. Darktrace observed it as one of the most exploited vulnerabilities observed across its customer base in the latter half of 2023.

Between September and October 2023, Darktrace observed a string of campaign-like activity associated with Balada Injector, a malware strain known to exploit vulnerabilities in popular plug-ins and themes on the WordPress platform in order to inject a backdoor to provide further access to affected devices and networks. Thanks to its anomaly-based detection, Darktrace DETECT™ was able to promptly identify suspicious connections associated with the Balada Injector, ensuring that security teams had full visibility over potential post-compromise activity and allowing them to act against offending devices.

What is Balada Injector?

The earliest signs of the Balada Injector campaign date back to 2017; however, it was not designated the name Balada Injector until December 2022 [1]. The malware utilizes plug-ins and themes in WordPress to inject a backdoor that redirects end users to malicious and fake sites. It then exfiltrates sensitive information, such as database credentials, archive files, access logs and other valuable information which may not be properly secured [1]. Balada Injector compromise activity is also reported to arise in spikes of activity that emerge every couple of weeks [4].

In its most recent attack activity patterns, specifically in September 2023, Balada Injector exploited a cross-site scripting (XSS) vulnerability in CVE-2023-3169 associated with the tagDiv composer plug-in. Some of the injection methods observed included HTML injections, database injections, and arbitrary file injections. In late September 2023, a similar pattern of behavior was observed, with the ability to plant a backdoor that could execute PHP code and install a malicious WordPress plug-in, namely ‘wp-zexit’.

According to external security researchers [2], the most recent infection activity spikes for Balada Injector include the following:

Pattern 1: ‘stay.decentralappps[.]com’ injections

Pattern 2: Autogenerated malicious WordPress users

Pattern 3: Backdoors in the Newspaper theme’s 404.php file

Pattern 4: Malicious ‘wp-zexit’ plug-in installation

Pattern 5: Three new Balada Injector domains (statisticscripts[.]com, dataofpages[.]com, and listwithstats[.]com)

Pattern 6: Promsmotion[.]com domain

Darktrace’s Coverage of Balada Injector

Darktrace detected devices across multiple customer environments making external connections to the malicious Balada Injector domains, including those associated with aforementioned six infection activity patterns. Across the incidents investigated by Darktrace, much of the activity appeared to be associated with TLS/SSL connectivity, related to Balada Injector endpoints, which correlated with the reported infection patterns of this malware. The observed hostnames were all recently registered and, in most cases, had IP geolocations in either the Netherlands or Ukraine.

In the observed cases of Balada Injector across the Darktrace fleet, Darktrace RESPOND™ was not active on the affected customer environments. If RESPOND had been active and enabled in autonomous response mode at the time of these attacks, it would have been able to quickly block connections to malicious Balada Injector endpoints as soon as they were identified by DETECT, thereby containing the threat.

Looking within the aforementioned activity patterns, Darktrace identified a Balada Injector activity within a customer’s environment on October 16, 2023, when a device was observed making a total of 9 connection attempts to ‘sleep[.]stratosbody[.]com’, a domain that had previously been associated with the malware [2]. Darktrace recognized that the endpoint had never been seen on the network, with no other devices having connected to it previously, thus treated it as suspicious.

Figure 1: The connection details above demonstrate 100% rare external connections were made from the internal device to the ‘sleep[.]stratosbody[.]com’ endpoint.

Similarly, on September 21, 2023, Darktrace observed a device on another customer network connecting to an external IP that had never previously been observed on the environment, 111.90.141[.]193. The associated server name was a known malicious endpoint, ‘stay.decentralappps[.]com’, known to be utilized by Balada Injector to host malicious scripts used to compromise WordPress sites. Although the ‘stay.decentralappps[.]com’ domain was only registered in September 2023, it was reportedly used in the redirect chain of the aforementioned stratosbody[.com] domain [2]. Such scripts can be used to upload backdoors, including malicious plug-ins, and create blog administrators who can perform administrative tasks without having to authenticate [2].

Figure 2: Advance Search results displaying the metadata logs surrounding the unusual connections to ‘stay.decentralappps[.]com’. A total of nine HTTP CONNECT requests were observed, with status messages “Proxy Authorization Required” and “Connection established”.

Darktrace observed additional connections within the same customer’s environment on October 10 and October 18, specifically SSL connections from two distinct source devices to the ‘stay.decentralappps[.]com’ endpoint. Within these connections, Darktrace observed the normalized JA3 fingerprints, “473f0e7c0b6a0f7b049072f4e683068b” and “aa56c057ad164ec4fdcb7a5a283be9fc”, the latter of which corresponds to GitHub results mentioning a Python client (curl_cffi) that is able to impersonate the TLS signatures of browsers or JA3 fingerprints [8].

Figure 3: Advanced Search query results showcasing Darktrace’s detection of SSL connections to ‘stay.decentralappps[.]com over port 443.

On September 29, 2023, a device on a separate customer’s network was observed connecting to the hostname ‘cdn[.]dataofpages[.]com’, one of the three new Balada Injector domains identified as part of the fifth pattern of activity outlined above, using a new SSL certificate via port 443. Multiple open-source intelligence (OSINT) vendors flagged this domain as malicious and associated with Balada Injector malware [9].

Figure 4: The Model Breach Event Log detailing the Balada Injector-related connections observed causing the ‘Anomalous External Activity from Critical Network Device’ DETECT model to breach.

On October 2, 2023, Darktrace observed the device of another customer connecting to the rare hostname, ‘js.statisticscripts[.]com’ with the IP address 185.39.206[.]161, both of which had only been registered in late September and are known to be associated with the Balada Injector.

Figure 5: Model Breach Event Log detailing connections to the hostname ‘js.statisticscripts[.]com’ over port 137.

On September 13, 2023, Darktrace identified a device on another customer’s network connecting to the Balada Injector endpoint ‘stay.decentralappps[.]com’ endpoint, with the destination IP 1.1.1[.]1, using the SSL protocol. This time, however, Darktrace also observed the device making subsequent connections to ‘get.promsmotion[.]com’ a subdomain of the ‘promsmotion[.]com’ domain. This domain is known to be used by Balada Injector actors to host malicious scripts that can be injected into the WordPress Newspaper theme as potential backdoors to be leveraged by attackers.

In a separate case observed on September 14, Darktrace identified a device on another environment connecting to the domain ‘collect[.]getmygateway[.]com’ with the IP 88.151.192[.]254. No other device on the customer’s network had visited this endpoint previously, and the device in question was observed repeatedly connecting to it via port 443 over the course of four days. While this specific hostname had not been linked with a specific activity pattern of Balada Injector, it was reported as previously associated with the malware in September 2023 [2].

Figure 6: Model Breach Event Log displaying a customer device making repeated connections to the endpoint ‘collect[.]getmygateway[.]com’, breaching the DETECT model ‘Repeating Connections Over 4 Days’.

In addition to DETECT’s identification of this suspicious activity, Darktrace’s Cyber AI Analyst™ also launched its own autonomous investigation into the connections. AI Analyst was able to recognize that these separate connections that took place over several days were, in fact, connected and likely represented command-and-control (C2) beaconing activity that had been taking place on the customer networks.

By analyzing the large number of external connections taking place on a customer’s network at any one time, AI Analyst is able to view seemingly isolated events as components of a wider incident, ensuring that customers maintain full visibility over their environments and any emerging malicious activity.

Figure 7: Cyber AI Analyst investigation detailing the SSL connectivity observed, including endpoint details and overall summary of the beaconing activity.

Conclusion

While Balada Injector’s tendency to interchange C2 infrastructure and utilize newly registered domains may have been able to bypass signature-based security measures, Darktrace’s anomaly-based approach enabled it to swiftly identify affected devices across multiple customer environments, without needing to update or retrain its models to keep pace with the evolving iterations of WordPress vulnerabilities.

Unlike traditional measures, Darktrace DETECT’s Self-Learning AI focusses on behavioral analysis, crucial for identifying emerging threats like those exploiting commonly used platforms such as WordPress. Rather than relying on historical threat intelligence or static indicators of compromise (IoC) lists, Darktrace identifies the subtle deviations in device behavior, such as unusual connections to newly registered domains, that are indicative of network compromise.

Darktrace’s suite of products, including DETECT+RESPOND, is uniquely positioned to proactively identify and contain network compromises from the onset, offering vital protection against disruptive cyber-attacks.

Credit to: Justin Torres, Cyber Analyst, Nahisha Nobregas, Senior Cyber Analyst

Appendices

Darktrace DETECT Model Coverage

  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Rare External SSL Self-Signed
  • Compliance / Possible DNS Over HTTPS/TLS
  • Compliance / External Windows Communications
  • Compromise / Repeating Connections Over 4 Days
  • Compromise / Beaconing Activity To External Rare
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Suspicious TLS Beaconing To Rare External
  • Compromise / Large DNS Volume for Suspicious Domain
  • Anomalous Server Activity / Outgoing from Server
  • Anomalous Server Activity / Rare External from Server
  • Device / Suspicious Domain

List of IoCs

IoC - Type - Description + Confidence

collect[.]getmygateway[.]com - Hostname - Balada C2 Endpoint

cdn[.]dataofpages[.]com - Hostname - Balada C2 Endpoint

stay[.]decentralappps[.]com - Hostname - Balada C2 Endpoint

get[.]promsmotion[.]com - Hostname - Balada C2 Endpoint

js[.]statisticscripts[.]com - Hostname - Balada C2 Endpoint

sleep[.]stratosbody[.]com - Hostname - Balada C2 Endpoint

trend[.]stablelightway[.]com - Hostname - Balada C2 Endpoint

cdn[.]specialtaskevents[.]com - Hostname - Balada C2 Endpoint

88.151.192[.]254 - IP Address - Balada C2 Endpoint

185.39.206[.]160 - IP Address - Balada C2 Endpoint

111.90.141[.]193 - IP Address - Balada C2 Endpoint

185.39.206[.]161 - IP Address - Balada C2 Endpoint

2.59.222[.]121 - IP Address - Balada C2 Endpoint

80.66.79[.]253 - IP Address - Balada C2 Endpoint

Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:68.0) - User Agent - Observed User Agent in Balada C2 Connections

Gecko/20100101 Firefox/68.0 - User Agent - Observed User Agent in Balada C2 Connections

Mozilla/5.0 (Windows NT 10.0; Win64; x64) - User Agent - Observed User Agent in Balada C2 Connections

AppleWebKit/537.36 (KHTML, like Gecko) - User Agent - Observed User Agent in Balada C2 Connections

Chrome/117.0.0.0 - User Agent - Observed User Agent in Balada C2 Connections

Safari/537.36 - User Agent - Observed User Agent in Balada C2 Connections

Edge/117.0.2045.36 - User Agent - Observed User Agent in Balada C2 Connections

MITRE ATT&CK Mapping

Technique - Tactic - ID - Sub Technique

Exploit Public-Facing Application

INITIAL ACCESS

T1190

Web Protocols

COMMAND AND CONTROL

T1071.001

T1071

Protocol Tunneling

COMMAND AND CONTROL

T1572


Default Accounts

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078.001

T1078

Domain Accounts

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078.002

T1078

External Remote Services

PERSISTENCE, INITIAL ACCESS

T1133

NA

Local Accounts

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078.003

T1078

Application Layer Protocol

COMMAND AND CONTROL

T1071

NA

Browser Extensions

PERSISTENCE

T1176

NA

Encrypted Channel

COMMAND AND CONTROL

T1573

Fallback Channels

COMMAND AND CONTROL

T1008

Multi-Stage Channels

COMMAND AND CONTROL

T1104

Non-Standard Port

COMMAND AND CONTROL

T1571

Supply Chain Compromise

INITIAL ACCESS ICS

T0862

Commonly Used Port

COMMAND AND CONTROL ICS

T0885

References

[1] https://blog.sucuri.net/2023/04/balada-injector-synopsis-of-a-massive-ongoing-wordpress-malware-campaign.html

[2] https://blog.sucuri.net/2023/10/balada-injector-targets-unpatched-tagdiv-plugin-newspaper-theme-wordpress-admins.html

[3] https://securityboulevard.com/2021/05/wordpress-websites-redirecting-to-outlook-phishing-pages-travelinskydream-ga-track-lowerskyactive/

[4] https://thehackernews.com/2023/10/over-17000-wordpress-sites-compromised.html

[5] https://www.bleepingcomputer.com/news/security/over-17-000-wordpress-sites-hacked-in-balada-injector-attacks-last-month/

[6]https://nvd.nist.gov/vuln/detail/CVE-2023-3169

[7] https://www.geoedge.com/balda-injectors-2-0-evading-detection-gaining-persistence/

[8] https[:]//github[.]com/yifeikong/curl_cffi/blob/master/README.md

[9] https://www.virustotal.com/gui/domain/cdn.dataofpages.com

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

/

May 2, 2025

SocGholish: From loader and C2 activity to RansomHub deployment

laptop and hand typingDefault blog imageDefault blog image

Over the past year, a clear pattern has emerged across the threat landscape: ransomware operations are increasingly relying on compartmentalized affiliate models. In these models, initial access brokers (IABs) [6], malware loaders, and post-exploitation operators work together.

Due to those specialization roles, a new generation of loader campaigns has risen. Threat actors increasingly employ loader operators to quietly establish footholds on the target network. These entities then hand off access to ransomware affiliates. One loader that continues to feature prominently in such campaigns is SocGholish.

What is SocGholish?

SocGholish is a loader malware that has been utilized since at least 2017 [7].  It has long been associated with fake browser updates and JavaScript-based delivery methods on infected websites.

Threat actors often target outdated or poorly secured CMS-based websites like WordPress. Through unpatched plugins, or even remote code execution flaws, they inject malicious JavaScript into the site’s HTML, templates or external JS resources [8].  Historically, SocGholish has functioned as a first-stage malware loader, ultimately leading to deployment of Cobalt Strike beacons [9], and further facilitating access persistence to corporate environments. More recently, multiple security vendors have reported that infections involving SocGholish frequently lead to the deployment of RansomHub ransomware [3] [5].

This blog explores multiple instances within Darktrace's customer base where SocGholish deployment led to subsequent network compromises. Investigations revealed indicators of compromise (IoCs) similar to those identified by external security researchers, along with variations in attacker behavior post-deployment. Key innovations in post-compromise activities include credential access tactics targeting authentication mechanisms, particularly through the abuse of legacy protocols like WebDAV and SCF file interactions over SMB.

Initial access and execution

Since January 2025, Darktrace’s Threat Research team observed multiple cases in which threat actors leveraged the SocGholish loader for initial access. Malicious actors commonly deliver SocGholish by compromising legitimate websites by injecting malicious scripts into the HTML of the affected site. When the visitor lands on an infected site, they are typically redirected to a fake browser update page, tricking them into downloading a ZIP file containing a JavaScript-based loader [1] [2]. In one case, a targeted user appears to have visited the compromised website garagebevents[.]com (IP: 35.203.175[.]30), from which around 10 MB of data was downloaded.

Device Event Log showing connections to the compromised website, following by connections to the identified Keitaro TDS instances.
Figure 1: Device Event Log showing connections to the compromised website, following by connections to the identified Keitaro TDS instances.

Within milliseconds of the connection establishment, the user’s device initiated several HTTPS sessions over the destination port 443 to the external endpoint 176.53.147[.]97, linked to the following Keitaro TDS domains:

  • packedbrick[.]com
  • rednosehorse[.]com
  • blackshelter[.]org
  • blacksaltys[.]com

To evade detection, SocGholish uses highly obfuscated code and relies on traffic distribution systems (TDS) [3].  TDS is a tool used in digital and affiliate marketing to manage and distribute incoming web traffic based on predefined rules. More specifically, Keitaro is a premium self-hosted TDS frequently utilized by attackers as a payload repository for malicious scripts following redirects from compromised sites. In the previously noted example, it appears that the device connected to the compromised website, which then retrieved JavaScript code from the aforementioned Keitaro TDS domains. The script served by those instances led to connections to the endpoint virtual.urban-orthodontics[.]com (IP: 185.76.79[.]50), successfully completing SocGholish’s distribution.

Advanced Search showing connections to the compromised website, following by those to the identified Keitaro TDS instances.
Figure 2: Advanced Search showing connections to the compromised website, following by those to the identified Keitaro TDS instances.

Persistence

During some investigations, Darktrace researchers observed compromised devices initiating HTTPS connections to the endpoint files.pythonhosted[.]org (IP: 151.101.1[.]223), suggesting Python package downloads. External researchers have previously noted how attackers use Python-based backdoors to maintain access on compromised endpoints following initial access via SocGholish [5].

Credential access and lateral movement

Credential access – external

Darktrace researchers identified observed some variation in kill chain activities following initial access and foothold establishment. For example, Darktrace detected interesting variations in credential access techniques. In one such case, an affected device attempted to contact the rare external endpoint 161.35.56[.]33 using the Web Distributed Authoring and Versioning (WebDAV) protocol. WebDAV is an extension of the HTTP protocol that allows users to collaboratively edit and manage files on remote web servers. WebDAV enables remote shares to be mounted over HTTP or HTTPS, similar to how SMB operates, but using web-based protocols. Windows supports WebDAV natively, which means a UNC path pointing to an HTTP or HTTPS resource can trigger system-level behavior such as authentication.

In this specific case, the system initiated outbound connections using the ‘Microsoft-WebDAV-MiniRedir/10.0.19045’ user-agent, targeting the URI path of /s on the external endpoint 161.35.56[.]33. During these requests, the host attempted to initiate NTML authentication and even SMB sessions over the web, both of which failed. Despite the session failures, these attempts also indicate a form of forced authentication. Forced authentication exploits a default behavior in Windows where, upon encountering a UNC path, the system will automatically try to authenticate to the resource using NTML – often without any user interaction. Although no files were directly retrieved, the WebDAV server was still likely able to retrieve the user’s NTLM hash during the session establishment requests, which can later be used by the adversary to crack the password offline.

Credential access – internal

In another investigated incident, Darktrace observed a related technique utilized for credential access and lateral movement. This time, the infected host uploaded a file named ‘Thumbs.scf’ to multiple internal SMB network shares. Shell Command File ( SCF) is a legacy Windows file format used primarily for Windows Explorer shortcuts. These files contain instructions for rendering icons or triggering shell commands, and they can be executed implicitly when a user simply opens a folder containing the file – no clicks required.

The ‘Thumbs.scf’ file dropped by the attacker was crafted to exploit this behavior. Its contents included a [Shell] section with the Command=2 directive and an IconFile path pointing to a remote UNC resource on the same external endpoint, 161.35.56[.]33, seen in the previously described case – specifically, ‘\\161.35.56[.]33\share\icon.ico’. When a user on the internal network navigates to the folder containing the SCF file, their system will automatically attempt to load the icon. In doing so, the system issues a request to the specified UNC path, which again prompts Windows to initiate NTML authentication.

This pattern of activity implies that the attacker leveraged passive internal exposure; users who simply browsed a compromised share would unknowingly send their NTML hashes to an external attacker-controlled host. Unlike the WebDAV approach, which required initiating outbound communication from the infected host, this SCF method relies on internal users to interact with poisoned folders.

Figure 3: Contents of the file 'Thumbs.scf' showing the UNC resource hosted on the external endpoint.
Figure 3: Contents of the file 'Thumbs.scf' showing the UNC resource hosted on the external endpoint.

Command-and-control

Following initial compromise, affected devices would then attempt outbound connections using the TLS/SSL protocol over port 443 to different sets of command-and-control (C2) infrastructure associated with SocGholish. The malware frequently uses obfuscated JavaScript loaders to initiate its infection chain, and once dropped, the malware communicates back to its infrastructure over standard web protocols, typically using HTTPS over port 443. However, this set of connections would precede a second set of outbound connections, this time to infrastructure linked to RansomHub affiliates, possibly facilitating the deployed Python-based backdoor.

Connectivity to RansomHub infrastructure relied on defense evasion tactics, such as port-hopping. The idea behind port-hopping is to disguise C2 traffic by avoiding consistent patterns that might be caught by firewalls, and intrusion detection systems. By cycling through ephemeral ports, the malware increases its chances of slipping past basic egress filtering or network monitoring rules that only scrutinize common web traffic ports like 443 or 80. Darktrace analysts identified systems connecting to destination ports such as 2308, 2311, 2313 and more – all on the same destination IP address associated with the RansomHub C2 environment.

Figure 4: Advanced Search connection logs showing connections over destination ports that change rapidly.

Conclusion

Since the beginning of 2025, Darktrace analysts identified a campaign whereby ransomware affiliates leveraged SocGholish to establish network access in victim environments. This activity enabled multiple sets of different post exploitation activity. Credential access played a key role, with affiliates abusing WebDAV and NTML over SMB to trigger authentication attempts. The attackers were also able to plant SCF files internally to expose NTML hashes from users browsing shared folders. These techniques evidently point to deliberate efforts at early lateral movement and foothold expansion before deploying ransomware. As ransomware groups continue to refine their playbooks and work more closely with sophisticated loaders, it becomes critical to track not just who is involved, but how access is being established, expanded, and weaponized.

Credit to Chrisina Kreza (Cyber Analyst) and Adam Potter (Senior Cyber Analyst)

Appendices

Darktrace / NETWORK model alerts

·       Anomalous Connection / SMB Enumeration

·       Anomalous Connection / Multiple Connections to New External TCP Port

·       Anomalous Connection / Multiple Failed Connections to Rare Endpoint

·       Anomalous Connection / New User Agent to IP Without Hostname

·       Compliance / External Windows Communication

·       Compliance / SMB Drive Write

·       Compromise / Large DNS Volume for Suspicious Domain

·       Compromise / Large Number of Suspicious Failed Connections

·       Device / Anonymous NTML Logins

·       Device / External Network Scan

·       Device / New or Uncommon SMB Named Pipe

·       Device / SMB Lateral Movement

·       Device / Suspicious SMB Activity

·       Unusual Activity / Unusual External Activity

·       User / Kerberos Username Brute Force

MITRE ATT&CK mapping

·       Credential Access – T1187 Forced Authentication

·       Credential Access – T1110 Brute Force

·       Command and Control – T1071.001 Web Protocols

·       Command and Control – T1571 Non-Standard Port

·       Discovery – T1083 File and Directory Discovery

·       Discovery – T1018 Remote System Discovery

·       Discovery – T1046 Network Service Discovery

·       Discovery – T1135 Network Share Discovery

·       Execution – T1059.007 JavaScript

·       Lateral Movement – T1021.002 SMB/Windows Admin Shares

·       Resource Deployment – T1608.004 Drive-By Target

List of indicators of compromise (IoCs)

·       garagebevents[.]com – 35.203.175[.]30 – Possibly compromised website

·       packedbrick[.]com – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       rednosehorse[.]com – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       blackshelter[.]org – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       blacksaltys[.]com – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       virtual.urban-orthodontics[.]com – 185.76.79[.]50

·       msbdz.crm.bestintownpro[.]com – 166.88.182[.]126 – SocGholish C2

·       185.174.101[.]240 – RansomHub Python C2

·       185.174.101[.]69 – RansomHub Python C2

·       108.181.182[.]143 – RansomHub Python C2

References

[1] https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/socgholish-malware/

[2] https://intel471.com/blog/threat-hunting-case-study-socgholish

[3] https://www.trendmicro.com/en_us/research/25/c/socgholishs-intrusion-techniques-facilitate-distribution-of-rans.html

[4] https://www.proofpoint.com/us/blog/threat-insight/update-fake-updates-two-new-actors-and-new-mac-malware

[5] https://www.guidepointsecurity.com/blog/ransomhub-affiliate-leverage-python-based-backdoor/

[6] https://www.cybereason.com/blog/how-do-initial-access-brokers-enable-ransomware-attacks

[7] https://attack.mitre.org/software/S1124/

[8] https://expel.com/blog/incident-report-spotting-socgholish-wordpress-injection/

[9] https://www.esentire.com/blog/socgholish-to-cobalt-strike-in-10-minutes

Continue reading
About the author
Christina Kreza
Cyber Analyst

Blog

/

/

May 1, 2025

Your Vendors, Your Risk: Rethinking Third-Party Security in the Age of Supply Chain Attacks

man on cellphoneDefault blog imageDefault blog image

When most people hear the term supply chain attack, they often imagine a simple scenario: one organization is compromised, and that compromise is used as a springboard to attack another. This kind of lateral movement is common, and often the entry vector is as mundane and as dangerous as email.

Take, for instance, a situation where a trusted third-party vendor is breached. An attacker who gains access to their systems can then send malicious emails to your organization, emails that appear to come from a known and reputable source. Because the relationship is trusted, traditional phishing defenses may not be triggered, and recipients may be more inclined to engage with malicious content. From there, the attacker can establish a foothold, move laterally, escalate privileges, and launch a broader campaign.

This is one dimension of a supply chain cyber-attack, and it’s well understood in many security circles. But the risk doesn’t end there. In fact, it goes deeper, and it often hits the most important asset of all: your customers' data.

The risk beyond the inbox

What happens when customer data is shared with a third party for legitimate processing purposes for example billing, analytics, or customer service and that third party is then compromised?

In that case, your customer data is breached, even if your own systems were never touched. That’s the uncomfortable truth about modern cybersecurity: your risk is no longer confined to your own infrastructure. Every entity you share data with becomes an extension of your attack surface. Thus, we should rethink how we perceive responsibility.

It’s tempting to think that securing our environment is our job, and securing their environment is theirs. But if a breach of their environment results in the exposure of our customers, the accountability and reputational damage fall squarely on our shoulders.

The illusion of boundaries

In an era where digital operations are inherently interconnected, the lines of responsibility can blur quickly. Legally and ethically, organizations are still responsible for the data they collect even if that data is processed, stored, or analyzed by a third party. A customer whose data is leaked because of a vendor breach will almost certainly hold the original brand responsible, not the third-party processor they never heard of.

This is particularly important for industries that rely on extensive outsourcing and platform integrations (SaaS platforms, marketing tools, CRMs, analytics platforms, payment processors). The list of third-party vendors with access to customer data grows year over year. Each integration adds convenience, but also risk.

Encryption isn’t a silver bullet

One of the most common safeguards used in these data flows is encryption. Encrypting customer data in transit is a smart and necessary step, but it’s far from enough. Once data reaches the destination system, it typically needs to be decrypted for use. And the moment it is decrypted, it becomes vulnerable to a variety of attacks like ransomware, data exfiltration, privilege escalation, and more.

In other words, the question isn’t just is the data secure in transit? The more important question is how is it protected once it arrives?

A checklist for organizations evaluating third-parties

Given these risks, what should responsible organizations do when they need to share customer data with third parties?

Start by treating third-party security as an extension of your own security program. Here are some foundational controls that can make a difference:

Due diligence before engagement: Evaluate third-party vendors based on their security posture before signing any contracts. What certifications do they hold? What frameworks do they follow? What is their incident response capability?

Contractual security clauses: Build in specific security requirements into vendor contracts. These can include requirements for encryption standards, access control policies, and data handling protocols.

Third-party security assessments: Require vendors to provide evidence of their security controls. Independent audits, penetration test results, and SOC 2 reports can all provide useful insights.

Ongoing monitoring and attestations: Security isn’t static. Make sure vendors provide regular security attestations and reports. Where possible, schedule periodic reviews or audits, especially for vendors handling sensitive data.

Minimization and segmentation: Don’t send more data than necessary. Data minimization limits the exposure in the event of a breach. Segmentation, both within your environment and within vendor access levels, can further reduce risk.

Incident response planning: Ensure you have a playbook for handling third-party incidents, and that vendors do as well. Coordination in the event of a breach should be clear and rapid.

The human factor: Customers and communication

There’s another angle to supply chain cyber-attacks that’s easy to overlook: the post-breach exploitation of public knowledge. When a breach involving customer data hits the news, it doesn’t take long for cybercriminals to jump on the opportunity.

Attackers can craft phishing emails that appear to be follow-ups from the affected organization: “Click here to reset your password,” “Confirm your details due to the breach,” etc.

A breach doesn’t just put customer data at risk it also opens the door to further fraud, identity theft, and financial loss through social engineering. This is why post-breach communication and phishing mitigation strategies are valuable components of an incident response strategy.

Securing what matters most

Ultimately, protecting against supply chain cyber-attacks isn’t just about safeguarding your own perimeter. It’s about defending the integrity of your customers’ data, wherever it goes. When customer data is entrusted to you, the duty of care doesn’t end at your firewall.

Relying on vendors to “do their part” is not enough. True due diligence means verifying, validating, and continuously monitoring those extended attack surfaces. It means designing controls that assume failure is possible, and planning accordingly.

In today’s threat landscape, cybersecurity is no longer just a technical discipline. It’s a trust-building exercise. Your customers expect you to protect their information, and rightly so. And when a supply chain attack happens, whether the breach originated with you or your partner, the damage lands in the same place: your brand, your customers, your responsibility.

[related-resource]

Continue reading
About the author
Tony Jarvis
VP, Field CISO | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI