Blog
/
/
September 13, 2023

How Darktrace Stopped Akira Ransomware

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Sep 2023
Learn how Darktrace is uniquely placed to identify and contain the novel Akira ransomware strain, first observed in March 2023.

Introduction to Akira Ransomware

In the face of a seemingly never-ending production line of novel ransomware strains, security teams across the threat landscape are continuing to see a myriad of new variants and groups targeting their networks. Naturally, new strains and threat groups present unique challenges to organizations. The use of previously unseen tactics, techniques, and procedures (TTPs) means that threat actors can often completely bypass traditional rule and signature-based security solutions, thus rendering an organization’s digital environment vulnerable to attack.

What is Akira Ransomware?

One such example of a novel ransomware family is Akira, which was first observed in the wild in March 2023. Much like many other strains, Akira is known to target corporate networks worldwide, encrypting sensitive files and demanding huge sums of money to retrieve the data and stop it from being posted online [1].

Key characteristics of Akira Ransomware

  • Targeted Attacks: Focuses on specific industries and organizations, often targeting those with valuable data.
  • Double Extortion Tactics: Employs double extortion by encrypting data and threatening to release it publicly if the ransom is not paid.
  • Advanced Encryption: Utilizes sophisticated encryption algorithms to ensure that data recovery is impossible without the decryption key.
  • Custom Ransom Notes: Delivers personalized ransom notes tailored to the victim, often containing detailed instructions and specific payment demands.
  • Stealth Techniques: Uses advanced evasion techniques to avoid detection by security tools and to remain undetected for extended periods.
  • Fast Encryption Process: Known for its rapid encryption process, minimizing the time window for detection and response by the victim.
  • Frequent Updates: Regularly updates its malware to bypass the latest security defenses and to improve its effectiveness.
  • Professional Communication: Maintains professional and often polite communication with victims to facilitate ransom payments and decryption.

Darktrace AI capabilities detect Akira Ransomware

In late May 2023, Darktrace observed multiple instances of Akira ransomware affecting networks across its customer base. Thanks to its anomaly-based approach to threat detection, Darktrace successfully identified the novel ransomware attacks and provided full visibility over the cyber kill chain, from the initial compromise to the eventual file encryptions and ransom notes. In cases where Darktrace was enabled in autonomous response mode, these attacks were mitigated the early stages of the attack, thus minimizing any disruption or damage to customer networks.

Initial access and privileged escalation

Methods used by Akira ransomware for privileged escalation

The Akira ransomware group typically uses spear-phishing campaigns containing malicious downloads or links as their primary initial access vector; however, they have also been known to use Remote Desktop Protocol (RDP) brute-force attacks to access target networks [2].

While Darktrace did observe the early access activities that are detailed below, it is very likely that the actual initial intrusion happened prior to this, through targeted phishing attacks that fell outside of Darktrace’s purview. The first indicators of compromise (IoCs) that Darktrace observed on customer networks affected by Darktrace were typically unusual RDP sessions, and the use of compromised administrative credentials.

Darktrace detection of initial access and priviledged escalation

On one Darktrace customer’s network (customer A), Darktrace identified a highly privileged credential being used for the first time on an internal server on May 21, 2023. Around a week later, this server was observed establishing RDP connections with multiple internal destination devices via port 3389. Further investigation carried out by the customer revealed that this credential had indeed been compromised. On May 30, Darktrace detected another device scanning internal devices and repeatedly failing to authenticate via Kerberos.

As the customer had integrated Darktrace with Microsoft Defender, their security team received additional cyber threat intelligence from Microsoft which, coupled with the anomaly alerts provided by Darktrace, helped to further contextualize these anomalous events. One specific detail gleaned from this integration was that the anomalous scanning activity and failed authentication attempts were carried out using the compromised administrative credentials mentioned earlier.

By integrating Microsoft Defender with Darktrace, customers can efficiently close security gaps across their digital infrastructure. While Darktrace understands customer environments and provides valuable network-level insights, by integrating with Microsoft Defender, customers can further enrich these insights with endpoint-specific information and activity.

In another customer’s network (customer B), Darktrace detected a device, later observed writing a ransom note, receiving an unusual RDP connection from another internal device. The RDP cookie used during this activity was an administrative RDP cookie that appeared to have been compromised. This device was also observed making multiple connections to the domain, api.playanext[.]com, and using the user agent , AnyDesk/7.1.11, indicating the use of the AnyDesk remote desktop service.

Although this external domain does not appear directly related to Akira ransomware, open-source intelligence (OSINT) found associations with multiple malicious files, and it appeared to be associated with the AnyDesk user agent, AnyDesk/6.0.1 [3]. The connections to this endpoint likely represented the malicious use of AnyDesk to remotely control the customer’s device, rather than Akira command-and-control (C2) infrastructure or payloads. Alternatively, it could be indicative of a spoofing attempt in which the threat actor is attempting to masquerade as legitimate remote desktop service to remain undetected by security tools.

Around the same time, Darktrace observed many devices on customer B’s network making anomalous internal RDP connections and authenticating via Kerberos, NTLM, or SMB using the same administrative credential. These devices were later confirmed to be affected by Akira Ransomware.

Figure 1 shows how Darktrace detected one of those internal devices failing to login via SMB multiple times with a certain credential (indication of a possible SMB/NTLM brute force), before successfully accessing other internal devices via SMB, NTLM and RDP using the likely compromised administrative credential mentioned earlier.

Figure 1: Model Breach Event Log indicating unusual SMB, NTLM and RDP activity with different credentials detected which led to the Darktrace model breaches, "Unusual Admin RDP Session” and “Successful Admin Brute-Force Activity”.

Darktrace models observed for initial access and privilege escalation:

  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Anomalous Connection / Unusual Admin RDP Session
  • New Admin Credentials on Server
  • Possible SMB/NTLM Brute Force Indicator
  • Unusual Activity / Successful Admin Brute-Force Activity

Internal Reconnaissance and Lateral Movement

The next step Darktrace observed during Akira Ransomware attacks across the customer was internal reconnaissance and lateral movement.

How Akira Ransomware conducts internal reconnaissance

In another customer’s environment (customer C), after authenticating via NTLM using a compromised credential, a domain controller was observed accessing a large amount of SMB shares it had never previously accessed. Darktrace understood that this SMB activity represented a deviation in the device’s expected behavior and recognized that it could be indicative of SMB enumeration. Darktrace observed the device making at least 196 connections to 34 unique internal IPs via port 445. SMB actions read, write, and delete were observed during those connections. This domain controller was also one of many devices on the customer’s network that was received incoming connections from an external endpoint over port 3389 using the RDP protocol, indicating that the devices were likely being remotely controlled from outside the network. While there were no direct OSINT links with this endpoint and Akira ransomware, the domain controller in question was later confirmed to be compromised and played a key role in this phase of the attack.

Moreover, this represents the second IoC that Darktrace observed that had no obvious connection to Akira, likely indicating that Akira actors are establishing entirely new infrastructure to carry out their attacks, or even utilizing newly compromised legitimate infrastructure. As Darktrace adopts an anomaly-based approach to threat detection, it can recognize suspicious activity indicative of an emerging ransomware attack based on its unusualness, rather than having to rely on previously observed IoCs and lists of ‘known-bads’.

Darktrace further observed a flurry of activity related to lateral movement around this time, primarily via SMB writes of suspicious files to other internal destinations. One particular device on customer C’s network was detected transferring multiple executable (.exe) and script files to other internal devices via SMB.

Darktrace recognized that these transfers represented a deviation from the device’s normal SMB activity and may have indicated threat actors were attempting to compromise additional devices via the transfer of malicious software.

Figure 2: Advanced Search results showing 20 files associated with suspicious SMB write activity, amongst them executable files and dynamic link libraries (DLLs).

Darktrace DETECT models observed for internal reconnaissance and lateral movement:

  • Device / RDP Scan
  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Possible Share Enumeration Activity
  • Scanning of Multiple Devices (Cyber AI Analyst Incident)
  • Device / Possible SMB/NTLM Reconnaissance
  • Compliance / Incoming Remote Desktop
  • Compliance / Outgoing NTLM Request from DC
  • Unusual Activity / Internal Data Transfer
  • Security Integration / Lateral Movement and Integration Detection
  • Device / Anomalous SMB Followed By Multiple Model Breaches

Ransomware deployment

In the final phase of Akira ransomware attacks detected on Darktrace customer networks, Darktrace identified the file extension “.akira” being added after encryption to a variety of files on the affected network shares, as well as a ransom note titled “akira_readme.txt” being dropped on affected devices.

On customer A’s network, after nearly 9,000 login failures and 2,000 internal connection attempts indicative of scanning activity, one device was detected transferring suspicious files over SMB to other internal devices. The device was then observed connecting to another internal device via SMB and continuing suspicious file activity, such as appending files on network shares with the “.akira” extension, and performing suspicious writes to SMB shares on other internal devices.

Darktrace’s autonomous threat investigator, Cyber AI Analyst™, was able to analyze the multiple events related to this encryption activity and collate them into one AI Analyst incident, presenting a detailed and comprehensive summary of the entire incident within 10 minutes of Darktrace’s initial detection. Rather than simply viewing individual breaches as standalone activity, AI Analyst can identify the individual steps of an ongoing attack to provide complete visibility over emerging compromises and their kill chains. Not only does this bolster the network’s defenses, but the autonomous investigations carried out by AI Analyst also help to save the security team’s time and resources in triaging and monitoring ongoing incidents.

Figure 3: Darktrace Cyber AI Analyst incident correlated multiple model breaches together to show Akira ransomware encryption activity.

In addition to analyzing and compiling Darktrace model breaches, AI Analyst also leveraged the host-level insights provided by Microsoft Defender to enrich its investigation into the encryption event. By using the Security Integration model breaches, AI Analyst can retrieve timestamp and device details from a Defender alert and further investigate any unusual activity surrounding the alert to present a full picture of the suspicious activity.

In customer B’s environment, following the unusual RDP sessions and rare external connections using the AnyDesk user agent, an affected device was later observed writing around 2,000 files named "akira_readme.txt" to multiple internal SMB shares. This represented the malicious actor dropping ransom notes, containing the demands and extortion attempts of the actors.

Figure 4: Model Breach Event Log indicating the ransom note detected on May 12, 2023, which led to the Darktrace DETECT model breach, Anomalous Server Activity / Write to Network Accessible WebRoot.
Figure 5: Packet Capture (PCAP) demonstrating the Akira ransom note captured from the connection details seen in Figure 4.

As a result of this ongoing activity, an Enhanced Monitoring model breach, a high-fidelity detection model type that detects activities that are more likely to be indicative of compromise, was escalated to Darktrace’s Security Operations Center (SOC) who, in turn were able to further investigate and triage this ransomware activity. Customers who have subscribed to Darktrace’s Proactive Threat Notification (PTN) service would receive an alert from the SOC team, advising urgent follow up action.

Darktrace detection models observed during ransomware deployment:

  • Security Integration / Integration Ransomware Incident
  • Security Integration / High Severity Integration Detection
  • Security Integration / Integration Ransomware Detected
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Compliance / SMB Drive Write
  • Compromise / Ransomware / Suspicious SMB Activity (Proactive Threat Notification Alerted by the Darktrace SOC)
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous File / Internal / Unusual SMB Script Write
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Anomalous Server Activity /Write to Network Accessible WebRoot
  • Anomalous Server Activity /Write to Network Accessible WebRoot

Darktrace autonomous response neutralizes Akira Ransomware

When Darktrace is configured in autonomous response mode, it is able to follow up successful threat identifications with instant autonomous actions that stop malicious actors in their tracks and prevent them from achieving their end goals.

In the examples of Darktrace customers affected by Akira Ransomware outlined above, only customer A had autonomous response mode enabled during their ransomware attack. The autonomous response capability of Darktrace helped the customer to minimize disruption to the business through multiple targeted actions on devices affected by ransomware.

One action carried out by Darktrace's Autonomous Respose was to block all on-going traffic from affected devices. In doing so, Darktrace effectively shuts down communications between devices affected by Akira and the malicious infrastructure used by threat actors, preventing the spread of data on the client network or threat actor payloads.

Another crucial response action applied on this customer’s network was combat Akira was to “Enforce a Pattern of Life” on affected devices. This action is designed to prevent devices from performing any activity that would constitute a deviation from their expected behavior, while allowing them to continue their ‘usual’ business operations without causing any disruption.

While the initial intrusion of the attack on customer A’s network likely fell outside of the scope of Darktrace’s visibility, Darktrace was able to minimize the disruption caused by Akira, containing the ransomware and allowing the customer to further investigate and remediate.

Darktrace Autonomous Response model breaches:

  • Antigena / Network / External Threat / Antigena Ransomware Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / External Threat / Antigena File then New Outbound Block
  • Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Block
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network /Insider Threat /Antigena SMB Enumeration Block

Conclusion

The impact of cyber attacks

Novel ransomware strains like Akira Ransomware present a significant challenge to security teams across the globe due to the constant evolution of attack methods and tactics, making it huge a challenge for security teams to stay up to date with the most current threat intelligence.  

Therefore, it is paramount for organizations to adopt a technology designed around an intelligent decision maker able to identify unusual activity that could be indicative of a ransomware attack without depending solely on rules, signatures, or statistic lists of malicious IoCs.

Importance of AI-powered cybersecurity solutions

Darktrace identified Akira ransomware at every stage of the attack’s kill chain on multiple customer networks, even when threat actors were utilizing seemingly legitimate services (or spoofed versions of them) to carry out malicious activity. While this may have gone unnoticed by traditional security tools, Darktrace’s anomaly-based detection enabled it to recognize malicious activity for what it was. When enabled in autonomous response mode, Darktrace is able to follow up initial detections with machine-speed preventative actions to stop the spread of ransomware and minimize the damage caused to customer networks.  

There is no silver bullet to defend against novel cyber-attacks, however Darktrace’s anomaly-based approach to threat detection and autonomous response capabilities are uniquely placed to detect and respond to cyber disruption without latency.

Credit to: Manoel Kadja, Cyber Analyst, Nahisha Nobregas, SOC Analyst.

Appendices

IOC - Type - Description/Confidence

202.175.136[.]197 - External destination IP -Incoming RDP Connection

api.playanext[.]com - External hostname - Possible RDP Host

.akira - File Extension - Akira Ransomware Extension

akira_readme.txt - Text File - Akira Ransom Note

AnyDesk/7.1.11 - User Agent -AnyDesk User Agent

MITRE ATT&CK Mapping

Tactic & Technique

DISCOVERY

T1083 - File and Directory Discovery

T1046 - Network Service Scanning

T1135 - Network Share Discovery

RECONNAISSANCE

T1595.002 - Vulnerability Scanning

CREDENTIAL ACCESS, COLLECTION

T1557.001 - LLMNR/NBT-NS Poisoning and SMB Relay

DEFENSE EVASION, LATERAL MOVEMENT

T1550.002 - Pass the Hash

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078 - Valid Accounts

DEFENSE EVASION

T1006 - Direct Volume Access

LATERAL MOVEMENT

T1563.002 - RDP Hijacking

T1021.001 - Remote Desktop Protocol

T1080 - Taint Shared Content

T1021.002 - SMB/Windows Admin Shares

INITIAL ACCESS

T1190 - Exploit Public-Facing Application

T1199 - Trusted Relationship

PERSISTENCE, INITIAL ACCESS

T1133 - External Remote Services

PERSISTENCE

T1505.003 - Web Shell

IMPACT

T1486 - Data Encrypted for Impact

References

[1] https://www.bleepingcomputer.com/news/security/meet-akira-a-new-ransomware-operation-targeting-the-enterprise/

[2] https://www.civilsdaily.com/news/cert-in-warns-against-akira-ransomware/#:~:text=Spread%20Methods%3A%20Akira%20ransomware%20is,Desktop%20connections%20to%20infiltrate%20systems

[3] https://hybrid-analysis.com/sample/0ee9baef94c80647eed30fa463447f000ec1f50a49eecfb71df277a2ca1fe4db?environmentId=100

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Manoel Kadja
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

AI

/

March 18, 2025

Survey findings: How is AI Impacting the SOC?

Default blog imageDefault blog image

There’s no question that AI is already impacting the SOC – augmenting, assisting, and filling the gaps left by staff and skills shortages. We surveyed over 1,500 cybersecurity professionals from around the world to uncover their attitudes to AI cybersecurity in 2025. Our findings revealed striking trends in how AI is changing the way security leaders think about hiring and SOC transformation. Download the full report for the big picture, available now.

Download the full report to explore these findings in depth

The AI-human conundrum

Let’s start with some context. As the cybersecurity sector has rapidly evolved to integrate AI into all elements of cyber defense, the pace of technological advancement is outstripping the development of necessary skills. Given the ongoing challenges in security operations, such as employee burnout, high turnover rates, and talent shortages, recruiting personnel to bridge these skills gaps remains an immense challenge in today’s landscape.

But here, our main findings on this topic seem to contradict each other.

There’s no question over the impact of AI-powered threats – nearly three-quarters (74%) agree that AI-powered threats now pose a significant challenge for their organization.  

When we look at how security leaders are defending against AI-powered threats, over 3 out of 5 (62%) see insufficient personnel to manage tools and alerts as the biggest barrier.  

Yet at the same time, increasing cyber security staff is at the bottom of the priority list for survey participants, with only 11% planning to increase cybersecurity staff in 2025 – less than in 2024. What 64% of stakeholders are committed to, however, is adding new AI-powered tools onto their existing security stacks.

The conclusion? Due to pressures around hiring, defensive AI is becoming integral to the SOC as a means of augmenting understaffed teams.

How is AI plugging skills shortages in the SOC?

As explored in our recent white paper, the CISO’s Guide to Navigating the Cybersecurity Skills Shortage, 71% of organizations report unfilled cybersecurity positions, leading to the estimation that less than 10% of alerts are thoroughly vetted. In this scenario, AI has become an essential multiplier to relieve the burden on security teams.

95% of respondents agree that AI-powered solutions can significantly improve the speed and efficiency of their defenses. But how?

The area security leaders expect defensive AI to have the biggest impact is on improving threat detection, followed by autonomous response to threats and identifying exploitable vulnerabilities.

Interestingly, the areas that participants ranked less highly (reducing alert fatigue and running phishing simulation), are the tasks that AI already does well and can therefore be used already to relieve the burden of manual, repetitive work on the SOC.

Different perspectives from different sides of the SOC

CISOs and SecOps teams aren’t necessarily aligned on the AI defense question – while CISOs tend to see it as a strategic game-changer, SecOps teams on the front lines may be more sceptical, wary of its real-world reliability and integration into workflows.  

From the data, we see that while less than a quarter of execs doubt that AI-powered solutions will block and automatically respond to AI threats, about half of SecOps aren’t convinced. And only 17% of CISOs lack confidence in the ability of their teams to implement and use AI-powered solutions, whereas over 40% those in the team doubt their own ability to do so.

This gap feeds into the enthusiasm that executives share about adding AI-driven tools into the stack, while day-to-day users of the tools are more interested in improving security awareness training and improving cybersecurity tool integration.

Levels of AI understanding in the SOC

AI is only as powerful as the people who use it, and levels of AI expertise in the SOC can make or break its real-world impact. If security leaders want to unlock AI’s full potential, they must bridge the knowledge gap—ensuring teams understand not just the different types of AI, but where it can be applied for maximum value.

Only 42% of security professionals are confident that they fully understand all the types of AI in their organization’s security stack.

This data varies between job roles – executives report higher levels of understanding (60% say they know exactly which types of AI are being used) than participants in other roles. Despite having a working knowledge of using the tools day-to-day, SecOps practitioners were more likely to report having a “reasonable understanding” of the types of AI in use in their organization (42%).  

Whether this reflects a general confidence in executives rather than technical proficiency it’s hard to say, but it speaks to the importance of AI-human collaboration – introducing AI tools for cybersecurity to plug the gaps in human teams will only be effective if security professionals are supported with the correct education and training.  

Download the full report to explore these findings in depth

The full report for Darktrace’s State of AI Cybersecurity is out now. Download the paper to dig deeper into these trends, and see how results differ by industry, region, organization size, and job title.  

Continue reading
About the author
The Darktrace Community

Blog

/

Network

/

March 18, 2025

Darktrace's Detection of State-Linked ShadowPad Malware

Default blog imageDefault blog image

An integral part of cybersecurity is anomaly detection, which involves identifying unusual patterns or behaviors in network traffic that could indicate malicious activity, such as a cyber-based intrusion. However, attribution remains one of the ever present challenges in cybersecurity. Attribution involves the process of accurately identifying and tracing the source to a specific threat actor(s).

Given the complexity of digital networks and the sophistication of attackers who often use proxies or other methods to disguise their origin, pinpointing the exact source of a cyberattack is an arduous task. Threat actors can use proxy servers, botnets, sophisticated techniques, false flags, etc. Darktrace’s strategy is rooted in the belief that identifying behavioral anomalies is crucial for identifying both known and novel threat actor campaigns.

The ShadowPad cluster

Between July 2024 and November 2024, Darktrace observed a cluster of activity threads sharing notable similarities. The threads began with a malicious actor using compromised user credentials to log in to the target organization's Check Point Remote Access virtual private network (VPN) from an attacker-controlled, remote device named 'DESKTOP-O82ILGG'.  In one case, the IP from which the initial login was carried out was observed to be the ExpressVPN IP address, 194.5.83[.]25. After logging in, the actor gained access to service account credentials, likely via exploitation of an information disclosure vulnerability affecting Check Point Security Gateway devices. Recent reporting suggests this could represent exploitation of CVE-2024-24919 [27,28]. The actor then used these compromised service account credentials to move laterally over RDP and SMB, with files related to the modular backdoor, ShadowPad, being delivered to the  ‘C:\PerfLogs\’ directory of targeted internal systems. ShadowPad was seen communicating with its command-and-control (C2) infrastructure, 158.247.199[.]185 (dscriy.chtq[.]net), via both HTTPS traffic and DNS tunneling, with subdomains of the domain ‘cybaq.chtq[.]net’ being used in the compromised devices’ TXT DNS queries.

Darktrace’s Advanced Search data showing the VPN-connected device initiating RDP connections to a domain controller (DC). The device subsequently distributes likely ShadowPad-related payloads and makes DRSGetNCChanges requests to a second DC.
Figure 1: Darktrace’s Advanced Search data showing the VPN-connected device initiating RDP connections to a domain controller (DC). The device subsequently distributes likely ShadowPad-related payloads and makes DRSGetNCChanges requests to a second DC.
Event Log data showing a DC making DNS queries for subdomains of ‘cbaq.chtq[.]net’ to 158.247.199[.]185 after receiving SMB and RDP connections from the VPN-connected device, DESKTOP-O82ILGG.
Figure 2: Event Log data showing a DC making DNS queries for subdomains of ‘cbaq.chtq[.]net’ to 158.247.199[.]185 after receiving SMB and RDP connections from the VPN-connected device, DESKTOP-O82ILGG.

Darktrace observed these ShadowPad activity threads within the networks of European-based customers in the manufacturing and financial sectors.  One of these intrusions was followed a few months later by likely state-sponsored espionage activity, as detailed in the investigation of the year in Darktrace’s Annual Threat Report 2024.

Related ShadowPad activity

Additional cases of ShadowPad were observed across Darktrace’s customer base in 2024. In some cases, common C2 infrastructure with the cluster discussed above was observed, with dscriy.chtq[.]net and cybaq.chtq[.]net both involved; however, no other common features were identified. These ShadowPad infections were observed between April and November 2024, with customers across multiple regions and sectors affected.  Darktrace’s observations align with multiple other public reports that fit the timeframe of this campaign.

Darktrace has also observed other cases of ShadowPad without common infrastructure since September 2024, suggesting the use of this tool by additional threat actors.

The data theft thread

One of the Darktrace customers impacted by the ShadowPad cluster highlighted above was a European manufacturer. A distinct thread of activity occurred within this organization’s network several months after the ShadowPad intrusion, in October 2024.

The thread involved the internal distribution of highly masqueraded executable files via Sever Message Block (SMB) and WMI (Windows Management Instrumentation), the targeted collection of sensitive information from an internal server, and the exfiltration of collected information to a web of likely compromised sites. This observed thread of activity, therefore, consisted of three phrases: lateral movement, collection, and exfiltration.

The lateral movement phase began when an internal user device used an administrative credential to distribute files named ‘ProgramData\Oracle\java.log’ and 'ProgramData\Oracle\duxwfnfo' to the c$ share on another internal system.  

Darktrace model alert highlighting an SMB write of a file named ‘ProgramData\Oracle\java.log’ to the c$ share on another device.
Figure 3: Darktrace model alert highlighting an SMB write of a file named ‘ProgramData\Oracle\java.log’ to the c$ share on another device.

Over the next few days, Darktrace detected several other internal systems using administrative credentials to upload files with the following names to the c$ share on internal systems:

ProgramData\Adobe\ARM\webservices.dll

ProgramData\Adobe\ARM\wksprt.exe

ProgramData\Oracle\Java\wksprt.exe

ProgramData\Oracle\Java\webservices.dll

ProgramData\Microsoft\DRM\wksprt.exe

ProgramData\Microsoft\DRM\webservices.dll

ProgramData\Abletech\Client\webservices.dll

ProgramData\Abletech\Client\client.exe

ProgramData\Adobe\ARM\rzrmxrwfvp

ProgramData\3Dconnexion\3DxWare\3DxWare.exe

ProgramData\3Dconnexion\3DxWare\webservices.dll

ProgramData\IDMComp\UltraCompare\updater.exe

ProgramData\IDMComp\UltraCompare\webservices.dll

ProgramData\IDMComp\UltraCompare\imtrqjsaqmm

Cyber AI Analyst highlighting an SMB write of a file named ‘ProgramData\Adobe\ARM\webservices.dll’ to the c$ share on an internal system.
Figure 4: Cyber AI Analyst highlighting an SMB write of a file named ‘ProgramData\Adobe\ARM\webservices.dll’ to the c$ share on an internal system.

The threat actor appears to have abused the Microsoft RPC (MS-RPC) service, WMI, to execute distributed payloads, as evidenced by the ExecMethod requests to the IWbemServices RPC interface which immediately followed devices’ SMB uploads.  

Cyber AI Analyst data highlighting a thread of activity starting with an SMB data upload followed by ExecMethod requests.
Figure 5: Cyber AI Analyst data highlighting a thread of activity starting with an SMB data upload followed by ExecMethod requests.

Several of the devices involved in these lateral movement activities, both on the source and destination side, were subsequently seen using administrative credentials to download tens of GBs of sensitive data over SMB from a specially selected server.  The data gathering stage of the threat sequence indicates that the threat actor had a comprehensive understanding of the organization’s system architecture and had precise objectives for the information they sought to extract.

Immediately after collecting data from the targeted server, devices went on to exfiltrate stolen data to multiple sites. Several other likely compromised sites appear to have been used as general C2 infrastructure for this intrusion activity. The sites used by the threat actor for C2 and data exfiltration purport to be sites for companies offering a variety of service, ranging from consultancy to web design.

Screenshot of one of the likely compromised sites used in the intrusion. 
Figure 6: Screenshot of one of the likely compromised sites used in the intrusion.

At least 16 sites were identified as being likely data exfiltration or C2 sites used by this threat actor in their operation against this organization. The fact that the actor had such a wide web of compromised sites at their disposal suggests that they were well-resourced and highly prepared.  

Darktrace model alert highlighting an internal device slowly exfiltrating data to the external endpoint, yasuconsulting[.]com.
Figure 7: Darktrace model alert highlighting an internal device slowly exfiltrating data to the external endpoint, yasuconsulting[.]com.
Darktrace model alert highlighting an internal device downloading nearly 1 GB of data from an internal system just before uploading a similar volume of data to another suspicious endpoint, www.tunemmuhendislik[.]com    
Figure 8: Darktrace model alert highlighting an internal device downloading nearly 1 GB of data from an internal system just before uploading a similar volume of data to another suspicious endpoint, www.tunemmuhendislik[.]com  

Cyber AI Analyst spotlight

Cyber AI Analyst identifying and piecing together the various steps of a ShadowPad intrusion.
Figure 9: Cyber AI Analyst identifying and piecing together the various steps of a ShadowPad intrusion.  
Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.
Figure 10: Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.

As shown in the above figures, Cyber AI Analyst’s ability to thread together the different steps of these attack chains are worth highlighting.

In the ShadowPad attack chains, Cyber AI Analyst was able to identify SMB writes from the VPN subnet to the DC, and the C2 connections from the DC. It was also able to weave together this activity into a single thread representing the attacker’s progression.

Similarly, in the data exfiltration attack chain, Cyber AI Analyst identified and connected multiple types of lateral movement over SMB and WMI and external C2 communication to various external endpoints, linking them in a single, connected incident.

These Cyber AI Analyst actions enabled a quicker understanding of the threat actor sequence of events and, in some cases, faster containment.

Attribution puzzle

Publicly shared research into ShadowPad indicates that it is predominantly used as a backdoor in People’s Republic of China (PRC)-sponsored espionage operations [5][6][7][8][9][10]. Most publicly reported intrusions involving ShadowPad  are attributed to the China-based threat actor, APT41 [11][12]. Furthermore, Google Threat Intelligence Group (GTIG) recently shared their assessment that ShadowPad usage is restricted to clusters associated with APT41 [13]. Interestingly, however, there have also been public reports of ShadowPad usage in unattributed intrusions [5].

The data theft activity that later occurred in the same Darktrace customer network as one of these ShadowPad compromises appeared to be the targeted collection and exfiltration of sensitive data. Such an objective indicates the activity may have been part of a state-sponsored operation. The tactics, techniques, and procedures (TTPs), artifacts, and C2 infrastructure observed in the data theft thread appear to resemble activity seen in previous Democratic People’s Republic of Korea (DPRK)-linked intrusion activities [15] [16] [17] [18] [19].

The distribution of payloads to the following directory locations appears to be a relatively common behavior in DPRK-sponsored intrusions.

Observed examples:

C:\ProgramData\Oracle\Java\  

C:\ProgramData\Adobe\ARM\  

C:\ProgramData\Microsoft\DRM\  

C:\ProgramData\Abletech\Client\  

C:\ProgramData\IDMComp\UltraCompare\  

C:\ProgramData\3Dconnexion\3DxWare\

Additionally, the likely compromised websites observed in the data theft thread, along with some of the target URI patterns seen in the C2 communications to these sites, resemble those seen in previously reported DPRK-linked intrusion activities.

No clear evidence was found to link the ShadowPad compromise to the subsequent data theft activity that was observed on the network of the manufacturing customer. It should be noted, however, that no clear signs of initial access were found for the data theft thread – this could suggest the ShadowPad intrusion itself represents the initial point of entry that ultimately led to data exfiltration.

Motivation-wise, it seems plausible for the data theft thread to have been part of a DPRK-sponsored operation. DPRK is known to pursue targets that could potentially fulfil its national security goals and had been publicly reported as being active in months prior to this intrusion [21]. Furthermore, the timing of the data theft aligns with the ratification of the mutual defense treaty between DPRK and Russia and the subsequent accused activities [20].

Darktrace assesses with medium confidence that a nation-state, likely DPRK, was responsible, based on our investigation, the threat actor applied resources, patience, obfuscation, and evasiveness combined with external reporting, collaboration with the cyber community, assessing the attacker’s motivation and world geopolitical timeline, and undisclosed intelligence.

Conclusion

When state-linked cyber activity occurs within an organization’s environment, previously unseen C2 infrastructure and advanced evasion techniques will likely be used. State-linked cyber actors, through their resources and patience, are able to bypass most detection methods, leaving anomaly-based methods as a last line of defense.

Two threads of activity were observed within Darktrace’s customer base over the last year: The first operation involved the abuse of Check Point VPN credentials to log in remotely to organizations’ networks, followed by the distribution of ShadowPad to an internal domain controller. The second operation involved highly targeted data exfiltration from the network of one of the customers impacted by the previously mentioned ShadowPad activity.

Despite definitive attribution remaining unresolved, both the ShadowPad and data exfiltration activities were detected by Darktrace’s Self-Learning AI, with Cyber AI Analyst playing a significant role in identifying and piecing together the various steps of the intrusion activities.  

Credit to Sam Lister (R&D Detection Analyst), Emma Foulger (Principal Cyber Analyst), Nathaniel Jones (VP), and the Darktrace Threat Research team.

Appendices

Darktrace / NETWORK model alerts

User / New Admin Credentials on Client

Anomalous Connection / Unusual Admin SMB Session

Compliance / SMB Drive Write  

Device / Anomalous SMB Followed By Multiple Model Breaches

Anomalous File / Internal / Unusual SMB Script Write

User / New Admin Credentials on Client  

Anomalous Connection / Unusual Admin SMB Session

Compliance / SMB Drive Write

Device / Anomalous SMB Followed By Multiple Model Breaches

Anomalous File / Internal / Unusual SMB Script Write

Device / New or Uncommon WMI Activity

Unusual Activity / Internal Data Transfer

Anomalous Connection / Download and Upload

Anomalous Server Activity / Rare External from Server

Compromise / Beacon to Young Endpoint

Compromise / Agent Beacon (Short Period)

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Connection / POST to PHP on New External Host

Compromise / Sustained SSL or HTTP Increase

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Device / Multiple C2 Model Alerts

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Download and Upload

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Low and Slow Exfiltration

Anomalous Connection / Uncommon 1 GiB Outbound  

MITRE ATT&CK mapping

(Technique name – Tactic ID)

ShadowPad malware threads

Initial Access - Valid Accounts: Domain Accounts (T1078.002)

Initial Access - External Remote Services (T1133)

Privilege Escalation - Exploitation for Privilege Escalation (T1068)

Privilege Escalation - Valid Accounts: Default Accounts (T1078.001)

Defense Evasion - Masquerading: Match Legitimate Name or Location (T1036.005)

Lateral Movement - Remote Services: Remote Desktop Protocol (T1021.001)

Lateral Movement - Remote Services: SMB/Windows Admin Shares (T1021.002)

Command and Control - Proxy: Internal Proxy (T1090.001)

Command and Control - Application Layer Protocol: Web Protocols (T1071.001)

Command and Control - Encrypted Channel: Asymmetric Cryptography (T1573.002)

Command and Control - Application Layer Protocol: DNS (T1071.004)

Data theft thread

Resource Development - Compromise Infrastructure: Domains (T1584.001)

Privilege Escalation - Valid Accounts: Default Accounts (T1078.001)

Privilege Escalation - Valid Accounts: Domain Accounts (T1078.002)

Execution - Windows Management Instrumentation (T1047)

Defense Evasion - Masquerading: Match Legitimate Name or Location (T1036.005)

Defense Evasion - Obfuscated Files or Information (T1027)

Lateral Movement - Remote Services: SMB/Windows Admin Shares (T1021.002)

Collection - Data from Network Shared Drive (T1039)

Command and Control - Application Layer Protocol: Web Protocols (T1071.001)

Command and Control - Encrypted Channel: Asymmetric Cryptography (T1573.002)

Command and Control - Proxy: External Proxy (T1090.002)

Exfiltration - Exfiltration Over C2 Channel (T1041)

Exfiltration - Data Transfer Size Limits (T1030)

List of indicators of compromise (IoCs)

IP addresses and/or domain names (Mid-high confidence):

ShadowPad thread

- dscriy.chtq[.]net • 158.247.199[.]185 (endpoint of C2 comms)

- cybaq.chtq[.]net (domain name used for DNS tunneling)  

Data theft thread

- yasuconsulting[.]com (45.158.12[.]7)

- hobivan[.]net (94.73.151[.]72)

- mediostresbarbas.com[.]ar (75.102.23[.]3)

- mnmathleague[.]org (185.148.129[.]24)

- goldenborek[.]com (94.138.200[.]40)

- tunemmuhendislik[.]com (94.199.206[.]45)

- anvil.org[.]ph (67.209.121[.]137)

- partnerls[.]pl (5.187.53[.]50)

- angoramedikal[.]com (89.19.29[.]128)

- awork-designs[.]dk (78.46.20[.]225)

- digitweco[.]com (38.54.95[.]190)

- duepunti-studio[.]it (89.46.106[.]61)

- scgestor.com[.]br (108.181.92[.]71)

- lacapannadelsilenzio[.]it (86.107.36[.]15)

- lovetamagotchith[.]com (203.170.190[.]137)

- lieta[.]it (78.46.146[.]147)

File names (Mid-high confidence):

ShadowPad thread:

- perflogs\1.txt

- perflogs\AppLaunch.exe

- perflogs\F4A3E8BE.tmp

- perflogs\mscoree.dll

Data theft thread

- ProgramData\Oracle\java.log

- ProgramData\Oracle\duxwfnfo

- ProgramData\Adobe\ARM\webservices.dll

- ProgramData\Adobe\ARM\wksprt.exe

- ProgramData\Oracle\Java\wksprt.exe

- ProgramData\Oracle\Java\webservices.dll

- ProgramData\Microsoft\DRM\wksprt.exe

- ProgramData\Microsoft\DRM\webservices.dll

- ProgramData\Abletech\Client\webservices.dll

- ProgramData\Abletech\Client\client.exe

- ProgramData\Adobe\ARM\rzrmxrwfvp

- ProgramData\3Dconnexion\3DxWare\3DxWare.exe

- ProgramData\3Dconnexion\3DxWare\webservices.dll

- ProgramData\IDMComp\UltraCompare\updater.exe

- ProgramData\IDMComp\UltraCompare\webservices.dll

- ProgramData\IDMComp\UltraCompare\imtrqjsaqmm

- temp\HousecallLauncher64.exe

Attacker-controlled device hostname (Mid-high confidence)

- DESKTOP-O82ILGG

References  

[1] https://www.kaspersky.com/about/press-releases/shadowpad-how-attackers-hide-backdoor-in-software-used-by-hundreds-of-large-companies-around-the-world  

[2] https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/08/07172148/ShadowPad_technical_description_PDF.pdf

[3] https://blog.avast.com/new-investigations-in-ccleaner-incident-point-to-a-possible-third-stage-that-had-keylogger-capacities

[4] https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/

[5] https://assets.sentinelone.com/c/Shadowpad?x=P42eqA

[6] https://www.cyfirma.com/research/the-origins-of-apt-41-and-shadowpad-lineage/

[7] https://www.csoonline.com/article/572061/shadowpad-has-become-the-rat-of-choice-for-several-state-sponsored-chinese-apts.html

[8] https://global.ptsecurity.com/analytics/pt-esc-threat-intelligence/shadowpad-new-activity-from-the-winnti-group

[9] https://cymulate.com/threats/shadowpad-privately-sold-malware-espionage-tool/

[10] https://www.secureworks.com/research/shadowpad-malware-analysis

[11] https://blog.talosintelligence.com/chinese-hacking-group-apt41-compromised-taiwanese-government-affiliated-research-institute-with-shadowpad-and-cobaltstrike-2/

[12] https://hackerseye.net/all-blog-items/tails-from-the-shadow-apt-41-injecting-shadowpad-with-sideloading/

[13] https://cloud.google.com/blog/topics/threat-intelligence/scatterbrain-unmasking-poisonplug-obfuscator

[14] https://www.domaintools.com/wp-content/uploads/conceptualizing-a-continuum-of-cyber-threat-attribution.pdf

[15] https://www.nccgroup.com/es/research-blog/north-korea-s-lazarus-their-initial-access-trade-craft-using-social-media-and-social-engineering/  

[16] https://www.microsoft.com/en-us/security/blog/2021/01/28/zinc-attacks-against-security-researchers/

[17] https://www.microsoft.com/en-us/security/blog/2022/09/29/zinc-weaponizing-open-source-software/  

[18] https://www.welivesecurity.com/en/eset-research/lazarus-luring-employees-trojanized-coding-challenges-case-spanish-aerospace-company/  

[19] https://blogs.jpcert.or.jp/en/2021/01/Lazarus_malware2.html  

[20] https://usun.usmission.gov/joint-statement-on-the-unlawful-arms-transfer-by-the-democratic-peoples-republic-of-korea-to-russia/

[21] https://media.defense.gov/2024/Jul/25/2003510137/-1/-1/1/Joint-CSA-North-Korea-Cyber-Espionage-Advance-Military-Nuclear-Programs.PDF  

[22] https://kyivindependent.com/first-north-korean-troops-deployed-to-front-line-in-kursk-oblast-ukraines-military-intelligence-says/

[23] https://www.microsoft.com/en-us/security/blog/2024/12/04/frequent-freeloader-part-i-secret-blizzard-compromising-storm-0156-infrastructure-for-espionage/  

[24] https://www.microsoft.com/en-us/security/blog/2024/12/11/frequent-freeloader-part-ii-russian-actor-secret-blizzard-using-tools-of-other-groups-to-attack-ukraine/  

[25] https://www.sentinelone.com/labs/chamelgang-attacking-critical-infrastructure-with-ransomware/    

[26] https://thehackernews.com/2022/06/state-backed-hackers-using-ransomware.html/  

[27] https://blog.checkpoint.com/security/check-point-research-explains-shadow-pad-nailaolocker-and-its-protection/

[28] https://www.orangecyberdefense.com/global/blog/cert-news/meet-nailaolocker-a-ransomware-distributed-in-europe-by-shadowpad-and-plugx-backdoors

Continue reading
About the author
Sam Lister
SOC Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI