Blog
/
Identity
/
July 8, 2025

Defending the Cloud: Stopping Cyber Threats in Azure and AWS with Darktrace

This blog examines three real-world cloud-based attacks in Azure and AWS environments, including credential compromise, data exfiltration, and ransomware detonation. Learn how Darktrace’s AI-driven threat detection and Autonomous Response capabilities help organizations defend against evolving threats in complex cloud environments.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Jul 2025

Real-world intrusions across Azure and AWS

As organizations pursue greater scalability and flexibility, cloud platforms like Microsoft Azure and Amazon Web Services (AWS) have become essential for enabling remote operations and digitalizing corporate environments. However, this shift introduces a new set of security risks, including expanding attack surfaces, misconfigurations, and compromised credentials frequently exploited by threat actors.

This blog dives into three instances of compromise within a Darktrace customer’s Azure and AWS environment which Darktrace.

  1. The first incident took place in early 2024 and involved an attacker compromising a legitimate user account to gain unauthorized access to a customer’s Azure environment.
  2. The other two incidents, taking place in February and March 2025, targeted AWS environments. In these cases, threat actors exfiltrated corporate data, and in one instance, was able to detonate ransomware in a customer’s environment.

Case 1 - Microsoft Azure

Simplified timeline of the attack on a customer’s Azure environment.
Figure 1: Simplified timeline of the attack on a customer’s Azure environment.

In early 2024, Darktrace identified a cloud compromise on the Azure cloud environment of a customer in the Europe, the Middle East and Africa (EMEA) region.

Initial access

In this case, a threat actor gained access to the customer’s cloud environment after stealing access tokens and creating a rogue virtual machine (VM). The malicious actor was found to have stolen access tokens belonging to a third-party external consultant’s account after downloading cracked software.

With these stolen tokens, the attacker was able to authenticate to the customer’s Azure environment and successfully modified a security rule to allow inbound SSH traffic from a specific IP range (i.e., securityRules/AllowCidrBlockSSHInbound). This was likely performed to ensure persistent access to internal cloud resources.

Detection and investigation of the threat

Darktrace / IDENTITY recognized that this activity was highly unusual, triggering the “Repeated Unusual SaaS Resource Creation” alert.

Cyber AI Analyst launched an autonomous investigation into additional suspicious cloud activities occurring around the same time from the same unusual location, correlating the individual events into a broader account hijack incident.

Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 2: Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 2: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 3: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 4: Surrounding resource creation events highlighted by Cyber AI Analyst.

“Create resource service limit” events typically indicate the creation or modification of service limits (i.e., quotas) for a specific Azure resource type within a region. Meanwhile, “Registers the Capacity Resource Provider” events refer to the registration of the Microsoft Capacity resource provider within an Azure subscription, responsible for managing capacity-related resources, particularly those related to reservations and service limits. These events suggest that the threat actor was looking to create new cloud resources within the environment.

Around ten minutes later, Darktrace detected the threat actor creating or modifying an Azure disk associated with a virtual machine (VM), suggesting an attempt to create a rogue VM within the environment.

Threat actors can leverage such rogue VMs to hijack computing resources (e.g., by running cryptomining malware), maintain persistent access, move laterally within the cloud environment, communicate with command-and-control (C2) infrastructure, and stealthily deliver and deploy malware.

Persistence

Several weeks later, the compromised account was observed sending an invitation to collaborate to an external free mail (Google Mail) address.

Darktrace deemed this activity as highly anomalous, triggering a compliance alert for the customer to review and investigate further.

The next day, the threat actor further registered new multi-factor authentication (MFA) information. These actions were likely intended to maintain access to the compromised user account. The customer later confirmed this activity by reviewing the corresponding event logs within Darktrace.

Case 2 – Amazon Web Services

Simplified timeline of the attack on a customer’s AWS environment
Figure 5: Simplified timeline of the attack on a customer’s AWS environment

In February 2025, another cloud-based compromised was observed on a UK-based customer subscribed to Darktrace’s Managed Detection and Response (MDR) service.

How the attacker gained access

The threat actor was observed leveraging likely previously compromised credential to access several AWS instances within customer’s Private Cloud environment and collecting and exfiltrating data, likely with the intention of deploying ransomware and holding the data for ransom.

Darktrace alerting to malicious activity

This observed activity triggered a number of alerts in Darktrace, including several high-priority Enhanced Monitoring alerts, which were promptly investigated by Darktrace’s Security Operations Centre (SOC) and raised to the customer’s security team.

The earliest signs of attack observed by Darktrace involved the use of two likely compromised credentials to connect to the customer’s Virtual Private Network (VPN) environment.

Internal reconnaissance

Once inside, the threat actor performed internal reconnaissance activities and staged the Rclone tool “ProgramData\rclone-v1.69.0-windows-amd64.zip”, a command-line program to sync files and directories to and from different cloud storage providers, to an AWS instance whose hostname is associated with a public key infrastructure (PKI) service.

The threat actor was further observed accessing and downloading multiple files hosted on an AWS file server instance, notably finance and investment-related files. This likely represented data gathering prior to exfiltration.

Shortly after, the PKI-related EC2 instance started making SSH connections with the Rclone SSH client “SSH-2.0-rclone/v1.69.0” to a RockHoster Virtual Private Server (VPS) endpoint (193.242.184[.]178), suggesting the threat actor was exfiltrating the gathered data using the Rclone utility they had previously installed. The PKI instance continued to make repeated SSH connections attempts to transfer data to this external destination.

Darktrace’s Autonomous Response

In response to this activity, Darktrace’s Autonomous Response capability intervened, blocking unusual external connectivity to the C2 server via SSH, effectively stopping the exfiltration of data.

This activity was further investigated by Darktrace’s SOC analysts as part of the MDR service. The team elected to extend the autonomously applied actions to ensure the compromise remained contained until the customer could fully remediate the incident.

Continued reconissance

Around the same time, the threat actor continued to conduct network scans using the Nmap tool, operating from both a separate AWS domain controller instance and a newly joined device on the network. These actions were accompanied by further internal data gathering activities, with around 5 GB of data downloaded from an AWS file server.

The two devices involved in reconnaissance activities were investigated and actioned by Darktrace SOC analysts after additional Enhanced Monitoring alerts had triggered.

Lateral movement attempts via RDP connections

Unusual internal RDP connections to a likely AWS printer instance indicated that the threat actor was looking to strengthen their foothold within the environment and/or attempting to pivot to other devices, likely in response to being hindered by Autonomous Response actions.

This triggered multiple scanning, internal data transfer and unusual RDP alerts in Darktrace, as well as additional Autonomous Response actions to block the suspicious activity.

Suspicious outbound SSH communication to known threat infrastructure

Darktrace subsequently observed the AWS printer instance initiating SSH communication with a rare external endpoint associated with the web hosting and VPS provider Host Department (67.217.57[.]252), suggesting that the threat actor was attempting to exfiltrate data to an alternative endpoint after connections to the original destination had been blocked.

Further investigation using open-source intelligence (OSINT) revealed that this IP address had previously been observed in connection with SSH-based data exfiltration activity during an Akira ransomware intrusion [1].

Once again, connections to this IP were blocked by Darktrace’s Autonomous Response and subsequently these blocks were extended by Darktrace’s SOC team.

The above behavior generated multiple Enhanced Monitoring alerts that were investigated by Darktrace SOC analysts as part of the Managed Threat Detection service.

Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.
Figure 5: Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.

Final containment and collaborative response

Upon investigating the unusual scanning activity, outbound SSH connections, and internal data transfers, Darktrace analysts extended the Autonomous Response actions previously triggered on the compromised devices.

As the threat actor was leveraging these systems for data exfiltration, all outgoing traffic from the affected devices was blocked for an additional 24 hours to provide the customer’s security team with time to investigate and remediate the compromise.

Additional investigative support was provided by Darktrace analysts through the Security Operations Service, after the customer's opened of a ticket related to the unfolding incident.

Simplified timeline of the attack
Figure 8: Simplified timeline of the attack

Around the same time of the compromise in Case 2, Darktrace observed a similar incident on the cloud environment of a different customer.

Initial access

On this occasion, the threat actor appeared to have gained entry into the AWS-based Virtual Private Cloud (VPC) network via a SonicWall SMA 500v EC2 instance allowing inbound traffic on any port.

The instance received HTTPS connections from three rare Vultr VPS endpoints (i.e., 45.32.205[.]52, 207.246.74[.]166, 45.32.90[.]176).

Lateral movement and exfiltration

Around the same time, the EC2 instance started scanning the environment and attempted to pivot to other internal systems via RDP, notably a DC EC2 instance, which also started scanning the network, and another EC2 instance.  

The latter then proceeded to transfer more than 230 GB of data to the rare external GTHost VPS endpoint 23.150.248[.]189, while downloading hundreds of GBs of data over SMB from another EC2 instance.

Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.
Figure 7: Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.

The same behavior was replicated across multiple EC2 instances, whereby compromised instances uploaded data over internal RDP connections to other instances, which then started transferring data to the same GTHost VPS endpoint over port 5000, which is typically used for Universal Plug and Play (UPnP).

What Darktrace detected

Darktrace observed the threat actor uploading a total of 718 GB to the external endpoint, after which they detonated ransomware within the compromised VPC networks.

This activity generated nine Enhanced Monitoring alerts in Darktrace, focusing on the scanning and external data activity, with the earliest of those alerts triggering around one hour after the initial intrusion.

Darktrace’s Autonomous Response capability was not configured to act on these devices. Therefore, the malicious activity was not autonomously blocked and escalated to the point of ransomware detonation.

Conclusion

This blog examined three real-world compromises in customer cloud environments each illustrating different stages in the attack lifecycle.

The first case showcased a notable progression from a SaaS compromise to a full cloud intrusion, emphasizing the critical role of anomaly detection when legitimate credentials are abused.

The latter two incidents demonstrated that while early detection is vital, the ability to autonomously block malicious activity at machine speed is often the most effective way to contain threats before they escalate.

Together, these incidents underscore the need for continuous visibility, behavioral analysis, and machine-speed intervention across hybrid environments. Darktrace's AI-driven detection and Autonomous Response capabilities, combined with expert oversight from its Security Operations Center, give defenders the speed and clarity they need to contain threats and reduce operational disruption, before the situation spirals.

Credit to Alexandra Sentenac (Senior Cyber Analyst) and Dylan Evans (Security Research Lead)

References

[1] https://www.virustotal.com/gui/ip-address/67.217.57.252/community

Case 1

Darktrace / IDENTITY model alerts

IaaS / Compliance / Uncommon Azure External User Invite

SaaS / Resource / Repeated Unusual SaaS Resource Creation

IaaS / Compute / Azure Compute Resource Update

Cyber AI Analyst incidents

Possible Unsecured AzureActiveDirectory Resource

Possible Hijack of Office365 Account

Case 2

Darktrace / NETWORK model alerts

Compromise / SSH Beacon

Device / Multiple Lateral Movement Model Alerts

Device / Suspicious SMB Scanning Activity

Device / SMB Lateral Movement

Compliance / SSH to Rare External Destination

Device / Anomalous SMB Followed By Multiple Model Alerts

Device / Anonymous NTLM Logins

Anomalous Connection / SMB Enumeration

Device / New or Uncommon SMB Named Pipe Device / Network Scan

Device / Suspicious Network Scan Activity

Device / New Device with Attack Tools

Device / RDP Scan Device / Attack and Recon Tools

Compliance / High Priority Compliance Model Alert

Compliance / Outgoing NTLM Request from DC

Compromise / Large Number of Suspicious Successful Connections

Device / Large Number of Model Alerts

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Unusual Activity / Internal Data Transfer

Anomalous Connection / Unusual Internal Connections

Device / Anomalous RDP Followed By Multiple Model Alerts

Unusual Activity / Unusual External Activity

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Unusual External Data to New Endpoint

Anomalous Connection / Multiple Connections to New External TCP Port

Darktrace / Autonomous Response model alerts

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Manual / Quarantine Device

Antigena / MDR / MDR-Quarantined Device

Antigena / MDR / Model Alert on MDR-Actioned Device

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / Insider Threat / Antigena Internal Data Transfer Block

Cyber AI Analyst incidents

Possible Application Layer Reconnaissance Activity

Scanning of Multiple Devices

Unusual Repeated Connections

Unusual External Data Transfer

Case 3

Darktrace / NETWORK model alerts

Unusual Activity / Unusual Large Internal Transfer

Compliance / Incoming Remote Desktop

Unusual Activity / High Volume Server Data Transfer

Unusual Activity / Internal Data Transfer

Anomalous Connection / Unusual Internal Remote Desktop

Anomalous Connection / Unusual Incoming Data Volume

Anomalous Server Activity / Domain Controller Initiated to Client

Device / Large Number of Model Alerts

Anomalous Connection / Possible Flow Device Brute Force

Device / RDP Scan

Device / Suspicious Network Scan Activity

Device / Network Scan

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Connection / Download and Upload

Unusual Activity / Unusual External Data Transfer

Unusual Activity / High Volume Client Data Transfer

Unusual Activity / Unusual External Activity

Anomalous Connection / Uncommon 1 GiB Outbound

Device / Increased External Connectivity

Compromise / Large Number of Suspicious Successful Connections

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Low and Slow Exfiltration to IP

Unusual Activity / Enhanced Unusual External Data Transfer

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Multiple Connections to New External UDP Port

Anomalous Connection / Possible Data Staging and External Upload

Unusual Activity / Unusual External Data to New Endpoint

Device / Large Number of Model Alerts from Critical Network Device

Compliance / External Windows Communications

Anomalous Connection / Unusual Internal Connections

Cyber AI Analyst incidents

Scanning of Multiple Devices

Extensive Unusual RDP Connections

MITRE ATT&CK mapping

(Technique name – Tactic ID)

Case 1

Defense Evasion - Modify Cloud Compute Infrastructure: Create Cloud Instance

Persistence – Account Manipulation

Case 2

Initial Access - External Remote Services

Execution - Inter-Process Communication

Persistence - External Remote Services

Discovery - System Network Connections Discovery

Discovery - Network Service Discovery

Discovery - Network Share Discovery

Lateral Movement - Remote Desktop Protocol

Lateral Movement - Remote Services: SMB/Windows Admin Shares

Collection - Data from Network Shared Drive

Command and Control - Protocol Tunneling

Exfiltration - Exfiltration Over Asymmetric Encrypted Non-C2 Protocol

Case 3

Initial Access - Exploit Public-Facing Application

Discovery - Remote System Discovery

Discovery - Network Service Discovery

Lateral Movement - Remote Services

Lateral Movement - Remote Desktop Protocol  

Collection - Data from Network Shared Drive

Collection - Data Staged: Remote Data Staging

Exfiltration - Exfiltration Over C2 Channel

Command and Control - Non-Standard Port

Command and Control – Web Service

Impact - Data Encrypted for Impact

List of IoCs

IoC         Type      Description + Probability

193.242.184[.]178 - IP Address - Possible Exfiltration Server  

45.32.205[.]52  - IP Address  - Possible C2 Infrastructure

45.32.90[.]176 - IP Address - Possible C2 Infrastructure

207.246.74[.]166 - IP Address - Likely C2 Infrastructure

67.217.57[.]252 - IP Address - Likely C2 Infrastructure

23.150.248[.]189 - IP Address - Possible Exfiltration Server

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

/

August 6, 2025

How CDR & Automated Forensics Transform Cloud Incident Response

Default blog imageDefault blog image

Introduction: Cloud investigations

In cloud security, speed, automation and clarity are everything. However, for many SOC teams, responding to incidents in the cloud is often very difficult especially when attackers move fast, infrastructure is ephemeral, and forensic skills are scarce.

In this blog we will walk through an example that shows exactly how Darktrace Cloud Detection and Response (CDR) and automated cloud forensics together, solve these challenges, automating cloud detection, and deep forensic investigation in a way that’s fast, scalable, and deeply insightful.

The Problem: Cloud incidents are hard to investigate

Security teams often face three major hurdles when investigating cloud detections:

Lack of forensic expertise: Most SOCs and security teams aren’t natively staffed with forensics specialists.

Ephemeral infrastructure: Cloud assets spin up and down quickly, leaving little time to capture evidence.

Lack of existing automation: Gathering forensic-level data often requires manual effort and leaves teams scrambling around during incidents — accessing logs, snapshots, and system states before they disappear. This process is slow and often blocked by permissions, tooling gaps, or lack of visibility.

How Darktrace augments cloud investigations

1. Darktrace’s CDR finds anomalous activity in the cloud

An alert is generated for a large outbound data transfer from an externally facing EC2 instance to a rare external endpoint. It’s anomalous, unexpected, and potentially serious.

2. AI-led investigation stitches together the incident for a SOC analyst to look into

When a security incident unfolds, Darktrace’s Cyber AI Analyst TM is the first to surface it, automatically correlating behaviors, surfacing anomalies, and presenting a cohesive incident summary. It’s fast, detailed, and invaluable.

Once the incident is created, more questions are raised.

  • How were the impacted resources compromised?
  • How did the attack unfold over time – what tools and malware were used?
  • What data was accessed and exfiltrated?

What you’ll see as a SOC analyst: The incident begins in Darktrace’s Threat Visualizer, where a Cyber AI Analyst incident has been generated automatically highlighting large anomalous data transfer to a suspicious external IP. This isn’t just another alert, it’s a high-fidelity signal backed by Darktrace’s Self-Learning AI.

Cyber AI Analyst incident created for anomalous outbound data transfer
Figure 1: Cyber AI Analyst incident created for anomalous outbound data transfer

The analyst can then immediately pivot to Darktrace / CLOUD’s architecture view (see below), gaining context on the asset’s environment, ingress/egress points, connected systems, potential attack paths and whether there are any current misconfigurations detected on the asset.

Darktrace / CLOUD architecture view providing critical cloud context
Figure 2: Darktrace / CLOUD architecture view providing critical cloud context

3. Automated forensic capture — No expertise required

Then comes the game-changer, Darktrace’s recent acquisition of Cado enhances its cloud forensics capabilities. From the first alert triggered, Darktrace has already kicked in and automatically processed and analyzed a full volume capture of the EC2. Everything, past and present, is preserved. No need for manual snapshots, CLI commands, or specialist intervention.

Darktrace then provides a clear timeline highlighting the evidence and preserving it. In our example we identify:

  • A brute-force attempt on a file management app, followed by a successful login
  • A reverse shell used to gain unauthorized remote access to the EC2
  • A reverse TCP connection to the same suspicious IP flagged by Darktrace
  • Attacker commands showing how the data was split and prepared for exfiltration
  • A file (a.tar) created from two sensitive archives: product_plans.zip and research_data.zip

All of this is surfaced through the timeline view, ranked by significance using machine learning. The analyst can pivot through time, correlate events, and build a complete picture of the attack — without needing cloud forensics expertise.

Darktrace even gives the ability to:

  • Download and inspect gathered files in full detail, enabling teams to verify exactly what data was accessed or exfiltrated.
  • Interact with the file system as if it were live, allowing investigators to explore directories, uncover hidden artifacts, and understand attacker movement with precision.
Figure 3 Cado critical forensic investigation automated insights
Figure 3: Cado critical forensic investigation automated insights
Figure 4: Cado forensic file analysis of reverse shell and download option
Figure 5: a.tar created from two sensitive archives: product_plans.zip and research_data.zip
Figure 6: Traverse the full file system of the asset

Why this matters?

This workflow solves the hardest parts of cloud investigation:

  1. Capturing evidence before it disappears
  2. Understanding attacker behavior in detail - automatically
  3. Linking detections to impact with full incident visibility

This kind of insight is invaluable for organizations especially regulated industries, where knowing exactly what data was affected is critical for compliance and reporting. It’s also a powerful tool for detecting insider threats, not just external attackers.

Darktrace / CLOUD and Cado together acts as a force multiplier helping with:

  • Reducing investigation time from hours to minutes
  • Preserving ephemeral evidence automatically
  • Empowering analysts with forensic-level visibility

Cloud threats aren’t slowing down. Your response shouldn’t either. Darktrace / CLOUD + Cado gives your SOC the tools to detect, contain, and investigate cloud incidents — automatically, accurately, and at scale.

[related-resource]

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security

Blog

/

Network

/

August 6, 2025

2025 Cyber Threat Landscape: Darktrace’s Mid-Year Review

Default blog imageDefault blog image

2025: Threat landscape in review

The following is a retrospective of the first six months of 2025, highlighting key findings across the threat landscape impacting Darktrace customers.

Darktrace observed a wide range of tactics during this period, used by various types of threat actors including advanced persistent threats (APTs), Malware-as-a-Service (MaaS) and Ransomware-as-a-Service (RaaS) groups.

Methodology

Darktrace’s Analyst team conduct investigations and research into threats facing organizations and security teams across our customer base.  This includes direct investigations with our 24/7 Security Operations Centre (SOC), via services such as Managed Detection and Response (MDR) and Managed Threat Detection, as well as broader cross-fleet research through our Threat Research function.

At the core of our research is Darktrace’s anomaly-based detection, which the Analyst team contextualizes and analyzes to provide additional support to customers and deepen our understanding of the threats they face.

Threat actors are incorporating AI into offensive operations

Threat actors are continuously evolving their tactics, techniques, and procedures (TTPs), posing an ongoing challenge to effective defense hardening. Increasingly, many threat actors are adopting AI, particularly large language models (LLMs), into their operations to enhance the scale, sophistication, and efficacy of their attacks.

The evolving functionality of malware, such as the recently reported LameHug malware by CERT-UA, which uses an open-source LLM, exemplifies this observation [1].

Threat landscape trends in 2025

Threat actors applying AI to Email attacks

LLMs present a clear opportunity for attackers to take advantage of AI and create effective phishing emails at speed. While Darktrace cannot definitively confirm the use of AI to create the phishing emails observed across the customer base, the high volume of phishing emails and notable shifts in tactic could potentially be explained by threat actors adopting new tooling such as LLMs.

  • The total number of malicious emails detected by Darktrace from January to May 2025 was over 12.6 million
  • VIP users continue to face significant threat, with over 25% of all phishing emails targeting these users in the first five months of 2025
  • QR code-based phishing emails have remained a consistent tactic, with a similar proportion observed in January-May 2024 and 2025. The highest numbers were observed in February 2025, with over 1 million detected in that month alone.
  • Shifts towards increased sophistication within phishing emails are emerging, with a year-on-year increase in the proportion of phishing emails containing either a high text volume or multistage payloads. In the first five months of 2025, 32% of phishing emails contained a high volume of text.

The increase in proportion of phishing emails with a high volume of text in particular could point towards threat actors leveraging LLMs to create phishing emails with large, but believable, text in an easy and efficient way.

The above email statistics are derived from analysis of monitored Darktrace / EMAIL model data for all customer deployments hosted in the cloud between January 1 and May 31, 2025.

Campaign Spotlight: Simple, Quick - ClickFix

An interesting technique Darktrace observed multiple times throughout March and April was ClickFix social engineering, which exploits the intersection between humans and technology to trick users into executing malicious code on behalf of the attacker.

  • While this technique has been around since 2024, Darktrace observed campaign activity in the first half of 2025 suggesting a resurgence.  
  • A range of threat actors – from APTs to MaaS and RaaS have adopted this technique to deliver secondary payloads, like information stealing malware.
  • Attackers use fraudulent or compromised legitimate websites to inject malicious plugins that masquerade as fake CAPTCHAs.
  • Targeted users believe they are completing human verification or resolving a website issue, unaware that they are being guided through a series of simple steps to execute PowerShell code on their system.
  • Darktrace observed campaign activity during the first half of 2025 across a range of sectors, including Government, Healthcare, Insurance, Retail and, Non-profit.

Not just AI: Automation is enabling Ransomware and SaaS exploitation

The rise of phishing kits like FlowerStorm and Mamba2FA, which enable phishing and abuse users’ trust by mimicking legitimate services to bypass multi-factor authentication (MFA), highlight how the barriers to entry for sophisticated attacks continue to fall, enabling new threat actors. Combined with Software-as-a-Service (SaaS) account compromise, these techniques make up a substantial portion of cybercriminal activity observed by Darktrace so far this year.

Credentials remain the weak link

A key theme across multiple cases of ransomware was threat actors abusing compromised credentials to gain initial entry into networks via:

  • Unauthorized access to internet-facing technology such as RDP servers and virtual private networks (VPNs).
  • Unauthorized access to SaaS accounts.

SaaS targeted ransomware is on the rise

The encryption of files within SaaS environments observed by Darktrace demonstrates a continued trend of ransomware actors targeting these platforms over traditional networks, potentially driven by a higher return on investment.

SaaS accounts are often less protected than traditional systems because of Single Sign-On (SSO).  Additionally, platforms like Salesforce often host sensitive data, including emails, financial records, customer information, and network configuration details. This stresses the need for robust identity management practices and continuous monitoring.

RaaS is adding complexity and speed to cyber attacks

RaaS has dominated the attack landscape, with groups like Qilin, RansomHub, and Lynx all appearing multiple times in cases across Darktrace’s customer base over the past six months. Detecting ransomware attacks before the encryption stage remains a significant challenge, particularly in RaaS operations where different affiliates often use varying techniques for initial entry and earlier stages of the attack. Darktrace’s recent analysis of Scattered Spider underscores the challenge of hardening defenses against such varying techniques.

CVE exploitation continues despite available patches

Darktrace has also observed ransomware gangs exploiting known Common Vulnerabilities and Exposures (CVEs), including the Medusa ransomware group’s use of the SimpleHelp vulnerabilities: CVE-2024-57727 and CVE-2024-57728 in March, despite patches being made available in January [2].

Misused tools + delayed patches = growing cyber risk

The exploitation of common remote management tools like SimpleHelp highlights the serious challenges defenders face when patch management cycles are suboptimal. As threat actors continue to abuse legitimate services for malicious purposes, the challenges facing defenders will only grow more complex.

Edge exploitation

It comes as no surprise that exploitation of internet-facing devices continued to feature prominently in Darktrace’s Threat Research investigations during the first half of 2025.

Observed CVE exploitation included:

Many of Darktrace’s observations of CVE exploitation so far in 2025 align with wider industry reporting, which suggests that Chinese-nexus threat actors were deemed to likely have exploited these technologies prior to public disclosure. In the case of CVE-2025-0994 - a vulnerability affecting Trimble Cityworks, an asset management system designed for use by local governments, utilities, airports, and public work agencies [3].

Darktrace observed signs of exploitation as early as January 19, well before vulnerability’s public disclosure on February 6 [4]. Darktrace’s early identification of the exploitation stemmed from the detection of a suspicious file download from 192.210.239[.]172:3219/z44.exe - later linked to Chinese-speaking threat actors in a campaign targeting the US government [5].

This case demonstrates the risks posed by the exploitation of internet-facing devices, not only those hosting more common technologies, but also software associated specifically tied to Critical National Infrastructure (CNI); a lucrative target for threat actors. This also highlights Darktrace’s ability to detect exploitation of internet-facing systems, even without a publicly disclosed CVE. Further examples of how Darktrace’s anomaly detection can uncover malicious activity ahead of public vulnerability disclosures can be found here.

New threats and returning adversaries

In the first half of 2025, Darktrace observed a wide range of threats, from sophisticated techniques employed by APT groups to large-scale campaigns involving phishing and information stealers.

BlindEagle (APT-C-36)

Among the observed APT activity, BlindEagle (APT-C-36) was seen targeting customers in Latin America (LATM), first identified in February, with additional cases seen as recently as June.

Darktrace also observed a customer targeted in a China-linked campaign involving the LapDogs ORB network, with activity spanning from December 2024 and June 2025. These likely nation-state attacks illustrate the continued adoption of cyber and AI capabilities into the national security goals of certain countries.

Sophisticated malware functionality

Further sophistication has been observed within specific malware functionality - such as the malicious backdoor Auto-Color, which has now been found to employ suppression tactics to cover its tracks if it is unable to complete its kill chain - highlighting the potential for advanced techniques across every layer of an attack.

Familiar foes

Alongside new and emerging threats, previously observed and less sophisticated tools, such as worms, Remote Access Trojans (RATs), and information stealers, continue to impact Darktrace customers.

The Raspberry Robin worm... First seen in 2021, has been repeatedly identified within Darktrace’s customer base since 2022. Most recently, Darktrace’s Threat Research team identified cases in April and May this year. Recent open-source intelligence (OSINT) reporting suggests that Raspberry Robin continues to evolve its role as an Initial Access Broker (IAB), paving the way for various attacks and remaining a concern [6].

RATs also remain a threat, with examples like AsyncRAT and Gh0st RAT impacting Darktrace customers.

In April multiple cases of MaaS were observed in Darktrace’s customer base, with information stealers Amadey and Stealc, as well as GhostSocks being distributed as a follow up payload after an initial Amadey infection.

Conclusion

As cyber threats evolve, attackers are increasingly harnessing AI to craft highly convincing email attacks, automating phishing campaigns at unprecedented scale and speed. This, coupled with rapid exploitation of vulnerabilities and the growing sophistication of ransomware gangs operating as organized crime syndicates, makes today’s threat landscape more dynamic and dangerous than ever. Cyber defenders collaborate to combat these threats – the coordinated takedown of Lumma Stealer in May was a notable win for both industry and law-enforcement [7], however OSINT suggests that this threat persists [8], and new threats will continue to arise.

Traditional security tools that rely on static rules or signature-based detection often struggle to keep pace with these fast-moving, adaptive threats. In this environment, anomaly-based detection tools are no longer optional—they are essential. By identifying deviations in normal user and system behavior, tools like Darktrace provide a proactive layer of defense capable of detecting novel and emerging threats, even those that bypass conventional security measures. Investing in anomaly-based detection is critical to staying ahead of attackers who now operate with automation, intelligence, and global coordination.

Credit to Emma Foulger (Global Threat Research Operations Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),  Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nahisha Nobregas (Senior Cyber Analyst), Nicole Wong (Principal Cyber Analyst), Justin Torres (Senior Cyber Analyst), Matthew John (Director of Operations, SOC), Sam Lister (Specialist Security Researcher), Ryan Traill (Analyst Content Lead) and the Darktrace Incident Management team.

The information contained in this blog post is provided for general informational purposes only and represents the views and analysis of Darktrace as of the date of publication. While efforts have been made to ensure the accuracy and timeliness of the information, the cybersecurity landscape is dynamic, and new threats or vulnerabilities may have emerged since this report was compiled.

This content is provided “as is” and without warranties of any kind, either express or implied. Darktrace makes no representations or warranties regarding the completeness, accuracy, reliability, or suitability of the information, and expressly disclaims all warranties.

Nothing in this blog post should be interpreted as legal, technical, or professional advice. Users of this information assume full responsibility for any actions taken based on its content, and Darktrace shall not be liable for any loss or damage resulting from reliance on this material. Reference to any specific products, companies, or services does not constitute or imply endorsement, recommendation, or affiliation.

Appendices

Indicators of Compromise (IoCs)

IoC - Type - Description + Probability

LapDogs ORB network, December 2024-June 2025

www.northumbra[.]com – Hostname – Command and Control (C2) server

103.131.189[.]2 – IP Address - C2 server, observed December 2024 & June 2025

103.106.230[.]31 – IP Address - C2 server, observed December 2024

154.223.20[.]56 – IP Address – Possible C2 server, observed December 2024

38.60.214[.]23 – IP Address – Possible C2 server, observed January & February 2025

154.223.20[.]58:1346/systemd-log – URL – Possible ShortLeash payload, observed December 2024

CN=ROOT,OU=Police department,O=LAPD,L=LA,ST=California,C=US - TLS certificate details for C2 server

CVE-2025-0994, Trimble Cityworks exploitation, January 2025

192.210.239[.]172:3219/z44.exe – URL - Likely malicious file download

AsyncRAT, February-March 2025

windows-cam.casacam[.]net – Hostname – Likely C2 server

88.209.248[.]141 – IP Address – Likely C2 server

207.231.105[.]51 – IP Address – Likely C2 server

163.172.125[.]253 – IP Address – Likely C2 server

microsoft-download.ddnsfree[.]com – Hostname – Likely C2 server

95.217.34[.]113 – IP Address – Likely C2 server

vpnl[.]net – Hostname – Likely C2 server

157.20.182[.]16 – IP Address - Likely C2 server

185.81.157[.]19 – IP Address – Likely C2 server

dynamic.serveftp[.]net – IP Address – Likely C2 server

158.220.96.15 – IP Address – Likely C2 server

CVE-2024-57727 & CVE-2024-57728, SimpleHelp RMM exploitation, March 2025

213.183.63[.]41 – IP Address - C2 server

213.183.63[.]41/access/JWrapper-Windows64JRE-version.txt?time=3512082867 – URL - C2 server

213.183.63[.]41/access/JWrapper-Windows64JRE-00000000002-archive.p2.l2 – URL - C2 server

pruebas.pintacuario[.]mx – Hostname – Possible C2 server

144.217.181[.]205 – IP Address – Likely C2 server

erp.ranasons[.]com – Hostname – Possible destination for exfiltration

143.110.243[.]154 – IP Address – Likely destination for exfiltration

Blind Eagle, April-June 2025

sostenermio2024.duckdns[.]org/31agosto.vbs – URL – Possible malicious file download

Stealc, April 2025

88.214.48[.]93/ea2cb15d61cc476f[.]php – URL – C2 server

Amadey & GhostSocks, April 2025

195.82.147[.]98 – IP Address - Amadey C2 server

195.82.147[.]98/0Bdh3sQpbD/index.php – IP Address – Likely Amadey C2 activity

194.28.226.181 – IP Address – Likely GhostSocks C2 server

RaspberryRobin, May 2025

4j[.]pm – Hostname – C2 server

4xq[.]nl – Hostname – C2 server

8t[.]wf – Hostname – C2 server

Gh0stRAT, May 2025

lu.dssiss[.]icu  - Hostname – Likely C2 server

192.238.133[.]162:7744/1-111.exe – URL – Possible addition payload

8e9dec3b028f2406a8c546a9e9ea3d50609c36bb - SHA1 - Possible additional payload

f891c920f81bab4efbaaa1f7a850d484 - MD5 – Possible additional payload

192.238.133[.]162:7744/c3p.exe – URL - Possible additional payload

03287a15bfd67ff8c3340c0bae425ecaa37a929f - SHA1 - Possible additional payload

02aa02aee2a6bd93a4a8f4941a0e6310 - MD5 - Possible additional payload

192.238.133[.]162:7744/1-1111.exe – URL - Possible additional payload

1473292e1405882b394de5a5857f0b6fa3858fd1 - SHA1 - Possible additional payload

69549862b2d357e1de5bab899ec0c817 - MD5 - Possible additional payload

192.238.133[.]162:7744/1-25.exe – URL -  Possible additional payload

20189164c4cd5cac7eb76ba31d0bd8936761d7a7  - SHA1 - Possible additional payload

f42aa5e68b28a3f335f5ea8b6c60cb57 – MD5 - Possible additional payload

192.238.133[.]162:7744/Project1_se.exe – URL - Possible additional payload

fea1e30dfafbe9fa9abbbdefbcbe245b6b0628ad - SHA1 - Possible additional payload

5ea622c630ef2fd677868cbe8523a3d5 - MD5 - Possible additional payload

192.238.133[.]162:7744/Project1_se.exe - URL - Possible additional payload

aa5a5d2bd610ccf23e58bcb17d6856d7566d71b9  - SHA1 - Possible additional payload

9d33029eaeac1c2d05cf47eebb93a1d0 - MD5 - Possible additional payload

References and further reading

1.        https://cip.gov.ua/en/news/art28-atakuye-sektor-bezpeki-ta-oboroni-za-dopomogoyu-programnogo-zasobu-sho-vikoristovuye-shtuchnii-intelekt?utm_medium=email&_hsmi=113619842&utm_content=113619842&utm_source=hs_email

2.        https://www.s-rminform.com/latest-thinking/cyber-threat-advisory-medusa-and-the-simplehelp-vulnerability

3.        https://assetlifecycle.trimble.com/en/products/software/cityworks

4.     https://nvd.nist.gov/vuln/detail/CVE-2025-0994

5.     https://blog.talosintelligence.com/uat-6382-exploits-cityworks-vulnerability/

6.        https://www.silentpush.com/blog/raspberry-robin/

7.        https://blogs.microsoft.com/on-the-issues/2025/05/21/microsoft-leads-global-action-against-favored-cybercrime-tool/

8.     https://www.trendmicro.com/en_sg/research/25/g/lumma-stealer-returns.html

Related Darktrace investigations

-              ClickFix

-              FlowerStorm

-              Mamba 2FA

-              Qilin Ransomware

-              RansomHub Ransomware

-              RansomHub Revisited

-              Lynx Ransomware

-              Scattered Spider

-              Medusa Ransomware

-              Legitimate Services Malicious Intentions

-              CVE-2025-0282 and CVE-2025-0283 – Ivanti CS, PS and ZTA

-              CVE-2025-31324 – SAP Netweaver

-              Pre-CVE Threat Detection

-              BlindEagle (APT-C-36)

-              Raspberry Robin Worm

-              AsyncRAT

-              Amadey

-              Lumma Stealer

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI