Blog
/
Network
/
March 22, 2023

Amadey Info Stealer and N-Day Vulnerabilities

Understand the implications of the Amadey info stealer on cybersecurity and how it exploits N-day vulnerabilities for data theft.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst
Written by
The Darktrace Threat Research Team
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Mar 2023

The continued prevalence of Malware as a Service (MaaS) across the cyber threat landscape means that even the most inexperienced of would-be malicious actors are able to carry out damaging and wide-spread cyber-attacks with relative ease. Among these commonly employed MaaS are information stealers, or info-stealers, a type of malware that infects a device and attempts to gather sensitive information before exfiltrating it to the attacker. Info-stealers typically target confidential information, such as login credentials and bank details, and attempt to lie low on a compromised device, allowing access to sensitive data for longer periods of time. 

It is essential for organizations to have efficient security measures in place to defend their networks from attackers in an increasing versatile and accessible threat landscape, however incident response alone is not enough. Having an autonomous decision maker able to not only detect suspicious activity, but also take action against it in real time, is of the upmost importance to defend against significant network compromise. 

Between August and December 2022, Darktrace detected the Amadey info-stealer on more than 30 customer environments, spanning various regions and industry verticals across the customer base. This shows a continual presence and overlap of info-stealer indicators of compromise (IOCs) across the cyber threat landscape, such as RacoonStealer, which we discussed last November (Part 1 and Part 2).

Background on Amadey

Amadey Bot, a malware that was first discovered in 2018, is capable of stealing sensitive information and installing additional malware by receiving commands from the attacker. Like other malware strains, it is being sold in illegal forums as MaaS starting from $500 USD [1]. 

Researchers at AhnLab found that Amadey is typically distributed via existing SmokeLoader loader malware campaigns. Downloading cracked versions of legitimate software causes SmokeLoader to inject malicious payload into Windows Explorer processes and proceeds to download Amadey.  

The botnet has also been used for distributed denial of service (DDoS) attacks, and as a vector to install malware spam campaigns, such as LockBit 3.0 [2]. Regardless of the delivery techniques, similar patterns of activity were observed across multiple customer environments. 

Amadey’s primary function is to steal information and further distribute malware. It aims to extract a variety of information from infected devices and attempts to evade the detection of security measures by reducing the volume of data exfiltration compared to that seen in other malicious instances.

Darktrace DETECT/Network™ and its built-in features, such as Wireshark Packet Captures (PCAP), identified Amadey activity on customer networks, whilst Darktrace RESPOND/Network™ autonomously intervened to halt its progress.

Attack Details

Figure 1: Timeline of Amadey info-stealer kill chain.

Initial Access  

User engagement with malicious email attachments or cracked software results in direct execution of the SmokeLoader loader malware on a device. Once the loader has executed its payload, it is then able to download additional malware, including the Amadey info-stealer.

Unusual Outbound Connections 

After initial access by the loader and download of additional malware, the Amadey info-stealer captures screenshots of network information and sends them to Amadey command and control (C2) servers via HTTP POST requests with no GET to a .php URI. An example of this can be seen in Figure 2.  

Figure 2: PCAP from an affected customer showing screenshots being sent out to the Amadey C2 server via a .jpg file. 

C2 Communications  

The infected device continues to make repeated connections out to this Amadey endpoint. Amadey's C2 server will respond with instructions to download additional plugins in the form of dynamic-link libraries (DLLs), such as "/Mb1sDv3/Plugins/cred64.dll", or attempt to download secondary info-stealers such as RedLine or RaccoonStealer. 

Internal Reconnaissance 

The device downloads executable and DLL files, or stealer configuration files to steal additional network information from software including RealVNC and Outlook. Most compromised accounts were observed downloading additional malware following commands received from the attacker.

Data Exfiltration 

The stolen information is then sent out via high volumes of HTTP connection. It makes HTTP POSTs to malicious .php URIs again, this time exfiltrating more data such as the Amadey version, device names, and any anti-malware software installed on the system.

How did the attackers bypass the rest of the security stack?

Existing N-Day vulnerabilities are leveraged to launch new attacks on customer networks and potentially bypass other tools in the security stack. Additionally, exfiltrating data via low and slow HTTP connections, rather than large file transfers to cloud storage platforms, is an effective means of evading the detection of traditional security tools which often look for large data transfers, sometimes to a specific list of identified “bad” endpoints.

Darktrace Coverage 

Amadey activity was autonomously identified by DETECT and the Cyber AI Analyst. A list of DETECT models that were triggered on deployments during this kill chain can be found in the Appendices. 

Various Amadey activities were detected and highlighted in DETECT model breaches and their model breach event logs. Figure 3 shows a compromised device making suspicious HTTP POST requests, causing the ‘Anomalous Connection / Posting HTTP to IP Without Hostname’ model to breach. It also downloaded an executable file (.exe) from the same IP.

Figure 3: Amadey activity on a customer deployment captured by model breaches and event logs. 

DETECT’s built-in features also assisted with detecting the data exfiltration. Using the PCAP integration, the exfiltrated data was captured for analysis. Figure 4 shows a connection made to the Amadey endpoint, in which information about the infected device, such as system ID and computer name, were sent. 

Figure 4: PCAP downloaded from Darktrace event logs highlighting data egress to the Amadey endpoint. 

Further information about the infected system can be seen in the above PCAP. As outlined by researchers at Ahnlab and shown in Figure 5, additional system information sent includes the Amadey version (vs=), the device’s admin privilege status (ar=), and any installed anti-malware or anti-virus software installed on the infected environment (av=) [3]. 

Figure 5: AhnLab’s glossary table explaining the information sent to the Amadey C2 server. 

Darktrace’s AI Analyst was also able to connect commonalities between model breaches on a device and present them as a connected incident made up of separate events. Figure 6 shows the AI Analyst incident log for a device having breached multiple models indicative of the Amadey kill chain. It displays the timeline of these events, the specific IOCs, and the associated attack tactic, in this case ‘Command and Control’. 

Figure 6: A screenshot of multiple IOCs and activity correlated together by AI Analyst. 

When enabled on customer’s deployments, RESPOND was able to take immediate action against Amadey to mitigate its impact on customer networks. RESPOND models that breached include: 

  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / External Threat / Antigena Suspicious File Block 
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

On one customer’s environment, a device made a POST request with no GET to URI ‘/p84Nls2/index.php’ and unepeureyore[.]xyz. RESPOND autonomously enforced a previously established pattern of life on the device twice for 30 minutes each and blocked all outgoing traffic from the device for 10 minutes. Enforcing a device’s pattern of life restricts it to conduct activity within the device and/or user’s expected pattern of behavior and blocks anything anomalous or unexpected, enabling normal business operations to continue. This response is intended to reduce the potential scale of attacks by disrupting the kill chain, whilst ensuring business disruption is kept to a minimum. 

Figure 7: RESPOND actions taken on a customer deployment to disrupt the Amadey kill chain. 

The Darktrace Threat Research team conducted thorough investigations into Amadey activity observed across the customer base. They were able to identify and contextualize this threat across the fleet, enriching AI insights with collaborative human analysis. Pivoting from AI insights as their primary source of information, the Threat Research team were able to provide layered analysis to confirm this campaign-like activity and assess the threat across multiple unique environments, providing a holistic assessment to customers with contextualized insights.

Conclusion

The presence of the Amadey info-stealer in multiple customer environments highlights the continuing prevalence of MaaS and info-stealers across the threat landscape. The Amadey info-stealer in particular demonstrates that by evading N-day vulnerability patches, threat actors routinely launch new attacks. These malicious actors are then able to evade detection by traditional security tools by employing low and slow data exfiltration techniques, as opposed to large file transfers.

Crucially, Darktrace’s AI insights were coupled with expert human analysis to detect, respond, and provide contextualized insights to notify customers of Amadey activity effectively. DETECT captured Amadey activity taking place on customer deployments, and where enabled, RESPOND’s autonomous technology was able to take immediate action to reduce the scale of such attacks. Finally, the Threat Research team were in place to provide enhanced analysis for affected customers to help security teams future-proof against similar attacks.

Appendices

Darktrace Model Detections 

Anomalous File / EXE from Rare External Location

Device / Initial Breach Chain Compromise

Anomalous Connection / Posting HTTP to IP Without Hostname 

Anomalous Connection / POST to PHP on New External Host

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname 

Compromise / Beaconing Activity To External Rare

Compromise / Slow Beaconing Activity To External Rare

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

List of IOCs

f0ce8614cc2c3ae1fcba93bc4a8b82196e7139f7 - SHA1 - Amadey DLL File Hash

e487edceeef3a41e2a8eea1e684bcbc3b39adb97 - SHA1 - Amadey DLL File Hash

0f9006d8f09e91bbd459b8254dd945e4fbae25d9 - SHA1 - Amadey DLL File Hash

4069fdad04f5e41b36945cc871eb87a309fd3442 - SHA1 - Amadey DLL File Hash

193.106.191[.]201 - IP - Amadey C2 Endpoint

77.73.134[.]66 - IP - Amadey C2 Endpoint

78.153.144[.]60 - IP - Amadey C2 Endpoint

62.204.41[.]252 - IP - Amadey C2 Endpoint

45.153.240[.]94 - IP - Amadey C2 Endpoint

185.215.113[.]204 - IP - Amadey C2 Endpoint

85.209.135[.]11 - IP - Amadey C2 Endpoint

185.215.113[.]205 - IP - Amadey C2 Endpoint

31.41.244[.]146 - IP - Amadey C2 Endpoint

5.154.181[.]119 - IP - Amadey C2 Endpoint

45.130.151[.]191 - IP - Amadey C2 Endpoint

193.106.191[.]184 - IP - Amadey C2 Endpoint

31.41.244[.]15 - IP - Amadey C2 Endpoint

77.73.133[.]72 - IP - Amadey C2 Endpoint

89.163.249[.]231 - IP - Amadey C2 Endpoint

193.56.146[.]243 - IP - Amadey C2 Endpoint

31.41.244[.]158 - IP - Amadey C2 Endpoint

85.209.135[.]109 - IP - Amadey C2 Endpoint

77.73.134[.]45 - IP - Amadey C2 Endpoint

moscow12[.]at - Hostname - Amadey C2 Endpoint

moscow13[.]at - Hostname - Amadey C2 Endpoint

unepeureyore[.]xyz - Hostname - Amadey C2 Endpoint

/fb73jc3/index.php - URI - Amadey C2 Endpoint

/panelis/index.php - URI - Amadey C2 Endpoint

/panelis/index.php?scr=1 - URI - Amadey C2 Endpoint

/panel/index.php - URI - Amadey C2 Endpoint

/panel/index.php?scr=1 - URI - Amadey C2 Endpoint

/panel/Plugins/cred.dll - URI - Amadey C2 Endpoint

/jg94cVd30f/index.php - URI - Amadey C2 Endpoint

/jg94cVd30f/index.php?scr=1 - URI - Amadey C2 Endpoint

/o7Vsjd3a2f/index.php - URI - Amadey C2 Endpoint

/o7Vsjd3a2f/index.php?scr=1 - URI - Amadey C2 Endpoint

/o7Vsjd3a2f/Plugins/cred64.dll - URI - Amadey C2 Endpoint

/gjend7w/index.php - URI - Amadey C2 Endpoint

/hfk3vK9/index.php - URI - Amadey C2 Endpoint

/v3S1dl2/index.php - URI - Amadey C2 Endpoint

/f9v33dkSXm/index.php - URI - Amadey C2 Endpoint

/p84Nls2/index.php - URI - Amadey C2 Endpoint

/p84Nls2/Plugins/cred.dll - URI - Amadey C2 Endpoint

/nB8cWack3/index.php - URI - Amadey C2 Endpoint

/rest/index.php - URI - Amadey C2 Endpoint

/Mb1sDv3/index.php - URI - Amadey C2 Endpoint

/Mb1sDv3/index.php?scr=1 - URI - Amadey C2 Endpoint

/Mb1sDv3/Plugins/cred64.dll  - URI - Amadey C2 Endpoint

/h8V2cQlbd3/index.php - URI - Amadey C2 Endpoint

/f5OknW/index.php - URI - Amadey C2 Endpoint

/rSbFldr23/index.php - URI - Amadey C2 Endpoint

/rSbFldr23/index.php?scr=1 - URI - Amadey C2 Endpoint

/jg94cVd30f/Plugins/cred64.dll - URI - Amadey C2 Endpoint

/mBsjv2swweP/Plugins/cred64.dll - URI - Amadey C2 Endpoint

/rSbFldr23/Plugins/cred64.dll - URI - Amadey C2 Endpoint

/Plugins/cred64.dll - URI - Amadey C2 Endpoint

Mitre Attack and Mapping 

Collection:

T1185 - Man the Browser

Initial Access and Resource Development:

T1189 - Drive-by Compromise

T1588.001 - Malware

Persistence:

T1176 - Browser Extensions

Command and Control:

T1071 - Application Layer Protocol

T1071.001 - Web Protocols

T1090.002 - External Proxy

T1095 - Non-Application Layer Protocol

T1571 - Non-Standard Port

T1105 - Ingress Tool Transfer

References 

[1] https://malpedia.caad.fkie.fraunhofer.de/details/win.amadey

[2] https://asec.ahnlab.com/en/41450/

[3] https://asec.ahnlab.com/en/36634/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst
Written by
The Darktrace Threat Research Team

More in this series

No items found.

Blog

/

/

May 2, 2025

SocGholish: From loader and C2 activity to RansomHub deployment

laptop and hand typingDefault blog imageDefault blog image

Over the past year, a clear pattern has emerged across the threat landscape: ransomware operations are increasingly relying on compartmentalized affiliate models. In these models, initial access brokers (IABs) [6], malware loaders, and post-exploitation operators work together.

Due to those specialization roles, a new generation of loader campaigns has risen. Threat actors increasingly employ loader operators to quietly establish footholds on the target network. These entities then hand off access to ransomware affiliates. One loader that continues to feature prominently in such campaigns is SocGholish.

What is SocGholish?

SocGholish is a loader malware that has been utilized since at least 2017 [7].  It has long been associated with fake browser updates and JavaScript-based delivery methods on infected websites.

Threat actors often target outdated or poorly secured CMS-based websites like WordPress. Through unpatched plugins, or even remote code execution flaws, they inject malicious JavaScript into the site’s HTML, templates or external JS resources [8].  Historically, SocGholish has functioned as a first-stage malware loader, ultimately leading to deployment of Cobalt Strike beacons [9], and further facilitating access persistence to corporate environments. More recently, multiple security vendors have reported that infections involving SocGholish frequently lead to the deployment of RansomHub ransomware [3] [5].

This blog explores multiple instances within Darktrace's customer base where SocGholish deployment led to subsequent network compromises. Investigations revealed indicators of compromise (IoCs) similar to those identified by external security researchers, along with variations in attacker behavior post-deployment. Key innovations in post-compromise activities include credential access tactics targeting authentication mechanisms, particularly through the abuse of legacy protocols like WebDAV and SCF file interactions over SMB.

Initial access and execution

Since January 2025, Darktrace’s Threat Research team observed multiple cases in which threat actors leveraged the SocGholish loader for initial access. Malicious actors commonly deliver SocGholish by compromising legitimate websites by injecting malicious scripts into the HTML of the affected site. When the visitor lands on an infected site, they are typically redirected to a fake browser update page, tricking them into downloading a ZIP file containing a JavaScript-based loader [1] [2]. In one case, a targeted user appears to have visited the compromised website garagebevents[.]com (IP: 35.203.175[.]30), from which around 10 MB of data was downloaded.

Device Event Log showing connections to the compromised website, following by connections to the identified Keitaro TDS instances.
Figure 1: Device Event Log showing connections to the compromised website, following by connections to the identified Keitaro TDS instances.

Within milliseconds of the connection establishment, the user’s device initiated several HTTPS sessions over the destination port 443 to the external endpoint 176.53.147[.]97, linked to the following Keitaro TDS domains:

  • packedbrick[.]com
  • rednosehorse[.]com
  • blackshelter[.]org
  • blacksaltys[.]com

To evade detection, SocGholish uses highly obfuscated code and relies on traffic distribution systems (TDS) [3].  TDS is a tool used in digital and affiliate marketing to manage and distribute incoming web traffic based on predefined rules. More specifically, Keitaro is a premium self-hosted TDS frequently utilized by attackers as a payload repository for malicious scripts following redirects from compromised sites. In the previously noted example, it appears that the device connected to the compromised website, which then retrieved JavaScript code from the aforementioned Keitaro TDS domains. The script served by those instances led to connections to the endpoint virtual.urban-orthodontics[.]com (IP: 185.76.79[.]50), successfully completing SocGholish’s distribution.

Advanced Search showing connections to the compromised website, following by those to the identified Keitaro TDS instances.
Figure 2: Advanced Search showing connections to the compromised website, following by those to the identified Keitaro TDS instances.

Persistence

During some investigations, Darktrace researchers observed compromised devices initiating HTTPS connections to the endpoint files.pythonhosted[.]org (IP: 151.101.1[.]223), suggesting Python package downloads. External researchers have previously noted how attackers use Python-based backdoors to maintain access on compromised endpoints following initial access via SocGholish [5].

Credential access and lateral movement

Credential access – external

Darktrace researchers identified observed some variation in kill chain activities following initial access and foothold establishment. For example, Darktrace detected interesting variations in credential access techniques. In one such case, an affected device attempted to contact the rare external endpoint 161.35.56[.]33 using the Web Distributed Authoring and Versioning (WebDAV) protocol. WebDAV is an extension of the HTTP protocol that allows users to collaboratively edit and manage files on remote web servers. WebDAV enables remote shares to be mounted over HTTP or HTTPS, similar to how SMB operates, but using web-based protocols. Windows supports WebDAV natively, which means a UNC path pointing to an HTTP or HTTPS resource can trigger system-level behavior such as authentication.

In this specific case, the system initiated outbound connections using the ‘Microsoft-WebDAV-MiniRedir/10.0.19045’ user-agent, targeting the URI path of /s on the external endpoint 161.35.56[.]33. During these requests, the host attempted to initiate NTML authentication and even SMB sessions over the web, both of which failed. Despite the session failures, these attempts also indicate a form of forced authentication. Forced authentication exploits a default behavior in Windows where, upon encountering a UNC path, the system will automatically try to authenticate to the resource using NTML – often without any user interaction. Although no files were directly retrieved, the WebDAV server was still likely able to retrieve the user’s NTLM hash during the session establishment requests, which can later be used by the adversary to crack the password offline.

Credential access – internal

In another investigated incident, Darktrace observed a related technique utilized for credential access and lateral movement. This time, the infected host uploaded a file named ‘Thumbs.scf’ to multiple internal SMB network shares. Shell Command File ( SCF) is a legacy Windows file format used primarily for Windows Explorer shortcuts. These files contain instructions for rendering icons or triggering shell commands, and they can be executed implicitly when a user simply opens a folder containing the file – no clicks required.

The ‘Thumbs.scf’ file dropped by the attacker was crafted to exploit this behavior. Its contents included a [Shell] section with the Command=2 directive and an IconFile path pointing to a remote UNC resource on the same external endpoint, 161.35.56[.]33, seen in the previously described case – specifically, ‘\\161.35.56[.]33\share\icon.ico’. When a user on the internal network navigates to the folder containing the SCF file, their system will automatically attempt to load the icon. In doing so, the system issues a request to the specified UNC path, which again prompts Windows to initiate NTML authentication.

This pattern of activity implies that the attacker leveraged passive internal exposure; users who simply browsed a compromised share would unknowingly send their NTML hashes to an external attacker-controlled host. Unlike the WebDAV approach, which required initiating outbound communication from the infected host, this SCF method relies on internal users to interact with poisoned folders.

Figure 3: Contents of the file 'Thumbs.scf' showing the UNC resource hosted on the external endpoint.
Figure 3: Contents of the file 'Thumbs.scf' showing the UNC resource hosted on the external endpoint.

Command-and-control

Following initial compromise, affected devices would then attempt outbound connections using the TLS/SSL protocol over port 443 to different sets of command-and-control (C2) infrastructure associated with SocGholish. The malware frequently uses obfuscated JavaScript loaders to initiate its infection chain, and once dropped, the malware communicates back to its infrastructure over standard web protocols, typically using HTTPS over port 443. However, this set of connections would precede a second set of outbound connections, this time to infrastructure linked to RansomHub affiliates, possibly facilitating the deployed Python-based backdoor.

Connectivity to RansomHub infrastructure relied on defense evasion tactics, such as port-hopping. The idea behind port-hopping is to disguise C2 traffic by avoiding consistent patterns that might be caught by firewalls, and intrusion detection systems. By cycling through ephemeral ports, the malware increases its chances of slipping past basic egress filtering or network monitoring rules that only scrutinize common web traffic ports like 443 or 80. Darktrace analysts identified systems connecting to destination ports such as 2308, 2311, 2313 and more – all on the same destination IP address associated with the RansomHub C2 environment.

Figure 4: Advanced Search connection logs showing connections over destination ports that change rapidly.

Conclusion

Since the beginning of 2025, Darktrace analysts identified a campaign whereby ransomware affiliates leveraged SocGholish to establish network access in victim environments. This activity enabled multiple sets of different post exploitation activity. Credential access played a key role, with affiliates abusing WebDAV and NTML over SMB to trigger authentication attempts. The attackers were also able to plant SCF files internally to expose NTML hashes from users browsing shared folders. These techniques evidently point to deliberate efforts at early lateral movement and foothold expansion before deploying ransomware. As ransomware groups continue to refine their playbooks and work more closely with sophisticated loaders, it becomes critical to track not just who is involved, but how access is being established, expanded, and weaponized.

Credit to Chrisina Kreza (Cyber Analyst) and Adam Potter (Senior Cyber Analyst)

Appendices

Darktrace / NETWORK model alerts

·       Anomalous Connection / SMB Enumeration

·       Anomalous Connection / Multiple Connections to New External TCP Port

·       Anomalous Connection / Multiple Failed Connections to Rare Endpoint

·       Anomalous Connection / New User Agent to IP Without Hostname

·       Compliance / External Windows Communication

·       Compliance / SMB Drive Write

·       Compromise / Large DNS Volume for Suspicious Domain

·       Compromise / Large Number of Suspicious Failed Connections

·       Device / Anonymous NTML Logins

·       Device / External Network Scan

·       Device / New or Uncommon SMB Named Pipe

·       Device / SMB Lateral Movement

·       Device / Suspicious SMB Activity

·       Unusual Activity / Unusual External Activity

·       User / Kerberos Username Brute Force

MITRE ATT&CK mapping

·       Credential Access – T1187 Forced Authentication

·       Credential Access – T1110 Brute Force

·       Command and Control – T1071.001 Web Protocols

·       Command and Control – T1571 Non-Standard Port

·       Discovery – T1083 File and Directory Discovery

·       Discovery – T1018 Remote System Discovery

·       Discovery – T1046 Network Service Discovery

·       Discovery – T1135 Network Share Discovery

·       Execution – T1059.007 JavaScript

·       Lateral Movement – T1021.002 SMB/Windows Admin Shares

·       Resource Deployment – T1608.004 Drive-By Target

List of indicators of compromise (IoCs)

·       garagebevents[.]com – 35.203.175[.]30 – Possibly compromised website

·       packedbrick[.]com – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       rednosehorse[.]com – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       blackshelter[.]org – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       blacksaltys[.]com – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       virtual.urban-orthodontics[.]com – 185.76.79[.]50

·       msbdz.crm.bestintownpro[.]com – 166.88.182[.]126 – SocGholish C2

·       185.174.101[.]240 – RansomHub Python C2

·       185.174.101[.]69 – RansomHub Python C2

·       108.181.182[.]143 – RansomHub Python C2

References

[1] https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/socgholish-malware/

[2] https://intel471.com/blog/threat-hunting-case-study-socgholish

[3] https://www.trendmicro.com/en_us/research/25/c/socgholishs-intrusion-techniques-facilitate-distribution-of-rans.html

[4] https://www.proofpoint.com/us/blog/threat-insight/update-fake-updates-two-new-actors-and-new-mac-malware

[5] https://www.guidepointsecurity.com/blog/ransomhub-affiliate-leverage-python-based-backdoor/

[6] https://www.cybereason.com/blog/how-do-initial-access-brokers-enable-ransomware-attacks

[7] https://attack.mitre.org/software/S1124/

[8] https://expel.com/blog/incident-report-spotting-socgholish-wordpress-injection/

[9] https://www.esentire.com/blog/socgholish-to-cobalt-strike-in-10-minutes

Continue reading
About the author
Christina Kreza
Cyber Analyst

Blog

/

/

May 1, 2025

Your Vendors, Your Risk: Rethinking Third-Party Security in the Age of Supply Chain Attacks

man on cellphoneDefault blog imageDefault blog image

When most people hear the term supply chain attack, they often imagine a simple scenario: one organization is compromised, and that compromise is used as a springboard to attack another. This kind of lateral movement is common, and often the entry vector is as mundane and as dangerous as email.

Take, for instance, a situation where a trusted third-party vendor is breached. An attacker who gains access to their systems can then send malicious emails to your organization, emails that appear to come from a known and reputable source. Because the relationship is trusted, traditional phishing defenses may not be triggered, and recipients may be more inclined to engage with malicious content. From there, the attacker can establish a foothold, move laterally, escalate privileges, and launch a broader campaign.

This is one dimension of a supply chain cyber-attack, and it’s well understood in many security circles. But the risk doesn’t end there. In fact, it goes deeper, and it often hits the most important asset of all: your customers' data.

The risk beyond the inbox

What happens when customer data is shared with a third party for legitimate processing purposes for example billing, analytics, or customer service and that third party is then compromised?

In that case, your customer data is breached, even if your own systems were never touched. That’s the uncomfortable truth about modern cybersecurity: your risk is no longer confined to your own infrastructure. Every entity you share data with becomes an extension of your attack surface. Thus, we should rethink how we perceive responsibility.

It’s tempting to think that securing our environment is our job, and securing their environment is theirs. But if a breach of their environment results in the exposure of our customers, the accountability and reputational damage fall squarely on our shoulders.

The illusion of boundaries

In an era where digital operations are inherently interconnected, the lines of responsibility can blur quickly. Legally and ethically, organizations are still responsible for the data they collect even if that data is processed, stored, or analyzed by a third party. A customer whose data is leaked because of a vendor breach will almost certainly hold the original brand responsible, not the third-party processor they never heard of.

This is particularly important for industries that rely on extensive outsourcing and platform integrations (SaaS platforms, marketing tools, CRMs, analytics platforms, payment processors). The list of third-party vendors with access to customer data grows year over year. Each integration adds convenience, but also risk.

Encryption isn’t a silver bullet

One of the most common safeguards used in these data flows is encryption. Encrypting customer data in transit is a smart and necessary step, but it’s far from enough. Once data reaches the destination system, it typically needs to be decrypted for use. And the moment it is decrypted, it becomes vulnerable to a variety of attacks like ransomware, data exfiltration, privilege escalation, and more.

In other words, the question isn’t just is the data secure in transit? The more important question is how is it protected once it arrives?

A checklist for organizations evaluating third-parties

Given these risks, what should responsible organizations do when they need to share customer data with third parties?

Start by treating third-party security as an extension of your own security program. Here are some foundational controls that can make a difference:

Due diligence before engagement: Evaluate third-party vendors based on their security posture before signing any contracts. What certifications do they hold? What frameworks do they follow? What is their incident response capability?

Contractual security clauses: Build in specific security requirements into vendor contracts. These can include requirements for encryption standards, access control policies, and data handling protocols.

Third-party security assessments: Require vendors to provide evidence of their security controls. Independent audits, penetration test results, and SOC 2 reports can all provide useful insights.

Ongoing monitoring and attestations: Security isn’t static. Make sure vendors provide regular security attestations and reports. Where possible, schedule periodic reviews or audits, especially for vendors handling sensitive data.

Minimization and segmentation: Don’t send more data than necessary. Data minimization limits the exposure in the event of a breach. Segmentation, both within your environment and within vendor access levels, can further reduce risk.

Incident response planning: Ensure you have a playbook for handling third-party incidents, and that vendors do as well. Coordination in the event of a breach should be clear and rapid.

The human factor: Customers and communication

There’s another angle to supply chain cyber-attacks that’s easy to overlook: the post-breach exploitation of public knowledge. When a breach involving customer data hits the news, it doesn’t take long for cybercriminals to jump on the opportunity.

Attackers can craft phishing emails that appear to be follow-ups from the affected organization: “Click here to reset your password,” “Confirm your details due to the breach,” etc.

A breach doesn’t just put customer data at risk it also opens the door to further fraud, identity theft, and financial loss through social engineering. This is why post-breach communication and phishing mitigation strategies are valuable components of an incident response strategy.

Securing what matters most

Ultimately, protecting against supply chain cyber-attacks isn’t just about safeguarding your own perimeter. It’s about defending the integrity of your customers’ data, wherever it goes. When customer data is entrusted to you, the duty of care doesn’t end at your firewall.

Relying on vendors to “do their part” is not enough. True due diligence means verifying, validating, and continuously monitoring those extended attack surfaces. It means designing controls that assume failure is possible, and planning accordingly.

In today’s threat landscape, cybersecurity is no longer just a technical discipline. It’s a trust-building exercise. Your customers expect you to protect their information, and rightly so. And when a supply chain attack happens, whether the breach originated with you or your partner, the damage lands in the same place: your brand, your customers, your responsibility.

[related-resource]

Continue reading
About the author
Tony Jarvis
VP, Field CISO | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI