Blog
/

Inside the SOC

/
April 8, 2024

Balada Injector: Darktrace’s Investigation into the Malware Exploiting WordPress Vulnerabilities

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Apr 2024
This blog explores Darktrace’s detection of Balada Injector, a malware known to exploit vulnerabilities in WordPress to gain unauthorized access to networks. Darktrace was able to define numerous use-cases within customer environments which followed previously identified patterns of activity spikes across multiple weeks.

Introduction

With millions of users relying on digital platforms in their day-to-day lives, and organizations across the world depending on them for their business operations, they have inevitably also become a prime target for threat actors. The widespread exploitation of popular services, websites and platforms in cyber-attacks highlights the pervasive nature of malicious actors in today’s threat landscape.

A prime illustration can be seen within the content management system WordPress. Its widespread use and extensive plug-in ecosystem make it an attractive target for attackers aiming to breach networks and access sensitive data, thus leading to routine exploitation attempts. In the End of Year Threat Report for 2023, for example, Darktrace reported that a vulnerability in one WordPress plug-in, namely an authentication bypass vulnerability in miniOrange's Social Login and Register. Darktrace observed it as one of the most exploited vulnerabilities observed across its customer base in the latter half of 2023.

Between September and October 2023, Darktrace observed a string of campaign-like activity associated with Balada Injector, a malware strain known to exploit vulnerabilities in popular plug-ins and themes on the WordPress platform in order to inject a backdoor to provide further access to affected devices and networks. Thanks to its anomaly-based detection, Darktrace DETECT™ was able to promptly identify suspicious connections associated with the Balada Injector, ensuring that security teams had full visibility over potential post-compromise activity and allowing them to act against offending devices.

What is Balada Injector?

The earliest signs of the Balada Injector campaign date back to 2017; however, it was not designated the name Balada Injector until December 2022 [1]. The malware utilizes plug-ins and themes in WordPress to inject a backdoor that redirects end users to malicious and fake sites. It then exfiltrates sensitive information, such as database credentials, archive files, access logs and other valuable information which may not be properly secured [1]. Balada Injector compromise activity is also reported to arise in spikes of activity that emerge every couple of weeks [4].

In its most recent attack activity patterns, specifically in September 2023, Balada Injector exploited a cross-site scripting (XSS) vulnerability in CVE-2023-3169 associated with the tagDiv composer plug-in. Some of the injection methods observed included HTML injections, database injections, and arbitrary file injections. In late September 2023, a similar pattern of behavior was observed, with the ability to plant a backdoor that could execute PHP code and install a malicious WordPress plug-in, namely ‘wp-zexit’.

According to external security researchers [2], the most recent infection activity spikes for Balada Injector include the following:

Pattern 1: ‘stay.decentralappps[.]com’ injections

Pattern 2: Autogenerated malicious WordPress users

Pattern 3: Backdoors in the Newspaper theme’s 404.php file

Pattern 4: Malicious ‘wp-zexit’ plug-in installation

Pattern 5: Three new Balada Injector domains (statisticscripts[.]com, dataofpages[.]com, and listwithstats[.]com)

Pattern 6: Promsmotion[.]com domain

Darktrace’s Coverage of Balada Injector

Darktrace detected devices across multiple customer environments making external connections to the malicious Balada Injector domains, including those associated with aforementioned six infection activity patterns. Across the incidents investigated by Darktrace, much of the activity appeared to be associated with TLS/SSL connectivity, related to Balada Injector endpoints, which correlated with the reported infection patterns of this malware. The observed hostnames were all recently registered and, in most cases, had IP geolocations in either the Netherlands or Ukraine.

In the observed cases of Balada Injector across the Darktrace fleet, Darktrace RESPOND™ was not active on the affected customer environments. If RESPOND had been active and enabled in autonomous response mode at the time of these attacks, it would have been able to quickly block connections to malicious Balada Injector endpoints as soon as they were identified by DETECT, thereby containing the threat.

Looking within the aforementioned activity patterns, Darktrace identified a Balada Injector activity within a customer’s environment on October 16, 2023, when a device was observed making a total of 9 connection attempts to ‘sleep[.]stratosbody[.]com’, a domain that had previously been associated with the malware [2]. Darktrace recognized that the endpoint had never been seen on the network, with no other devices having connected to it previously, thus treated it as suspicious.

Figure 1: The connection details above demonstrate 100% rare external connections were made from the internal device to the ‘sleep[.]stratosbody[.]com’ endpoint.

Similarly, on September 21, 2023, Darktrace observed a device on another customer network connecting to an external IP that had never previously been observed on the environment, 111.90.141[.]193. The associated server name was a known malicious endpoint, ‘stay.decentralappps[.]com’, known to be utilized by Balada Injector to host malicious scripts used to compromise WordPress sites. Although the ‘stay.decentralappps[.]com’ domain was only registered in September 2023, it was reportedly used in the redirect chain of the aforementioned stratosbody[.com] domain [2]. Such scripts can be used to upload backdoors, including malicious plug-ins, and create blog administrators who can perform administrative tasks without having to authenticate [2].

Figure 2: Advance Search results displaying the metadata logs surrounding the unusual connections to ‘stay.decentralappps[.]com’. A total of nine HTTP CONNECT requests were observed, with status messages “Proxy Authorization Required” and “Connection established”.

Darktrace observed additional connections within the same customer’s environment on October 10 and October 18, specifically SSL connections from two distinct source devices to the ‘stay.decentralappps[.]com’ endpoint. Within these connections, Darktrace observed the normalized JA3 fingerprints, “473f0e7c0b6a0f7b049072f4e683068b” and “aa56c057ad164ec4fdcb7a5a283be9fc”, the latter of which corresponds to GitHub results mentioning a Python client (curl_cffi) that is able to impersonate the TLS signatures of browsers or JA3 fingerprints [8].

Figure 3: Advanced Search query results showcasing Darktrace’s detection of SSL connections to ‘stay.decentralappps[.]com over port 443.

On September 29, 2023, a device on a separate customer’s network was observed connecting to the hostname ‘cdn[.]dataofpages[.]com’, one of the three new Balada Injector domains identified as part of the fifth pattern of activity outlined above, using a new SSL certificate via port 443. Multiple open-source intelligence (OSINT) vendors flagged this domain as malicious and associated with Balada Injector malware [9].

Figure 4: The Model Breach Event Log detailing the Balada Injector-related connections observed causing the ‘Anomalous External Activity from Critical Network Device’ DETECT model to breach.

On October 2, 2023, Darktrace observed the device of another customer connecting to the rare hostname, ‘js.statisticscripts[.]com’ with the IP address 185.39.206[.]161, both of which had only been registered in late September and are known to be associated with the Balada Injector.

Figure 5: Model Breach Event Log detailing connections to the hostname ‘js.statisticscripts[.]com’ over port 137.

On September 13, 2023, Darktrace identified a device on another customer’s network connecting to the Balada Injector endpoint ‘stay.decentralappps[.]com’ endpoint, with the destination IP 1.1.1[.]1, using the SSL protocol. This time, however, Darktrace also observed the device making subsequent connections to ‘get.promsmotion[.]com’ a subdomain of the ‘promsmotion[.]com’ domain. This domain is known to be used by Balada Injector actors to host malicious scripts that can be injected into the WordPress Newspaper theme as potential backdoors to be leveraged by attackers.

In a separate case observed on September 14, Darktrace identified a device on another environment connecting to the domain ‘collect[.]getmygateway[.]com’ with the IP 88.151.192[.]254. No other device on the customer’s network had visited this endpoint previously, and the device in question was observed repeatedly connecting to it via port 443 over the course of four days. While this specific hostname had not been linked with a specific activity pattern of Balada Injector, it was reported as previously associated with the malware in September 2023 [2].

Figure 6: Model Breach Event Log displaying a customer device making repeated connections to the endpoint ‘collect[.]getmygateway[.]com’, breaching the DETECT model ‘Repeating Connections Over 4 Days’.

In addition to DETECT’s identification of this suspicious activity, Darktrace’s Cyber AI Analyst™ also launched its own autonomous investigation into the connections. AI Analyst was able to recognize that these separate connections that took place over several days were, in fact, connected and likely represented command-and-control (C2) beaconing activity that had been taking place on the customer networks.

By analyzing the large number of external connections taking place on a customer’s network at any one time, AI Analyst is able to view seemingly isolated events as components of a wider incident, ensuring that customers maintain full visibility over their environments and any emerging malicious activity.

Figure 7: Cyber AI Analyst investigation detailing the SSL connectivity observed, including endpoint details and overall summary of the beaconing activity.

Conclusion

While Balada Injector’s tendency to interchange C2 infrastructure and utilize newly registered domains may have been able to bypass signature-based security measures, Darktrace’s anomaly-based approach enabled it to swiftly identify affected devices across multiple customer environments, without needing to update or retrain its models to keep pace with the evolving iterations of WordPress vulnerabilities.

Unlike traditional measures, Darktrace DETECT’s Self-Learning AI focusses on behavioral analysis, crucial for identifying emerging threats like those exploiting commonly used platforms such as WordPress. Rather than relying on historical threat intelligence or static indicators of compromise (IoC) lists, Darktrace identifies the subtle deviations in device behavior, such as unusual connections to newly registered domains, that are indicative of network compromise.

Darktrace’s suite of products, including DETECT+RESPOND, is uniquely positioned to proactively identify and contain network compromises from the onset, offering vital protection against disruptive cyber-attacks.

Credit to: Justin Torres, Cyber Analyst, Nahisha Nobregas, Senior Cyber Analyst

Appendices

Darktrace DETECT Model Coverage

  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Rare External SSL Self-Signed
  • Compliance / Possible DNS Over HTTPS/TLS
  • Compliance / External Windows Communications
  • Compromise / Repeating Connections Over 4 Days
  • Compromise / Beaconing Activity To External Rare
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Suspicious TLS Beaconing To Rare External
  • Compromise / Large DNS Volume for Suspicious Domain
  • Anomalous Server Activity / Outgoing from Server
  • Anomalous Server Activity / Rare External from Server
  • Device / Suspicious Domain

List of IoCs

IoC - Type - Description + Confidence

collect[.]getmygateway[.]com - Hostname - Balada C2 Endpoint

cdn[.]dataofpages[.]com - Hostname - Balada C2 Endpoint

stay[.]decentralappps[.]com - Hostname - Balada C2 Endpoint

get[.]promsmotion[.]com - Hostname - Balada C2 Endpoint

js[.]statisticscripts[.]com - Hostname - Balada C2 Endpoint

sleep[.]stratosbody[.]com - Hostname - Balada C2 Endpoint

trend[.]stablelightway[.]com - Hostname - Balada C2 Endpoint

cdn[.]specialtaskevents[.]com - Hostname - Balada C2 Endpoint

88.151.192[.]254 - IP Address - Balada C2 Endpoint

185.39.206[.]160 - IP Address - Balada C2 Endpoint

111.90.141[.]193 - IP Address - Balada C2 Endpoint

185.39.206[.]161 - IP Address - Balada C2 Endpoint

2.59.222[.]121 - IP Address - Balada C2 Endpoint

80.66.79[.]253 - IP Address - Balada C2 Endpoint

Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:68.0) - User Agent - Observed User Agent in Balada C2 Connections

Gecko/20100101 Firefox/68.0 - User Agent - Observed User Agent in Balada C2 Connections

Mozilla/5.0 (Windows NT 10.0; Win64; x64) - User Agent - Observed User Agent in Balada C2 Connections

AppleWebKit/537.36 (KHTML, like Gecko) - User Agent - Observed User Agent in Balada C2 Connections

Chrome/117.0.0.0 - User Agent - Observed User Agent in Balada C2 Connections

Safari/537.36 - User Agent - Observed User Agent in Balada C2 Connections

Edge/117.0.2045.36 - User Agent - Observed User Agent in Balada C2 Connections

MITRE ATT&CK Mapping

Technique - Tactic - ID - Sub Technique

Exploit Public-Facing Application

INITIAL ACCESS

T1190

Web Protocols

COMMAND AND CONTROL

T1071.001

T1071

Protocol Tunneling

COMMAND AND CONTROL

T1572


Default Accounts

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078.001

T1078

Domain Accounts

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078.002

T1078

External Remote Services

PERSISTENCE, INITIAL ACCESS

T1133

NA

Local Accounts

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078.003

T1078

Application Layer Protocol

COMMAND AND CONTROL

T1071

NA

Browser Extensions

PERSISTENCE

T1176

NA

Encrypted Channel

COMMAND AND CONTROL

T1573

Fallback Channels

COMMAND AND CONTROL

T1008

Multi-Stage Channels

COMMAND AND CONTROL

T1104

Non-Standard Port

COMMAND AND CONTROL

T1571

Supply Chain Compromise

INITIAL ACCESS ICS

T0862

Commonly Used Port

COMMAND AND CONTROL ICS

T0885

References

[1] https://blog.sucuri.net/2023/04/balada-injector-synopsis-of-a-massive-ongoing-wordpress-malware-campaign.html

[2] https://blog.sucuri.net/2023/10/balada-injector-targets-unpatched-tagdiv-plugin-newspaper-theme-wordpress-admins.html

[3] https://securityboulevard.com/2021/05/wordpress-websites-redirecting-to-outlook-phishing-pages-travelinskydream-ga-track-lowerskyactive/

[4] https://thehackernews.com/2023/10/over-17000-wordpress-sites-compromised.html

[5] https://www.bleepingcomputer.com/news/security/over-17-000-wordpress-sites-hacked-in-balada-injector-attacks-last-month/

[6]https://nvd.nist.gov/vuln/detail/CVE-2023-3169

[7] https://www.geoedge.com/balda-injectors-2-0-evading-detection-gaining-persistence/

[8] https[:]//github[.]com/yifeikong/curl_cffi/blob/master/README.md

[9] https://www.virustotal.com/gui/domain/cdn.dataofpages.com

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Justin Torres
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 19, 2024

/
No items found.

Darktrace Leading the Future of Network Detection and Response with Recognition from KuppingerCole

Default blog imageDefault blog image

KuppingerCole has recognized Darktrace as an overall Leader, Product Leader, Market Leader and Innovation Leader in the KuppingerCole Leadership Compass: Network Detection and Response (2024).

With the perimeter all but dissolved, Network Detection and Response (NDR) tools are quickly becoming a critical component of the security stack, as the main tool to span the modern network. NDRs connect on-premises infrastructure to cloud, remote workers, identities, SaaS applications, and IoT/OT – something not available to EDR that requires agents and isolates visibility to individual devices.

KuppingerCole Analysts AG designated Darktrace an ‘Overall Leader’ position because of our continual innovation around user-led security. Self-Learning AI together with automated triage through Cyber AI Analyst and real-time autonomous response actions have been instrumental to security teams in stopping potential threats before they become a breach. With this time saved, Darktrace is leading beyond reactive security to truly harden a network, allowing the team to spend more time in preventive security measures.

Network Detection and Response protects where others fail to reach

NDR solutions operate at the network level, deploying inside or parallel to your network to ingest raw traffic via virtual or physical sensors. This gives them unprecedented potential to identify anomalies and possible breaches in any network - far beyond simple on-prem, into dynamic virtual environments, cloud or hybrid networks, cloud applications, and even remote devices accessing the corporate network via ZTNA or VPN.

Rather than looking at processes level data, NDR can detect the lateral movement of an adversary across multiple assets by analyzing network traffic patterns which endpoint solutions may not be able to identify [1]. In the face of a growing, complex environment, organizations large and small, will benefit from using NDRs either in conjunction, or as the foundation for, their Extended Detection and Response (XDR) for a unified view that improves their overall threat detection, ease of investigation and faster response times.

Today's NDR solutions are expected to include advanced ML and artificial intelligence (AI) algorithms [1]

Traditional IDS & IPS systems are labor intensive, requiring continuous rule creation, outdated signature maintenance, and manual monitoring for false positives or incorrect actions. This is no longer viable against a higher volume and changing landscape, making NDR the natural network tool to level against these evolutions. The role of AI in NDRs is designed to meet this challenge, “to reduce both the labor need for analysis and false positives, as well as add value by improving anomaly detection and overall security posture” .

Celebrating success in leadership and innovation

Darktrace is proud to have been recognized as an NDR “Overall Leader” in KuppingerCole Analyst AG’s Leadership Compass. The report gave further recognition to Darktrace as a ‘Product Leader”, “Innovation Leader” and “Market Leader”.

Maximum scores were received for core product categories, in addition to market presence and financial strength. Particular attention was directed to our innovation. This year has seen several NDR updates via Darktrace’s ActiveAI Security Platform version 6.2 which has enhanced investigation workflows and provided new AI transparency within the toolset.

Positive scores were also received for Darktrace’s deployment ecosystem and surrounding support, minimizing the need for extraneous integrations through a unique platform architecture that connects with over 90 other vendors.

High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas
Figure 1: High Scores received in Darktrace’s KuppingerCole Spider Chart across Core NDR capability areas

Darktrace’s pioneering AI approach sets it apart

Darktrace / NETWORK’s approach is fundamentally different to other NDRs. Continual anomaly-based detection (our Self-Learning AI), understands what is normal across each of your network entities, and then examines deviations from these behaviors rather than needing to apply static rules or ML to adversary techniques. As a result, Darktrace / NETWORK can focus on surfacing the novel threats that cannot be anticipated, whilst our proactive solutions expose gaps that can be exploited and reduce the risk of known threats.    

Across the millions of possible network events that may occur, Darktrace’s Cyber AI Analyst reduces that manual workload for SOC teams by presenting only what is most important in complete collated incidents. This accelerates SOC Level 2 analyses of incidents by 10x2, giving time back, first for any necessary response and then for preventive workflows.

Finally, when incidents begin to escalate, Darktrace can natively (or via third-party) autonomously respond and take precise actions based on a contextual understanding of both the affected assets and incident in question so that threats can be disarmed without impacting wider operations.

Within the KuppingerCole report, several standout strengths were listed:

  • Cyber AI Analyst was celebrated as a core differentiator, enhancing both visibility and investigation into critical network issues and allowing a faster response.
  • Darktrace / NETWORK was singled for its user benefits. Both a clear interface for analysts with advanced filtering and analytical tools, and efficient role-based access control (RBAC) and configuration options for administrators.
  • At the product level, Darktrace was recognized for complete network traffic analysis (NTA) capabilities allowing extensive analysis into components like application use/type, fingerprinting, source/destination communication, in addition to comprehensive protocol support across a range of network device types from IT, OT, IoT and mobiles and detailed MITRE ATT&CK mapping.
  • Finally, at the heart of it, Darktrace’s innovation was highlighted in relation to its intrinsic Self Learning AI, utilizing multiple layers of deep learning, neural networks, LLMs, NLP, Generative AI and more to understand network activity and filter it for what’s critical on an individual customer level.

Going beyond reactive security

Darktrace’s visibility and AI-enabled detection, investigation and response enable security teams to focus on hardening gaps in their network through contextual relevance & priority. Darktrace / NETWORK explicitly gives time back to security teams allowing them to focus on the bigger strategic and governance workflows that sometimes get overlooked. This is enabled through proactive solutions intrinsically connected to our NDR:

  • Darktrace / Proactive Exposure Management, which looks beyond just CVE risks to instead discover, prioritize and validate risks by business impact and how to mobilize against them early, to reduce the number of real threats security teams face.
  • Darktrace / Incident Readiness & Recovery, a solution rather than service-based approach to incident response (IR) that lets teams respond in the best way to each incident and proactively test their familiarity and effectiveness of IR workflows with sophisticated incident simulations involving their own analysts and assets.

Together, these solutions allow Darktrace / NETWORK to go beyond the traditional NDR and shift teams to a more hardened and proactive state.

Putting customers first

Customers continue to sit at the forefront of Darktrace R&D, with their emerging needs and pain points being the direct inspiration for our continued innovation.

This year Darktrace / NETWORK has protected thousands of customers against the latest attacks, from data exfil and destruction, to unapproved privilege escalation and ransomware including strains like Medusa, Qilin and AlphV BlackCat.

In each instance, Darktrace / NETWORK was able to provide a holistic lens of the anomalies present in their traffic, collated those that were important, and either responded or gave teams the ability to take targeted actions against their threats – even when adversaries pivoted. In one example of a Gootloader compromise, Darktrace ensured a SOC went from detection to recovery within 5 days, 92.8% faster than the average containment time of 69 days.

Results like these, focused on user-led security, have secured Darktrace’s position within the latest NDR Leadership Compass.

To find out more about what makes Darktrace / NETWORK special, read the full KuppingerCole report.

References

[1] Osman Celik, KuppingerCole Leadership Compass:Network Detection and Response (2024)

[2] Darktrace's AI Analyst customer fleet data

[3] https://www.ibm.com/reports/data-breach

Continue reading
About the author
Gabriel Few-Wiegratz
Product Marketing Manager

Blog

/

November 1, 2024

/

Inside the SOC

Phishing and Persistence: Darktrace’s Role in Defending Against a Sophisticated Account Takeover

Default blog imageDefault blog image

The exploitation of SaaS platforms

As businesses continue to grow and evolve, the need for sharing ideas through productivity and cloud Software-as-a-Service (SaaS) platforms is becoming increasingly crucial. However, these platforms have also become prime targets for cyber attackers.

Threat actors often exploit these widely-used services to gain unauthorized access, steal sensitive information, and disrupt business operations. The growing reliance on SaaS platforms makes them attractive entry points for cybercriminals, who use sophisticated techniques such as phishing, social engineering, and malware to compromise these systems.

Services like Microsoft 365 are regularly targeted by threat actors looking for an entry point into an organization’s environment to carry out malicious activities. Securing these platforms is crucial to protect business data and ensure operational continuity.

Darktrace / EMAIL detection of the phishing attack

In a recent case, Darktrace observed a customer in the manufacturing sector receiving a phishing email that led to a threat actor logging in and creating an email rule. Threat actors often create email rules to move emails to their inbox, avoiding detection. Additionally, Darktrace detected a spoofed domain registered by the threat actor. Despite already having access to the customer’s SaaS account, the actor seemingly registered this domain to maintain persistence on the network, allowing them to communicate with the spoofed domain and conduct further malicious activity.

Darktrace / EMAIL can help prevent compromises like this one by blocking suspicious emails as soon as they are identified. Darktrace’s AI-driven email detection and response recognizes anomalies that might indicate phishing attempts and applies mitigative actions autonomously to prevent the escalation of an attack.

Unfortunately, in this case, Darktrace was not configured in Autonomous Response mode at the time of the attack, meaning actions had to be manually applied by the customer’s security team. Had it been fully enabled, it would have held the emails, preventing them from reaching the intended recipient and stopping the attack at its inception.

However, Darktrace’s Managed Threat Detection alerted the Security Operations Center (SOC) team to the compromise, enabling them to thoroughly investigate the incident and notify the customer before further damage could occur.

The Managed Threat Detection service continuously monitors customer networks for suspicious activities that may indicate an emerging threat. When such activities are detected, alerts are sent to Darktrace’s expert Cyber Analysts for triage, significantly speeding up the remediation process.

Attack Overview

On May 2, 2024, Darktrace detected a threat actor targeting a customer in the manufacturing sector then an unusual login to their SaaS environment was observed prior to the creation of a new email rule.

Darktrace immediately identified the login as suspicious due to the rarity of the source IP (31.222.254[.]27) and ASN, coupled with the absence of multi-factor authentication (MFA), which was typically required for this account.

The new email rule was intended to mark emails as read and moved to the ‘Conversation History’ folder for inbound emails from a specific domain. The rule was named “….,,,”, likely the attacker attempting to setup their new rule with an unnoteworthy name to ensure it would not be noticed by the account’s legitimate owner. Likewise, by moving emails from a specific domain to ‘Conversation History’, a folder that is rarely used by most users, any phishing emails sent by that domain would remain undetected by the user.

Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.
Figure 1: Darktrace’s detection of the unusual SaaS login and subsequent creation of the new email rule “….,,,”.

The domain in question was identified as being newly registered and an example of a typosquat domain. Typosquatting involves registering new domains with intentional misspelling designed to convince users to visit fake, and often malicious, websites. This technique is often used in phishing campaigns to create a sense of legitimacy and trust and deceive users into providing sensitive information. In this case, the suspicious domain closely resembled several of the customer’s internal domains, indicating an attempt to impersonate the organization’s legitimate internal sites to gain the target’s trust. Furthermore, the creation of this lookalike domain suggests that the attack was highly targeted at this specific customer.

Interestingly, the threat actor registered this spoofed domain despite already having account access. This was likely intended to ensure persistence on the network without having to launch additional phishing attacks. Such use of spoofed domain could allow an attacker to maintain a foothold in their target network and escalate their malicious activities without having to regain access to the account. This persistence can be used for various purposes, including data exfiltration, spreading malware, or launching further attacks.

Following this, Darktrace detected a highly anomalous email being sent to the customer’s account from the same location as the initial unsual SaaS login. Darktrace’s anomaly-based detection is able to identify threats that human security teams and traditional signature-based methods might miss. By analyzing the expected behavior of network users, Darktrace can recognize the subtle deviations from the norm that may indicate malicious activity. Unfortunately, in this instance, without Darktrace’s Autonomous Response capability enabled, the phishing email was able to successfully reach the recipient. While Darktrace / EMAIL did suggest that the email should be held from the recipients inbox, the customer was required to manually approve it.

Despite this, the Darktrace SOC team were still able to support the customer as they were subscribed to the Managed Threat Detection service. Following the detection of the highlight anomalous activity surrounding this compromise, namely the unusual SaaS login followed by a new email rule, an alert was sent to the Darktrace SOC for immediate triage, who then contacted the customer directly urging immediate action.

Conclusion

This case underscores the need to secure SaaS platforms like Microsoft 365 against sophisticated cyber threats. As businesses increasingly rely on these platforms, they become prime targets for attackers seeking unauthorized access and disruption.

Darktrace’s anomaly-based detection and response capabilities are crucial in identifying and mitigating such threats. In this instance, Darktrace detected a phishing email that led to a threat actor logging in and creating a suspicious email rule. The actor also registered a spoofed domain to maintain persistence on the network.

Darktrace / EMAIL, with its AI-driven detection and analysis, can block suspicious emails before they reach the intended recipient, preventing attacks at their inception. Meanwhile, Darktrace’s SOC team promptly investigated the activity and alerted the customer to the compromise, enabling them to take immediate action to remediate the issue and prevent any further damage.

Credit to Vivek Rajan (Cyber Security Analyst) and Ryan Traill (Threat Content Lead).

Appendices

Darktrace Model Detections

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active
  • SaaS / Resource / Unusual Access to Delegated Resource by Non Owner
  • SaaS / Email Nexus / Unusual Login Location Following Sender Spoof
  • Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Unusual Login and New Email Rule

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

31.222.254[.]27 – IP -  Suspicious Login Endpoint

MITRE ATT&CK Mapping

Tactic – Technqiue – Sub-technique of (if applicable)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard – DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Outlook Rules – PERSISTENCE - T1137.005 - T1137

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI