ブログ
/
Network
/
March 22, 2023

Amadey Info Stealer and N-Day Vulnerabilities

Understand the implications of the Amadey info stealer on cybersecurity and how it exploits N-day vulnerabilities for data theft.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst
Written by
The Darktrace Threat Research Team
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Mar 2023

The continued prevalence of Malware as a Service (MaaS) across the cyber threat landscape means that even the most inexperienced of would-be malicious actors are able to carry out damaging and wide-spread cyber-attacks with relative ease. Among these commonly employed MaaS are information stealers, or info-stealers, a type of malware that infects a device and attempts to gather sensitive information before exfiltrating it to the attacker. Info-stealers typically target confidential information, such as login credentials and bank details, and attempt to lie low on a compromised device, allowing access to sensitive data for longer periods of time. 

It is essential for organizations to have efficient security measures in place to defend their networks from attackers in an increasing versatile and accessible threat landscape, however incident response alone is not enough. Having an autonomous decision maker able to not only detect suspicious activity, but also take action against it in real time, is of the upmost importance to defend against significant network compromise. 

Between August and December 2022, Darktrace detected the Amadey info-stealer on more than 30 customer environments, spanning various regions and industry verticals across the customer base. This shows a continual presence and overlap of info-stealer indicators of compromise (IOCs) across the cyber threat landscape, such as RacoonStealer, which we discussed last November (Part 1 and Part 2).

Background on Amadey

Amadey Bot, a malware that was first discovered in 2018, is capable of stealing sensitive information and installing additional malware by receiving commands from the attacker. Like other malware strains, it is being sold in illegal forums as MaaS starting from $500 USD [1]. 

Researchers at AhnLab found that Amadey is typically distributed via existing SmokeLoader loader malware campaigns. Downloading cracked versions of legitimate software causes SmokeLoader to inject malicious payload into Windows Explorer processes and proceeds to download Amadey.  

The botnet has also been used for distributed denial of service (DDoS) attacks, and as a vector to install malware spam campaigns, such as LockBit 3.0 [2]. Regardless of the delivery techniques, similar patterns of activity were observed across multiple customer environments. 

Amadey’s primary function is to steal information and further distribute malware. It aims to extract a variety of information from infected devices and attempts to evade the detection of security measures by reducing the volume of data exfiltration compared to that seen in other malicious instances.

Darktrace DETECT/Network™ and its built-in features, such as Wireshark Packet Captures (PCAP), identified Amadey activity on customer networks, whilst Darktrace RESPOND/Network™ autonomously intervened to halt its progress.

Attack Details

Figure 1: Timeline of Amadey info-stealer kill chain.

Initial Access  

User engagement with malicious email attachments or cracked software results in direct execution of the SmokeLoader loader malware on a device. Once the loader has executed its payload, it is then able to download additional malware, including the Amadey info-stealer.

Unusual Outbound Connections 

After initial access by the loader and download of additional malware, the Amadey info-stealer captures screenshots of network information and sends them to Amadey command and control (C2) servers via HTTP POST requests with no GET to a .php URI. An example of this can be seen in Figure 2.  

Figure 2: PCAP from an affected customer showing screenshots being sent out to the Amadey C2 server via a .jpg file. 

C2 Communications  

The infected device continues to make repeated connections out to this Amadey endpoint. Amadey's C2 server will respond with instructions to download additional plugins in the form of dynamic-link libraries (DLLs), such as "/Mb1sDv3/Plugins/cred64.dll", or attempt to download secondary info-stealers such as RedLine or RaccoonStealer. 

Internal Reconnaissance 

The device downloads executable and DLL files, or stealer configuration files to steal additional network information from software including RealVNC and Outlook. Most compromised accounts were observed downloading additional malware following commands received from the attacker.

Data Exfiltration 

The stolen information is then sent out via high volumes of HTTP connection. It makes HTTP POSTs to malicious .php URIs again, this time exfiltrating more data such as the Amadey version, device names, and any anti-malware software installed on the system.

How did the attackers bypass the rest of the security stack?

Existing N-Day vulnerabilities are leveraged to launch new attacks on customer networks and potentially bypass other tools in the security stack. Additionally, exfiltrating data via low and slow HTTP connections, rather than large file transfers to cloud storage platforms, is an effective means of evading the detection of traditional security tools which often look for large data transfers, sometimes to a specific list of identified “bad” endpoints.

Darktrace Coverage 

Amadey activity was autonomously identified by DETECT and the Cyber AI Analyst. A list of DETECT models that were triggered on deployments during this kill chain can be found in the Appendices. 

Various Amadey activities were detected and highlighted in DETECT model breaches and their model breach event logs. Figure 3 shows a compromised device making suspicious HTTP POST requests, causing the ‘Anomalous Connection / Posting HTTP to IP Without Hostname’ model to breach. It also downloaded an executable file (.exe) from the same IP.

Figure 3: Amadey activity on a customer deployment captured by model breaches and event logs. 

DETECT’s built-in features also assisted with detecting the data exfiltration. Using the PCAP integration, the exfiltrated data was captured for analysis. Figure 4 shows a connection made to the Amadey endpoint, in which information about the infected device, such as system ID and computer name, were sent. 

Figure 4: PCAP downloaded from Darktrace event logs highlighting data egress to the Amadey endpoint. 

Further information about the infected system can be seen in the above PCAP. As outlined by researchers at Ahnlab and shown in Figure 5, additional system information sent includes the Amadey version (vs=), the device’s admin privilege status (ar=), and any installed anti-malware or anti-virus software installed on the infected environment (av=) [3]. 

Figure 5: AhnLab’s glossary table explaining the information sent to the Amadey C2 server. 

Darktrace’s AI Analyst was also able to connect commonalities between model breaches on a device and present them as a connected incident made up of separate events. Figure 6 shows the AI Analyst incident log for a device having breached multiple models indicative of the Amadey kill chain. It displays the timeline of these events, the specific IOCs, and the associated attack tactic, in this case ‘Command and Control’. 

Figure 6: A screenshot of multiple IOCs and activity correlated together by AI Analyst. 

When enabled on customer’s deployments, RESPOND was able to take immediate action against Amadey to mitigate its impact on customer networks. RESPOND models that breached include: 

  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / External Threat / Antigena Suspicious File Block 
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

On one customer’s environment, a device made a POST request with no GET to URI ‘/p84Nls2/index.php’ and unepeureyore[.]xyz. RESPOND autonomously enforced a previously established pattern of life on the device twice for 30 minutes each and blocked all outgoing traffic from the device for 10 minutes. Enforcing a device’s pattern of life restricts it to conduct activity within the device and/or user’s expected pattern of behavior and blocks anything anomalous or unexpected, enabling normal business operations to continue. This response is intended to reduce the potential scale of attacks by disrupting the kill chain, whilst ensuring business disruption is kept to a minimum. 

Figure 7: RESPOND actions taken on a customer deployment to disrupt the Amadey kill chain. 

The Darktrace Threat Research team conducted thorough investigations into Amadey activity observed across the customer base. They were able to identify and contextualize this threat across the fleet, enriching AI insights with collaborative human analysis. Pivoting from AI insights as their primary source of information, the Threat Research team were able to provide layered analysis to confirm this campaign-like activity and assess the threat across multiple unique environments, providing a holistic assessment to customers with contextualized insights.

Conclusion

The presence of the Amadey info-stealer in multiple customer environments highlights the continuing prevalence of MaaS and info-stealers across the threat landscape. The Amadey info-stealer in particular demonstrates that by evading N-day vulnerability patches, threat actors routinely launch new attacks. These malicious actors are then able to evade detection by traditional security tools by employing low and slow data exfiltration techniques, as opposed to large file transfers.

Crucially, Darktrace’s AI insights were coupled with expert human analysis to detect, respond, and provide contextualized insights to notify customers of Amadey activity effectively. DETECT captured Amadey activity taking place on customer deployments, and where enabled, RESPOND’s autonomous technology was able to take immediate action to reduce the scale of such attacks. Finally, the Threat Research team were in place to provide enhanced analysis for affected customers to help security teams future-proof against similar attacks.

Appendices

Darktrace Model Detections 

Anomalous File / EXE from Rare External Location

Device / Initial Breach Chain Compromise

Anomalous Connection / Posting HTTP to IP Without Hostname 

Anomalous Connection / POST to PHP on New External Host

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname 

Compromise / Beaconing Activity To External Rare

Compromise / Slow Beaconing Activity To External Rare

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

List of IOCs

f0ce8614cc2c3ae1fcba93bc4a8b82196e7139f7 - SHA1 - Amadey DLL File Hash

e487edceeef3a41e2a8eea1e684bcbc3b39adb97 - SHA1 - Amadey DLL File Hash

0f9006d8f09e91bbd459b8254dd945e4fbae25d9 - SHA1 - Amadey DLL File Hash

4069fdad04f5e41b36945cc871eb87a309fd3442 - SHA1 - Amadey DLL File Hash

193.106.191[.]201 - IP - Amadey C2 Endpoint

77.73.134[.]66 - IP - Amadey C2 Endpoint

78.153.144[.]60 - IP - Amadey C2 Endpoint

62.204.41[.]252 - IP - Amadey C2 Endpoint

45.153.240[.]94 - IP - Amadey C2 Endpoint

185.215.113[.]204 - IP - Amadey C2 Endpoint

85.209.135[.]11 - IP - Amadey C2 Endpoint

185.215.113[.]205 - IP - Amadey C2 Endpoint

31.41.244[.]146 - IP - Amadey C2 Endpoint

5.154.181[.]119 - IP - Amadey C2 Endpoint

45.130.151[.]191 - IP - Amadey C2 Endpoint

193.106.191[.]184 - IP - Amadey C2 Endpoint

31.41.244[.]15 - IP - Amadey C2 Endpoint

77.73.133[.]72 - IP - Amadey C2 Endpoint

89.163.249[.]231 - IP - Amadey C2 Endpoint

193.56.146[.]243 - IP - Amadey C2 Endpoint

31.41.244[.]158 - IP - Amadey C2 Endpoint

85.209.135[.]109 - IP - Amadey C2 Endpoint

77.73.134[.]45 - IP - Amadey C2 Endpoint

moscow12[.]at - Hostname - Amadey C2 Endpoint

moscow13[.]at - Hostname - Amadey C2 Endpoint

unepeureyore[.]xyz - Hostname - Amadey C2 Endpoint

/fb73jc3/index.php - URI - Amadey C2 Endpoint

/panelis/index.php - URI - Amadey C2 Endpoint

/panelis/index.php?scr=1 - URI - Amadey C2 Endpoint

/panel/index.php - URI - Amadey C2 Endpoint

/panel/index.php?scr=1 - URI - Amadey C2 Endpoint

/panel/Plugins/cred.dll - URI - Amadey C2 Endpoint

/jg94cVd30f/index.php - URI - Amadey C2 Endpoint

/jg94cVd30f/index.php?scr=1 - URI - Amadey C2 Endpoint

/o7Vsjd3a2f/index.php - URI - Amadey C2 Endpoint

/o7Vsjd3a2f/index.php?scr=1 - URI - Amadey C2 Endpoint

/o7Vsjd3a2f/Plugins/cred64.dll - URI - Amadey C2 Endpoint

/gjend7w/index.php - URI - Amadey C2 Endpoint

/hfk3vK9/index.php - URI - Amadey C2 Endpoint

/v3S1dl2/index.php - URI - Amadey C2 Endpoint

/f9v33dkSXm/index.php - URI - Amadey C2 Endpoint

/p84Nls2/index.php - URI - Amadey C2 Endpoint

/p84Nls2/Plugins/cred.dll - URI - Amadey C2 Endpoint

/nB8cWack3/index.php - URI - Amadey C2 Endpoint

/rest/index.php - URI - Amadey C2 Endpoint

/Mb1sDv3/index.php - URI - Amadey C2 Endpoint

/Mb1sDv3/index.php?scr=1 - URI - Amadey C2 Endpoint

/Mb1sDv3/Plugins/cred64.dll  - URI - Amadey C2 Endpoint

/h8V2cQlbd3/index.php - URI - Amadey C2 Endpoint

/f5OknW/index.php - URI - Amadey C2 Endpoint

/rSbFldr23/index.php - URI - Amadey C2 Endpoint

/rSbFldr23/index.php?scr=1 - URI - Amadey C2 Endpoint

/jg94cVd30f/Plugins/cred64.dll - URI - Amadey C2 Endpoint

/mBsjv2swweP/Plugins/cred64.dll - URI - Amadey C2 Endpoint

/rSbFldr23/Plugins/cred64.dll - URI - Amadey C2 Endpoint

/Plugins/cred64.dll - URI - Amadey C2 Endpoint

Mitre Attack and Mapping 

Collection:

T1185 - Man the Browser

Initial Access and Resource Development:

T1189 - Drive-by Compromise

T1588.001 - Malware

Persistence:

T1176 - Browser Extensions

Command and Control:

T1071 - Application Layer Protocol

T1071.001 - Web Protocols

T1090.002 - External Proxy

T1095 - Non-Application Layer Protocol

T1571 - Non-Standard Port

T1105 - Ingress Tool Transfer

References 

[1] https://malpedia.caad.fkie.fraunhofer.de/details/win.amadey

[2] https://asec.ahnlab.com/en/41450/

[3] https://asec.ahnlab.com/en/36634/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst
Written by
The Darktrace Threat Research Team

More in this series

No items found.

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

Default blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

/

November 20, 2025

Securing Generative AI: Managing Risk in Amazon Bedrock with Darktrace / CLOUD

Default blog imageDefault blog image

Security risks and challenges of generative AI in the enterprise

Generative AI and managed foundation model platforms like Amazon Bedrock are transforming how organizations build and deploy intelligent applications. From chatbots to summarization tools, Bedrock enables rapid agent development by connecting foundation models to enterprise data and services. But with this flexibility comes a new set of security challenges, especially around visibility, access control, and unintended data exposure.

As organizations move quickly to operationalize generative AI, traditional security controls are struggling to keep up. Bedrock’s multi-layered architecture, spanning agents, models, guardrails, and underlying AWS services, creates new blind spots that standard posture management tools weren’t designed to handle. Visibility gaps make it difficult to know which datasets agents can access, or how model outputs might expose sensitive information. Meanwhile, developers often move faster than security teams can review IAM permissions or validate guardrails, leading to misconfigurations that expand risk. In shared-responsibility environments like AWS, this complexity can blur the lines of ownership, making it critical for security teams to have continuous, automated insight into how AI systems interact with enterprise data.

Darktrace / CLOUD provides comprehensive visibility and posture management for Bedrock environments, automatically detecting and proactively scanning agents and knowledge bases, helping teams secure their AI infrastructure without slowing down expansion and innovation.

A real-world scenario: When access goes too far

Consider a scenario where an organization deploys a Bedrock agent to help internal staff quickly answer business questions using company knowledge. The agent was connected to a knowledge base pointing at documents stored in Amazon S3 and given access to internal services via APIs.

To get the system running quickly, developers assigned the agent a broad execution role. This role granted access to multiple S3 buckets, including one containing sensitive customer records. The over-permissioning wasn’t malicious; it stemmed from the complexity of IAM policy creation and the difficulty of identifying which buckets held sensitive data.

The team assumed the agent would only use the intended documents. However, they did not fully consider how employees might interact with the agent or how it might act on the data it processed.  

When an employee asked a routine question about quarterly customer activity, the agent surfaced insights that included regulated data, revealing it to someone without the appropriate access.

This wasn’t a case of prompt injection or model manipulation. The agent simply followed instructions and used the resources it was allowed to access. The exposure was valid under IAM policy, but entirely unintended.

How Darktrace / CLOUD prevents these risks

Darktrace / CLOUD helps organizations avoid scenarios like unintended data exposure by providing layered visibility and intelligent analysis across Bedrock and SageMaker environments. Here’s how each capability works in practice:

Configuration-level visibility

Bedrock deployments often involve multiple components: agents, guardrails, and foundation models, each with its own configuration. Darktrace / CLOUD indexes these configurations so teams can:

  1. Inspect deployed agents and confirm they are connected only to approved data sources.
  2. Track evaluation job setups and their links to Amazon S3 datasets, uncovering hidden data flows that could expose sensitive information.
  3. Maintain full awareness of all AI components, reducing the chance of overlooked assets introducing risk.

By unifying configuration data across Bedrock, SageMaker, and other AWS services, Darktrace / CLOUD provides a single source of truth for AI asset visibility. Teams can instantly see how each component is configured and whether it aligns with corporate security policies. This eliminates guesswork, accelerates audits, and helps prevent misaligned settings from creating data exposure risks.

 Agents for bedrock relationship views.
Figure 1: Agents for bedrock relationship views

Architectural awareness

Complex AI environments can make it difficult to understand how components interact. Darktrace / CLOUD generates real-time architectural diagrams that:

  1. Visualize relationships between agents, models, and datasets.
  1. Highlight unintended data access paths or risk propagation across interconnected services.

This clarity helps security teams spot vulnerabilities before they lead to exposure. By surfacing these relationships dynamically, Darktrace / CLOUD enables proactive risk management, helping teams identify architectural drift, redundant data connections, or unmonitored agents before attackers or accidental misuse can exploit them. This reduces investigation time and strengthens compliance confidence across AI workloads.

Figure 2: Full Bedrock agent architecture including lambda and IAM permission mapping
Figure 2: Full Bedrock agent architecture including lambda and IAM permission mapping

Access & privilege analysis

IAM permissions apply to every AWS service, including Bedrock. When Bedrock agents assume IAM roles that were broadly defined for other workloads, they often inherit excessive privileges. Without strict least-privilege controls, the agent may have access to far more data and services than required, creating avoidable security exposure. Darktrace / CLOUD:

  1. Reviews execution roles and user permissions to identify excessive privileges.
  2. Flags anomalies that could enable privilege escalation or unauthorized API actions.

This ensures agents operate within the principle of least privilege, reducing attack surface. Beyond flagging risky roles, Darktrace / CLOUD continuously learns normal patterns of access to identify when permissions are abused or expanded in real time. Security teams gain context into why an action is anomalous and how it could affect connected assets, allowing them to take targeted remediation steps that preserve productivity while minimizing exposure.

Misconfiguration detection

Misconfigurations are a leading cause of cloud security incidents. Darktrace / CLOUD automatically detects:

  1. Publicly accessible S3 buckets that may contain sensitive training data.
  2. Missing guardrails in Bedrock deployments, which can allow inappropriate or sensitive outputs.
  3. Other issues such as lack of encryption, direct internet access, and root access to models.  

By surfacing these risks early, teams can remediate before they become exploitable. Darktrace / CLOUD turns what would otherwise be manual reviews into automated, continuous checks, reducing time to discovery and preventing small oversights from escalating into full-scale incidents. This automated assurance allows organizations to innovate confidently while keeping their AI systems compliant and secure by design.

Configuration data for Anthropic foundation model
Figure 3: Configuration data for Anthropic foundation model

Behavioral anomaly detection

Even with correct configurations, behavior can signal emerging threats. Using AWS CloudTrail, Darktrace / CLOUD:

  1. Monitors for unusual data access patterns, such as agents querying unexpected datasets.
  2. Detects anomalous training job invocations that could indicate attempts to pollute models.

This real-time behavioral insight helps organizations respond quickly to suspicious activity. Because it learns the “normal” behavior of each Bedrock component over time, Darktrace / CLOUD can detect subtle shifts that indicate emerging risks, before formal indicators of compromise appear. The result is faster detection, reduced investigation effort, and continuous assurance that AI-driven workloads behave as intended.

Conclusion

Generative AI introduces transformative capabilities but also complex risks that evolve alongside innovation. The flexibility of services like Amazon Bedrock enables new efficiencies and insights, yet even legitimate use can inadvertently expose sensitive data or bypass security controls. As organizations embrace AI at scale, the ability to monitor and secure these environments holistically, without slowing development, is becoming essential.

By combining deep configuration visibility, architectural insight, privilege and behavior analysis, and real-time threat detection, Darktrace gives security teams continuous assurance across AI tools like Bedrock and SageMaker. Organizations can innovate with confidence, knowing their AI systems are governed by adaptive, intelligent protection.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI