Blog
/

Inside the SOC

/
September 13, 2023

How Darktrace Stopped Akira Ransomware

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Sep 2023
Learn how Darktrace is uniquely placed to identify and contain the novel Akira ransomware strain, first observed in March 2023.

Introduction to Akira Ransomware

In the face of a seemingly never-ending production line of novel ransomware strains, security teams across the threat landscape are continuing to see a myriad of new variants and groups targeting their networks. Naturally, new strains and threat groups present unique challenges to organizations. The use of previously unseen tactics, techniques, and procedures (TTPs) means that threat actors can often completely bypass traditional rule and signature-based security solutions, thus rendering an organization’s digital environment vulnerable to attack.

What is Akira Ransomware?

One such example of a novel ransomware family is Akira, which was first observed in the wild in March 2023. Much like many other strains, Akira is known to target corporate networks worldwide, encrypting sensitive files and demanding huge sums of money to retrieve the data and stop it from being posted online [1].

Key characteristics of Akira Ransomware

  • Targeted Attacks: Focuses on specific industries and organizations, often targeting those with valuable data.
  • Double Extortion Tactics: Employs double extortion by encrypting data and threatening to release it publicly if the ransom is not paid.
  • Advanced Encryption: Utilizes sophisticated encryption algorithms to ensure that data recovery is impossible without the decryption key.
  • Custom Ransom Notes: Delivers personalized ransom notes tailored to the victim, often containing detailed instructions and specific payment demands.
  • Stealth Techniques: Uses advanced evasion techniques to avoid detection by security tools and to remain undetected for extended periods.
  • Fast Encryption Process: Known for its rapid encryption process, minimizing the time window for detection and response by the victim.
  • Frequent Updates: Regularly updates its malware to bypass the latest security defenses and to improve its effectiveness.
  • Professional Communication: Maintains professional and often polite communication with victims to facilitate ransom payments and decryption.

Darktrace AI capabilities detect Akira Ransomware

In late May 2023, Darktrace observed multiple instances of Akira ransomware affecting networks across its customer base. Thanks to its anomaly-based approach to threat detection, Darktrace successfully identified the novel ransomware attacks and provided full visibility over the cyber kill chain, from the initial compromise to the eventual file encryptions and ransom notes. In cases where Darktrace was enabled in autonomous response mode, these attacks were mitigated the early stages of the attack, thus minimizing any disruption or damage to customer networks.

Initial access and privileged escalation

Methods used by Akira ransomware for privileged escalation

The Akira ransomware group typically uses spear-phishing campaigns containing malicious downloads or links as their primary initial access vector; however, they have also been known to use Remote Desktop Protocol (RDP) brute-force attacks to access target networks [2].

While Darktrace did observe the early access activities that are detailed below, it is very likely that the actual initial intrusion happened prior to this, through targeted phishing attacks that fell outside of Darktrace’s purview. The first indicators of compromise (IoCs) that Darktrace observed on customer networks affected by Darktrace were typically unusual RDP sessions, and the use of compromised administrative credentials.

Darktrace detection of initial access and priviledged escalation

On one Darktrace customer’s network (customer A), Darktrace identified a highly privileged credential being used for the first time on an internal server on May 21, 2023. Around a week later, this server was observed establishing RDP connections with multiple internal destination devices via port 3389. Further investigation carried out by the customer revealed that this credential had indeed been compromised. On May 30, Darktrace detected another device scanning internal devices and repeatedly failing to authenticate via Kerberos.

As the customer had integrated Darktrace with Microsoft Defender, their security team received additional cyber threat intelligence from Microsoft which, coupled with the anomaly alerts provided by Darktrace, helped to further contextualize these anomalous events. One specific detail gleaned from this integration was that the anomalous scanning activity and failed authentication attempts were carried out using the compromised administrative credentials mentioned earlier.

By integrating Microsoft Defender with Darktrace, customers can efficiently close security gaps across their digital infrastructure. While Darktrace understands customer environments and provides valuable network-level insights, by integrating with Microsoft Defender, customers can further enrich these insights with endpoint-specific information and activity.

In another customer’s network (customer B), Darktrace detected a device, later observed writing a ransom note, receiving an unusual RDP connection from another internal device. The RDP cookie used during this activity was an administrative RDP cookie that appeared to have been compromised. This device was also observed making multiple connections to the domain, api.playanext[.]com, and using the user agent , AnyDesk/7.1.11, indicating the use of the AnyDesk remote desktop service.

Although this external domain does not appear directly related to Akira ransomware, open-source intelligence (OSINT) found associations with multiple malicious files, and it appeared to be associated with the AnyDesk user agent, AnyDesk/6.0.1 [3]. The connections to this endpoint likely represented the malicious use of AnyDesk to remotely control the customer’s device, rather than Akira command-and-control (C2) infrastructure or payloads. Alternatively, it could be indicative of a spoofing attempt in which the threat actor is attempting to masquerade as legitimate remote desktop service to remain undetected by security tools.

Around the same time, Darktrace observed many devices on customer B’s network making anomalous internal RDP connections and authenticating via Kerberos, NTLM, or SMB using the same administrative credential. These devices were later confirmed to be affected by Akira Ransomware.

Figure 1 shows how Darktrace detected one of those internal devices failing to login via SMB multiple times with a certain credential (indication of a possible SMB/NTLM brute force), before successfully accessing other internal devices via SMB, NTLM and RDP using the likely compromised administrative credential mentioned earlier.

Figure 1: Model Breach Event Log indicating unusual SMB, NTLM and RDP activity with different credentials detected which led to the Darktrace model breaches, "Unusual Admin RDP Session” and “Successful Admin Brute-Force Activity”.

Darktrace models observed for initial access and privilege escalation:

  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Anomalous Connection / Unusual Admin RDP Session
  • New Admin Credentials on Server
  • Possible SMB/NTLM Brute Force Indicator
  • Unusual Activity / Successful Admin Brute-Force Activity

Internal Reconnaissance and Lateral Movement

The next step Darktrace observed during Akira Ransomware attacks across the customer was internal reconnaissance and lateral movement.

How Akira Ransomware conducts internal reconnaissance

In another customer’s environment (customer C), after authenticating via NTLM using a compromised credential, a domain controller was observed accessing a large amount of SMB shares it had never previously accessed. Darktrace understood that this SMB activity represented a deviation in the device’s expected behavior and recognized that it could be indicative of SMB enumeration. Darktrace observed the device making at least 196 connections to 34 unique internal IPs via port 445. SMB actions read, write, and delete were observed during those connections. This domain controller was also one of many devices on the customer’s network that was received incoming connections from an external endpoint over port 3389 using the RDP protocol, indicating that the devices were likely being remotely controlled from outside the network. While there were no direct OSINT links with this endpoint and Akira ransomware, the domain controller in question was later confirmed to be compromised and played a key role in this phase of the attack.

Moreover, this represents the second IoC that Darktrace observed that had no obvious connection to Akira, likely indicating that Akira actors are establishing entirely new infrastructure to carry out their attacks, or even utilizing newly compromised legitimate infrastructure. As Darktrace adopts an anomaly-based approach to threat detection, it can recognize suspicious activity indicative of an emerging ransomware attack based on its unusualness, rather than having to rely on previously observed IoCs and lists of ‘known-bads’.

Darktrace further observed a flurry of activity related to lateral movement around this time, primarily via SMB writes of suspicious files to other internal destinations. One particular device on customer C’s network was detected transferring multiple executable (.exe) and script files to other internal devices via SMB.

Darktrace recognized that these transfers represented a deviation from the device’s normal SMB activity and may have indicated threat actors were attempting to compromise additional devices via the transfer of malicious software.

Figure 2: Advanced Search results showing 20 files associated with suspicious SMB write activity, amongst them executable files and dynamic link libraries (DLLs).

Darktrace DETECT models observed for internal reconnaissance and lateral movement:

  • Device / RDP Scan
  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Possible Share Enumeration Activity
  • Scanning of Multiple Devices (Cyber AI Analyst Incident)
  • Device / Possible SMB/NTLM Reconnaissance
  • Compliance / Incoming Remote Desktop
  • Compliance / Outgoing NTLM Request from DC
  • Unusual Activity / Internal Data Transfer
  • Security Integration / Lateral Movement and Integration Detection
  • Device / Anomalous SMB Followed By Multiple Model Breaches

Ransomware deployment

In the final phase of Akira ransomware attacks detected on Darktrace customer networks, Darktrace identified the file extension “.akira” being added after encryption to a variety of files on the affected network shares, as well as a ransom note titled “akira_readme.txt” being dropped on affected devices.

On customer A’s network, after nearly 9,000 login failures and 2,000 internal connection attempts indicative of scanning activity, one device was detected transferring suspicious files over SMB to other internal devices. The device was then observed connecting to another internal device via SMB and continuing suspicious file activity, such as appending files on network shares with the “.akira” extension, and performing suspicious writes to SMB shares on other internal devices.

Darktrace’s autonomous threat investigator, Cyber AI Analyst™, was able to analyze the multiple events related to this encryption activity and collate them into one AI Analyst incident, presenting a detailed and comprehensive summary of the entire incident within 10 minutes of Darktrace’s initial detection. Rather than simply viewing individual breaches as standalone activity, AI Analyst can identify the individual steps of an ongoing attack to provide complete visibility over emerging compromises and their kill chains. Not only does this bolster the network’s defenses, but the autonomous investigations carried out by AI Analyst also help to save the security team’s time and resources in triaging and monitoring ongoing incidents.

Figure 3: Darktrace Cyber AI Analyst incident correlated multiple model breaches together to show Akira ransomware encryption activity.

In addition to analyzing and compiling Darktrace model breaches, AI Analyst also leveraged the host-level insights provided by Microsoft Defender to enrich its investigation into the encryption event. By using the Security Integration model breaches, AI Analyst can retrieve timestamp and device details from a Defender alert and further investigate any unusual activity surrounding the alert to present a full picture of the suspicious activity.

In customer B’s environment, following the unusual RDP sessions and rare external connections using the AnyDesk user agent, an affected device was later observed writing around 2,000 files named "akira_readme.txt" to multiple internal SMB shares. This represented the malicious actor dropping ransom notes, containing the demands and extortion attempts of the actors.

Figure 4: Model Breach Event Log indicating the ransom note detected on May 12, 2023, which led to the Darktrace DETECT model breach, Anomalous Server Activity / Write to Network Accessible WebRoot.
Figure 5: Packet Capture (PCAP) demonstrating the Akira ransom note captured from the connection details seen in Figure 4.

As a result of this ongoing activity, an Enhanced Monitoring model breach, a high-fidelity detection model type that detects activities that are more likely to be indicative of compromise, was escalated to Darktrace’s Security Operations Center (SOC) who, in turn were able to further investigate and triage this ransomware activity. Customers who have subscribed to Darktrace’s Proactive Threat Notification (PTN) service would receive an alert from the SOC team, advising urgent follow up action.

Darktrace detection models observed during ransomware deployment:

  • Security Integration / Integration Ransomware Incident
  • Security Integration / High Severity Integration Detection
  • Security Integration / Integration Ransomware Detected
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Compliance / SMB Drive Write
  • Compromise / Ransomware / Suspicious SMB Activity (Proactive Threat Notification Alerted by the Darktrace SOC)
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous File / Internal / Unusual SMB Script Write
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Anomalous Server Activity /Write to Network Accessible WebRoot
  • Anomalous Server Activity /Write to Network Accessible WebRoot

Darktrace autonomous response neutralizes Akira Ransomware

When Darktrace is configured in autonomous response mode, it is able to follow up successful threat identifications with instant autonomous actions that stop malicious actors in their tracks and prevent them from achieving their end goals.

In the examples of Darktrace customers affected by Akira Ransomware outlined above, only customer A had autonomous response mode enabled during their ransomware attack. The autonomous response capability of Darktrace helped the customer to minimize disruption to the business through multiple targeted actions on devices affected by ransomware.

One action carried out by Darktrace's Autonomous Respose was to block all on-going traffic from affected devices. In doing so, Darktrace effectively shuts down communications between devices affected by Akira and the malicious infrastructure used by threat actors, preventing the spread of data on the client network or threat actor payloads.

Another crucial response action applied on this customer’s network was combat Akira was to “Enforce a Pattern of Life” on affected devices. This action is designed to prevent devices from performing any activity that would constitute a deviation from their expected behavior, while allowing them to continue their ‘usual’ business operations without causing any disruption.

While the initial intrusion of the attack on customer A’s network likely fell outside of the scope of Darktrace’s visibility, Darktrace was able to minimize the disruption caused by Akira, containing the ransomware and allowing the customer to further investigate and remediate.

Darktrace Autonomous Response model breaches:

  • Antigena / Network / External Threat / Antigena Ransomware Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / External Threat / Antigena File then New Outbound Block
  • Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Block
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network /Insider Threat /Antigena SMB Enumeration Block

Conclusion

The impact of cyber attacks

Novel ransomware strains like Akira Ransomware present a significant challenge to security teams across the globe due to the constant evolution of attack methods and tactics, making it huge a challenge for security teams to stay up to date with the most current threat intelligence.  

Therefore, it is paramount for organizations to adopt a technology designed around an intelligent decision maker able to identify unusual activity that could be indicative of a ransomware attack without depending solely on rules, signatures, or statistic lists of malicious IoCs.

Importance of AI-powered cybersecurity solutions

Darktrace identified Akira ransomware at every stage of the attack’s kill chain on multiple customer networks, even when threat actors were utilizing seemingly legitimate services (or spoofed versions of them) to carry out malicious activity. While this may have gone unnoticed by traditional security tools, Darktrace’s anomaly-based detection enabled it to recognize malicious activity for what it was. When enabled in autonomous response mode, Darktrace is able to follow up initial detections with machine-speed preventative actions to stop the spread of ransomware and minimize the damage caused to customer networks.  

There is no silver bullet to defend against novel cyber-attacks, however Darktrace’s anomaly-based approach to threat detection and autonomous response capabilities are uniquely placed to detect and respond to cyber disruption without latency.

Credit to: Manoel Kadja, Cyber Analyst, Nahisha Nobregas, SOC Analyst.

Appendices

IOC - Type - Description/Confidence

202.175.136[.]197 - External destination IP -Incoming RDP Connection

api.playanext[.]com - External hostname - Possible RDP Host

.akira - File Extension - Akira Ransomware Extension

akira_readme.txt - Text File - Akira Ransom Note

AnyDesk/7.1.11 - User Agent -AnyDesk User Agent

MITRE ATT&CK Mapping

Tactic & Technique

DISCOVERY

T1083 - File and Directory Discovery

T1046 - Network Service Scanning

T1135 - Network Share Discovery

RECONNAISSANCE

T1595.002 - Vulnerability Scanning

CREDENTIAL ACCESS, COLLECTION

T1557.001 - LLMNR/NBT-NS Poisoning and SMB Relay

DEFENSE EVASION, LATERAL MOVEMENT

T1550.002 - Pass the Hash

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078 - Valid Accounts

DEFENSE EVASION

T1006 - Direct Volume Access

LATERAL MOVEMENT

T1563.002 - RDP Hijacking

T1021.001 - Remote Desktop Protocol

T1080 - Taint Shared Content

T1021.002 - SMB/Windows Admin Shares

INITIAL ACCESS

T1190 - Exploit Public-Facing Application

T1199 - Trusted Relationship

PERSISTENCE, INITIAL ACCESS

T1133 - External Remote Services

PERSISTENCE

T1505.003 - Web Shell

IMPACT

T1486 - Data Encrypted for Impact

References

[1] https://www.bleepingcomputer.com/news/security/meet-akira-a-new-ransomware-operation-targeting-the-enterprise/

[2] https://www.civilsdaily.com/news/cert-in-warns-against-akira-ransomware/#:~:text=Spread%20Methods%3A%20Akira%20ransomware%20is,Desktop%20connections%20to%20infiltrate%20systems

[3] https://hybrid-analysis.com/sample/0ee9baef94c80647eed30fa463447f000ec1f50a49eecfb71df277a2ca1fe4db?environmentId=100

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Manoel Kadja
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article
Use cases
No items found.
PRODUCT SPOTLIGHT
No items found.
Core coverages
No items found.

More in this series

No items found.

Blog

/

September 6, 2024

/

Inside the SOC

Lifting the Fog: Darktrace’s Investigation into Fog Ransomware

Default blog imageDefault blog image

Introduction to Fog Ransomware

As ransomware attacks continue to be launched at an alarming rate, Darktrace’s Threat Research team has identified that familiar strains like Akira, LockBit, and BlackBasta remain among the most prevalent threats impacting its customers, as reported in the First 6: Half-Year Threat Report 2024. Despite efforts by law agencies, like dismantling the infrastructure of cybercriminals and shutting down their operations [2], these groups continue to adapt and evolve.

As such, it is unsurprising that new ransomware variants are regularly being created and launched to get round law enforcement agencies and increasingly adept security teams. One recent example of this is Fog ransomware.

What is Fog ransomware?

Fog ransomware is strain that first appeared in the wild in early May 2024 and has been observed actively using compromised virtual private network (VPN) credentials to gain access to organization networks in the education sector in the United States.

Darktrace's detection of Fog Ransomware

In June 2024, Darktrace observed instances of Fog ransomware across multiple customer environments. The shortest time observed from initial access to file encryption in these attacks was just 2 hours, underscoring the alarming speed with which these threat actors can achieve their objectives.

Darktrace identified key activities typical of a ransomware kill chain, including enumeration, lateral movement, encryption, and data exfiltration. In most cases, Darktrace was able to successfully halt the progression Fog attacks in their early stages by applying Autonomous Response actions such as quarantining affected devices and blocking suspicious external connections.

To effectively illustrate the typical kill chain of Fog ransomware, this blog focuses on customer environments that did not have Darktrace’s Autonomous Response enabled. In these cases, the attack progressed unchecked and reached its intended objectives until the customer received Darktrace’s alerts and intervened.

Darktrace’s Coverage of Fog Ransomware

Initial Intrusion

After actors had successfully gained initial access into customer networks by exploiting compromised VPN credentials, Darktrace observed a series of suspicious activities, including file shares, enumeration and extensive scanning. In one case, a compromised domain controller was detected making outgoing NTLM authentication attempts to another internal device, which was subsequently used to establish RDP connections to a Windows server running Hyper-V.

Given that the source was a domain controller, the attacker could potentially relay the NTLM hash to obtain a domain admin Kerberos Ticket Granting Ticket (TGT). Additionally, incoming NTLM authentication attempts could be triggered by tools like Responder, and NTLM hashes used to encrypt challenge response authentication could be abused by offline brute-force attacks.

Darktrace also observed the use of a new administrative credential on one affected device, indicating that malicious actors were likely using compromised privileged credentials to conduct relay attacks.

Establish Command-and-Control Communication (C2)

In many instances of Fog ransomware investigated by Darktrace’s Threat Research team, devices were observed making regular connections to the remote access tool AnyDesk. This was exemplified by consistent communication with the endpoint “download[.]anydesk[.]com” via the URI “/AnyDesk.exe”. In other cases, Darktrace identified the use of another remote management tool, namely SplashTop, on customer servers.

In ransomware attacks, threat actors often use such legitimate remote access tools to establish command-and-control (C2) communication. The use of such services not only complicates the identification of malicious activities but also enables attackers to leverage existing infrastructure, rather than having to implement their own.

Internal Reconnaissance

Affected devices were subsequently observed making an unusual number of failed internal connections to other internal locations over ports such as 80 (HTTP), 3389 (RDP), 139 (NetBIOS) and 445 (SMB). This pattern of activity strongly indicated reconnaissance scanning behavior within affected networks. A further investigation into these HTTP connections revealed the URIs “/nice ports”/Trinity.txt.bak”, commonly associated with the use of the Nmap attack and reconnaissance tool.

Simultaneously, some devices were observed engaging in SMB actions targeting the IPC$ share and the named pipe “srvsvc” on internal devices. Such activity aligns with the typical SMB enumeration tactics, whereby attackers query the list of services running on a remote host using a NULL session, a method often employed to gather information on network resources and vulnerabilities.

Lateral Movement

As attackers attempted to move laterally through affected networks, Darktrace observed suspicious RDP activity between infected devices. Multiple RDP connections were established to new clients, using devices as pivots to propagate deeper into the networks, Following this, devices on multiple networks exhibited a high volume of SMB read and write activity, with internal share drive file names being appended with the “.flocked” extension – a clear sign of ransomware encryption. Around the same time, multiple “readme.txt” files were detected being distributed across affected networks, which were later identified as ransom notes.

Further analysis of the ransom note revealed that it contained an introduction to the Fog ransomware group, a summary of the encryption activity that had been carried out, and detailed instructions on how to communicate with the attackers and pay the ransom.

Packet capture (PCAP) of the ransom note file titled “readme.txt”.
Figure 1: Packet capture (PCAP) of the ransom note file titled “readme.txt”.

Data Exfiltration

In one of the cases of Fog ransomware, Darktrace’s Threat Research team observed potential data exfiltration involving the transfer of internal files to an unusual endpoint associated with the MEGA file storage service, “gfs302n515[.]userstorage[.]mega[.]co[.]nz”.

This exfiltration attempt suggests the use of double extortion tactics, where threat actors not only encrypt victim’s data but also exfiltrate it to threaten public exposure unless a ransom is paid. This often increases pressure on organizations as they face the risk of both data loss and reputational damage caused by the release of sensitive information.

Darktrace’s Cyber AI Analyst autonomously investigated what initially appeared to be unrelated events, linking them together to build a full picture of the Fog ransomware attack for customers’ security teams. Specifically, on affected networks Cyber AI Analyst identified and correlated unusual scanning activities, SMB writes, and file appendages that ultimately suggested file encryption.

Cyber AI Analyst’s analysis of encryption activity on one customer network.
Figure 2: Cyber AI Analyst’s analysis of encryption activity on one customer network.
Figure 3: Cyber AI Analysts breakdown of the investigation process between the linked incident events on one customer network.

Conclusion

As novel and fast-moving ransomware variants like Fog persist across the threat landscape, the time taken for from initial compromise to encryption has significantly decreased due to the enhanced skill craft and advanced malware of threat actors. This trend particularly impacts organizations in the education sector, who often have less robust cyber defenses and significant periods of time during which infrastructure is left unmanned, and are therefore more vulnerable to quick-profit attacks.

Traditional security methods may fall short against these sophisticated attacks, where stealthy actors evade detection by human-managed teams and tools. In these scenarios Darktrace’s AI-driven product suite is able to quickly detect and respond to the initial signs of compromise through autonomous analysis of any unusual emerging activity.

When Darktrace’s Autonomous Response capability was active, it swiftly mitigated emerging Fog ransomware threats by quarantining devices exhibiting malicious behavior to contain the attack and blocking the exfiltration of sensitive data, thus preventing customers from falling victim to double extortion attempts.

Credit to Qing Hong Kwa (Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore) and Ryan Traill (Threat Content Lead

Appendices

Darktrace Model Detections:

- Anomalous Server Activity::Anomalous External Activity from Critical Network Device

- Anomalous Connection::SMB Enumeration

- Anomalous Connection::Suspicious Read Write Ratio and Unusual SMB

- Anomalous Connection::Uncommon 1 GiB Outbound

- Anomalous File::Internal::Additional Extension Appended to SMB File

- Compliance::Possible Cleartext LDAP Authentication

- Compliance::Remote Management Tool On Server

- Compliance::SMB Drive Write

- Compromise::Ransomware::SMB Reads then Writes with Additional Extensions

- Compromise::Ransomware::Possible Ransom Note Write

- Compromise::Ransomware::Ransom or Offensive Words Written to SMB

- Device::Attack and Recon Tools

- User::New Admin Credentials on Client

- Unusual Activity::Anomalous SMB Move & Write

- Unusual Activity::Internal Data Transfer

- Unusual Activity::Unusual External Data Transfer

- Unusual Activity::Enhanced Unusual External Data Transfer

Darktrace Model Detections:

- Antigena::Network::External Threat::Antigena Suspicious File Block

- Antigena::Network::External Threat::Antigena Suspicious File Pattern of Life Block

- Antigena::Network::External Threat::Antigena File then New Outbound Block

- Antigena::Network::External Threat::Antigena Ransomware Block

- Antigena::Network::External Threat::Antigena Suspicious Activity Block

- Antigena::Network::Significant Anomaly::Antigena Controlled and Model Breach

- Antigena::Network::Significant Anomaly::Antigena Enhanced Monitoring from Server Block

- Antigena::Network::Significant Anomaly::Antigena Breaches Over Time Block

- Antigena::Network::Significant Anomaly::Antigena Significant Server Anomaly Block

- Antigena::Network::Insider Threat::Antigena Internal Data Transfer Block

- Antigena::Network::Insider Threat::Antigena Large Data Volume Outbound Block

- Antigena::Network::Insider Threat::Antigena SMB Enumeration Block

AI Analyst Incident Coverage

- Encryption of Files over SMB

- Scanning of Multiple Devices

- SMB Writes of Suspicious Files

MITRE ATT&CK Mapping

(Technique Name) – (Tactic) – (ID) – (Sub-Technique of)

Data Obfuscation - COMMAND AND CONTROL - T1001

Remote System Discovery - DISCOVERY - T1018

SMB/Windows Admin Shares - LATERAL MOVEMENT - T1021.002 - T1021

Rename System Utilities - DEFENSE EVASION - T1036.003 - T1036

Network Sniffing - CREDENTIAL ACCESS, DISCOVERY - T1040

Exfiltration Over C2 Channel - EXFILTRATION - T1041

Data Staged - COLLECTION - T1074

Valid Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078

Taint Shared Content - LATERAL MOVEMENT - T1080

File and Directory Discovery - DISCOVERY - T1083

Email Collection - COLLECTION - T1114

Automated Collection - COLLECTION - T1119

Network Share Discovery - DISCOVERY - T1135

Exploit Public-Facing Application - INITIAL ACCESS - T1190

Hardware Additions - INITIAL ACCESS - T1200

Remote Access Software - COMMAND AND CONTROL - T1219

Data Encrypted for Impact - IMPACT - T1486

Pass the Hash - DEFENSE EVASION, LATERAL MOVEMENT - T1550.002 - T1550

Exfiltration to Cloud Storage - EXFILTRATION - T1567.002 - T1567

Lateral Tool Transfer - LATERAL MOVEMENT - T1570

List of Indicators of Compromise (IoCs)

IoC – Type – Description

/AnyDesk.exe - Executable File - Remote Access Management Tool

gfs302n515[.]userstorage[.]mega[.]co[.]nz- Domain - Exfiltration Domain

*.flocked - Filename Extension - Fog Ransomware Extension

readme.txt - Text File - Fog Ransom Note

xql562evsy7njcsngacphcerzjfecwotdkobn3m4uxu2gtqh26newid[.]onion - Onion Domain - Threat Actor’s Communication Channel

References

[1] https://arcticwolf.com/resources/blog/lost-in-the-fog-a-new-ransomware-threat/

[2] https://intel471.com/blog/assessing-the-disruptions-of-ransomware-gangs

[3] https://www.pcrisk.com/removal-guides/30167-fog-ransomware

Continue reading
About the author
Ryan Traill
Threat Content Lead

Blog

/

September 11, 2024

/

Inside the SOC

Decrypting the Matrix: How Darktrace Uncovered a KOK08 Ransomware Attack

Default blog imageDefault blog image

What is Matrix Ransomware?

Matrix is a ransomware family that first emerged in December 2016, mainly targeting small to medium-sized organizations across the globe in countries including the US, Belgium, Germany, Canada and the UK [1]. Although the reported number of Matrix ransomware attacks has remained relatively low in recent years, it has demonstrated ongoing development and gradual improvements to its tactics, techniques, and procedures (TTPs).

How does Matrix Ransomware work?

In earlier versions, Matrix utilized spam email campaigns, exploited Windows shortcuts, and deployed RIG exploit kits to gain initial access to target networks. However, as the threat landscape changed so did Matrix’s approach. Since 2018, Matrix has primarily shifted to brute-force attacks, targeting weak credentials on Windows machines accessible through firewalls. Attackers often exploit common and default credentials, such as “admin”, “password123”, or other unchanged default settings, particularly on systems with Remote Desktop Protocol (RDP) enabled [2] [3].

Darktrace observation of Matrix Ransomware tactics

In May 2024, Darktrace observed an instance of KOK08 ransomware, a specific strain of the Matrix ransomware family, in which some of these ongoing developments and evolutions were observed. Darktrace detected activity indicative of internal reconnaissance, lateral movement, data encryption and exfiltration, with the affected customer later confirming that credentials used for Virtual Private Network (VPN) access had been compromised and used as the initial attack vector.

Another significant tactic observed by Darktrace in this case was the exfiltration of data following encryption, a hallmark of double extortion. This method is employed by attacks to increase pressure on the targeted organization, demanding ransom not only for the decryption of files but also threatening to release the stolen data if their demands are not met. These stakes are particularly high for public sector entities, like the customer in question, as the exposure of sensitive information could result in severe reputational damage and legal consequences, making the pressure to comply even more intense.

Darktrace’s Coverage of Matrix Ransomware

Internal Reconnaissance and Lateral Movement

On May 23, 2024, Darktrace / NETWORK identified a device on the customer’s network making an unusually large number of internal connections to multiple internal devices. Darktrace recognized that this unusual behavior was indicative of internal scanning activity. The connectivity observed around the time of the incident indicated that the Nmap attack and reconnaissance tool was used, as evidenced by the presence of the URI “/nice ports, /Trinity.txt.bak”.

Although Nmap is a crucial tool for legitimate network administration and troubleshooting, it can also be exploited by malicious actors during the reconnaissance phase of the attack. This is a prime example of a ‘living off the land’ (LOTL) technique, where attackers use legitimate, pre-installed tools to carry out their objectives covertly. Despite this, Darktrace’s Self-Learning AI had been continually monitoring devices across the customers network and was able to identify this activity as a deviation from the device’s typical behavior patterns.

The ‘Device / Attack and Recon Tools’ model alert identifying the active usage of the attack and recon tool, Nmap.
Figure 1: The ‘Device / Attack and Recon Tools’ model alert identifying the active usage of the attack and recon tool, Nmap.
Figure 2: Cyber AI Analyst Investigation into the ‘Scanning of Multiple Devices' incident.

Darktrace subsequently observed a significant number of connection attempts using the RDP protocol on port 3389. As RDP typically requires authentication, multiple connection attempts like this often suggest the use of incorrect username and password combinations.

Given the unusual nature of the observed activity, Darktrace’s Autonomous Response capability would typically have intervened, taking actions such as blocking affected devices from making internal connections on a specific port or restricting connections to a particular device. However, Darktrace was not configured to take autonomous action on the customer’s network, and thus their security team would have had to manually apply any mitigative measures.

Later that day, the same device was observed attempting to connect to another internal location via port 445. This included binding to the server service (srvsvc) endpoint via DCE/RPC with the “NetrShareEnum” operation, which was likely being used to list available SMB shares on a device.

Over the following two days, it became clear that the attackers had compromised additional devices and were actively engaging in lateral movement. Darktrace detected two more devices conducting network scans using Nmap, while other devices were observed making extensive WMI requests to internal systems over DCE/RPC. Darktrace recognized that this activity likely represented a coordinated effort to map the customer’s network and identity further internal devices for exploitation.

Beyond identifying the individual events of the reconnaissance and lateral movement phases of this attack’s kill chain, Darktrace’s Cyber AI Analyst was able to connect and consolidate these activities into one comprehensive incident. This not only provided the customer with an overview of the attack, but also enabled them to track the attack’s progression with clarity.

Furthermore, Cyber AI Analyst added additional incidents and affected devices to the investigation in real-time as the attack unfolded. This dynamic capability ensured that the customer was always informed of the full scope of the attack. The streamlined incident consolidation and real-time updates saved valuable time and resources, enabling quicker, more informed decision-making during a critical response window.

Cyber AI Analyst timeline showing an overview of the scanning related activity, while also connecting the suspicious lateral movement activity.
Figure 3: Cyber AI Analyst timeline showing an overview of the scanning related activity, while also connecting the suspicious lateral movement activity.

File Encryption

On May 28, 2024, another device was observed connecting to another internal location over the SMB filesharing protocol and accessing multiple files with a suspicious extension that had never previously been observed on the network. This activity was a clear sign of ransomware infection, with the ransomware altering the files by adding the “KOK08@QQ[.]COM” email address at the beginning of the filename, followed by a specific pattern of characters. The string consistently followed a pattern of 8 characters (a mix of uppercase and lowercase letters and numbers), followed by a dash, and then another 8 characters. After this, the “.KOK08” extension was appended to each file [1][4].

Cyber AI Analyst Investigation Process for the 'Possible Encryption of Files over SMB' incident.
Figure 4: Cyber AI Analyst Investigation Process for the 'Possible Encryption of Files over SMB' incident.
Cyber AI Analyst Encryption Information identifying the ransomware encryption activity,
Figure 5: Cyber AI Analyst Encryption Information identifying the ransomware encryption activity.

Data Exfiltration

Shortly after the encryption event, another internal device on the network was observed uploading an unusually large amount of data to the rare external endpoint 38.91.107[.]81 via SSH. The timing of this activity strongly suggests that this exfiltration was part of a double extortion strategy. In this scenario, the attacker not only encrypts the target’s files but also threatens to leak the stolen data unless a ransom is paid, leveraging both the need for decryption and the fear of data exposure to maximize pressure on the victim.

The full impact of this double extortion tactic became evident around two months later when a ransomware group claimed possession of the stolen data and threatened to release it publicly. This development suggested that the initial Matrix ransomware attackers may have sold the exfiltrated data to a different group, which was now attempting to monetize it further, highlighting the ongoing risk and potential for exploitation long after the initial attack.

External data being transferred from one of the involved internal devices during and after the encryption took place.
Figure 6: External data being transferred from one of the involved internal devices during and after the encryption took place.

Unfortunately, because Darktrace’s Autonomous Response capability was not enabled at the time, the ransomware attack was able to escalate to the point of data encryption and exfiltration. However, Darktrace’s Security Operations Center (SOC) was still able to support the customer through the Security Operations Support service. This allowed the customer to engage directly with Darktrace’s expert analysts, who provided essential guidance for triaging and investigating the incident. The support from Darktrace’s SOC team not only ensured the customer had the necessary information to remediate the attack but also expedited the entire process, allowing their security team to quickly address the issue without diverting significant resources to the investigation.

Conclusion

In this Matrix ransomware attack on a Darktrace customer in the public sector, malicious actors demonstrated an elevated level of sophistication by leveraging compromised VPN credentials to gain initial access to the target network. Once inside, they exploited trusted tools like Nmap for network scanning and lateral movement to infiltrate deeper into the customer’s environment. The culmination of their efforts was the encryption of files, followed by data exfiltration via SSH, suggesting that Matrix actors were employing double extortion tactics where the attackers not only demanded a ransom for decryption but also threatened to leak sensitive information.

Despite the absence of Darktrace’s Autonomous Response at the time, its anomaly-based approach played a crucial role in detecting the subtle anomalies in device behavior across the network that signalled the compromise, even when malicious activity was disguised as legitimate.  By analyzing these deviations, Darktrace’s Cyber AI Analyst was able to identify and correlate the various stages of the Matrix ransomware attack, constructing a detailed timeline. This enabled the customer to fully understand the extent of the compromise and equipped them with the insights needed to effectively remediate the attack.

Credit to Christina Kreza (Cyber Analyst) and Ryan Traill (Threat Content Lead)

Appendices

Darktrace Model Detections

·       Device / Network Scan

·       Device / Attack and Recon Tools

·       Device / Possible SMB/NTLM Brute Force

·       Device / Suspicious SMB Scanning Activity

·       Device / New or Uncommon SMB Named Pipe

·       Device / Initial Breach Chain Compromise

·       Device / Multiple Lateral Movement Model Breaches

·       Device / Large Number of Model Breaches from Critical Network Device

·       Device / Multiple C2 Model Breaches

·       Device / Lateral Movement and C2 Activity

·       Anomalous Connection / SMB Enumeration

·       Anomalous Connection / New or Uncommon Service Control

·       Anomalous Connection / Multiple Connections to New External TCP Port

·       Anomalous Connection / Data Sent to Rare Domain

·       Anomalous Connection / Uncommon 1 GiB Outbound

·       Unusual Activity / Enhanced Unusual External Data Transfer

·       Unusual Activity / SMB Access Failures

·       Compromise / Ransomware / Suspicious SMB Activity

·       Compromise / Suspicious SSL Activity

List of Indicators of Compromise (IoCs)

·       .KOK08 -  File extension - Extension to encrypted files

·       [KOK08@QQ[.]COM] – Filename pattern – Prefix of the encrypted files

·       38.91.107[.]81 – IP address – Possible exfiltration endpoint

MITRE ATT&CK Mapping

·       Command and control – Application Layer Protocol – T1071

·       Command and control – Web Protocols – T1071.001

·       Credential Access – Password Guessing – T1110.001

·       Discovery – Network Service Scanning – T1046

·       Discovery – File and Directory Discovery – T1083

·       Discovery – Network Share Discovery – T1135

·       Discovery – Remote System Discovery – T1018

·       Exfiltration – Exfiltration Over C2 Channer – T1041

·       Initial Access – Drive-by Compromise – T1189

·       Initial Access – Hardware Additions – T1200

·       Lateral Movement – SMB/Windows Admin Shares – T1021.002

·       Reconnaissance – Scanning IP Blocks – T1595.001

References

[1] https://unit42.paloaltonetworks.com/matrix-ransomware/

[2] https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-matrix-report.pdf

[3] https://cyberenso.jp/en/types-of-ransomware/matrix-ransomware/

[4] https://www.pcrisk.com/removal-guides/10728-matrix-ransomware

Continue reading
About the author
Christina Kreza
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI