Blog
/

Threat Finds

RESPOND

Inside the SOC

/
June 27, 2021

Post-Mortem Analysis of a SQL Server Exploit

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Jun 2021
Learn about the post-mortem analysis of a SQL Server exploit. Discover key insights and strategies to enhance your cybersecurity defenses.

While SaaS and IoT devices are increasingly popular vectors of intrusion, server-side attacks remain a serious threat to organizations worldwide. With sophisticated vulnerability scanning tools, attackers can now pinpoint security flaws in seconds, finding points of entry across the attack surface. Human security teams often struggle to keep pace with the constant wave of newly documented vulnerabilities and patches.

Darktrace recently stopped a targeted cyber-attack by an unknown attacker. After the initial entry, the attacker exploited an unpatched vulnerability (CVE-2020-0618), granting a low-privileged credential the ability to remotely execute code. This enabled the attacker to spread laterally and eventually establish a foothold in the system by creating a new user account.

The server-side attack cycle: authenticates user; scans network; infects three servers; downloads malware; c2 traffic; creates new user.

Figure 1: Overview of the server-side attack cycle.

This blog breaks down the intrusion and explores how Darktrace’s Autonomous Response technology took three surgical actions to halt the attacker’s movements.

Unknown threat actors exploit a vulnerability

Initial compromise

At a financial firm in Canada with around 3,000 devices, Cyber AI detected the use of a new credential, ‘parents’. The attacker used this credential to access the company’s internal environment through the VPN. From there, the credential authenticated to a desktop using NT LAN Manager (NTLM). No further suspicious activity was observed.

NTLM is a popular attack vector for cyber-criminals as it is vulnerable to multiple methods of compromise, including brute-force and ‘pass the hash’. The initial access to the credential could have been obtained via phishing before Darktrace had been deployed.

Figure 2: The credential was first observed on the device five days prior to reconnaissance. The attacker performed reconnaissance and lateral movement for two days, until the compromised devices were taken down.

Internal reconnaissance

Five days later, the ‘parents’ credential was seen logging onto the desktop. The desktop began scanning the network – over 80 internal IPs – on Port 443 and 445.

Shortly after the scan, the device used Nmap to attempt to establish SMBv1 sessions to 139 internal IPs, using guest / user credentials. 79 out of the 278 sessions were successful, all using the login.

Figure 3: New failed internal connections performed by an initially infected desktop, in a similar incident. The graph highlights a surge in failed internal connections and model breaches.

The network scan was the first stage after intrusion, enabling the attacker to find out which services were running, before looking for unpatched vulnerabilities.

Nmap has multiple built-in functionalities which are often exploited for reconnaissance and lateral movement. In this case, it was being used to establish the SMBv1 sessions to the domain controller, saving the attacker from having to initiate SMBv1 sessions with each destination one by one. SMBv1 has well-known vulnerabilities and best practice is to disable it where possible.

Lateral movement

The desktop began controlling services (svcctl endpoint) on a SQL server. It was observed both creating and starting services (CreateServiceW, StartServiceW).

The desktop then initiated an unencrypted HTTP connection to a SQL Reporting server. This was the first HTTP connection between the two devices and the first time the user agent had been seen on the device.

A packet capture of the connection reveals a POST that is seen in an exploit of CVE-2020-0613. This vulnerability is a deserialization issue, whereby the server mishandles carefully crafted page requests and allows low-privileged accounts to establish a reverse shell and remotely execute code on the server.

Figure 4: A partial PCAP of the HTTP connection. The traffic matches the CVE-2020-0618 exploit, which enables Remote Code Execution (RCE) in SQL Server Reporting Services (SSRS).

Most movements were seen in East-West traffic, with readily-available remote procedure call (RPC) methods. Such connections are abundant in systems. Without learning an organization’s ‘pattern of life’, it would have been near-impossible to highlight the malicious connections.

Cyber AI detected connections to the svcctl endpoint, via the DCE-RPC endpoint. This is called the 'service control' endpoint and is used to remotely control running processes on a device.

During the lateral movement from the desktop, the HTTP POST request revealed that the desktop was exploiting CVE-2020-0613. The attacker had managed to find and exploit an existing vulnerability which hadn’t been patched.

Darktrace was the only tool which alerted to the HTTP connection, revealing this underlying (and concluding) exploit. The AI determined that the user agent was unusual for the device and for the wider organization, and that the connection was highly anomalous. This connection would have gone otherwise amiss, since HTTP connections are common in most digital environments.

Because the attacker on the desktop used readily-available tools and protocols, such as Nmap, DCE-RPC, and HTTP, the device went undetected by all the other cyber defenses. However, Cyber AI noticed multiple scanning and lateral movement anomalies – triggering high-fidelity detections which would have been alerted to with Proactive Threat Notifications.

Command and control (C2) communication

The next day, the attacker connected to an SNMP server from the VPN. The connection used the ‘parents’ RDP cookie.

Immediately after the RDP connection began, the server connected to Pastebin and downloaded small amounts of encrypted data. Pastebin was likely being used as a vector to drop malicious scripts onto the device.

The SNMP server then started controlling services (svcttl) on the SQL server: again, creating and starting services.

Following this, both the SQL server and the SNMP server made a high volume of SSL connections to a rare external domain. One upload to the destination was around 21 MB, but otherwise the connections were mostly the same packet size. This, among other factors, indicated that the destination was being used as a C2 server.

Figure 5: Example Cyber AI Analyst investigation into beaconing activity by a SQL server.

With just one compromised credential, the attacker was now connecting to the VPN and infecting multiple servers on the company’s internal network.

The attacker dropped scripts onto the host using Pastebin. Darktrace alerted on this because Pastebin is highly rare for the organization. In fact, these connections were the first time it had been seen. Most security tools would miss this, as Pastebin is a legitimate site and would not be blocked by open-source intelligence (OSINT).

Even if a lesser-known Pastebin alternative had been used – say, in an environment where Pastebin was blocked on the firewall but the alternative not — Darktrace would have picked up on it in exactly the same way.

The C2 beaconing endpoint – dropbox16[.]com – has no OSINT information available online. The connections were on Port 443 and nothing about them was notable except from their rarity on the company’s system. Darktrace sent alerts because of its high rarity, rather than relying on known signatures.

Achieve persistence

After another Pastebin pull, the attacker attempted to maintain a greater foothold and escalate privileges by creating a new user using the SamrCreateUser2InDomain operation (endpoint: samr).

To establish persistence, the attacker now created a new user through a specific DCE-RPC command to the domain controller. This was highly unusual activity for the device, and was given a 100% anomaly score for ‘New or Uncommon Occurrence’.

If Darktrace had not alerted on this activity, the attacker would have continued to access files and make further inroads in the company, extracting sensitive data and potentially installing ransomware. This could have led to sensitive data loss, reputational damage, and financial losses for the company.

The value of Autonomous Response

The organization had Antigena in passive mode, so although it was not able to respond autonomously, we have visibility into the actions that it would have taken.

Antigena would have taken three actions on the initially infected desktop, as shown in the table below. The actions would have taken effect immediately in response to the first scan and the first service control requests.

During the two days of reconnaissance and lateral movement activity, these were the only steps Antigena suggested. The steps were all directly relevant to the intrusion – there was no attempt to block anything unrelated to the attack, and no other Antigena actions were triggered during this period.

By surgically blocking connections on specific ports during the scanning activity and enforcing the ‘pattern of life’ on the infected desktop, Antigena would have paralyzed the attacker’s reconnaissance efforts.

Furthermore, unusual service control attempts performed by the device would have been halted, minimizing the damage to the targeted destination.

Antigena would have delivered these blocks directly or via whatever integration was most suitable for the customer, such as firewall integrations or NAC integrations.

Lessons learned

The threat story above demonstrates the importance of controlling the access granted to low-privileged credentials, as well as remaining up-to-date with security patches. Since such attacks take advantage of existing network infrastructure, it is extremely difficult to detect these anomalous connections without the use of AI.

There was a delay of several days between the initial use of the ‘parents’ credentials and the first signs of lateral movement. This dormancy period – between compromise and the start of internal activities – is commonly seen in attacks. It likely indicates that the attacker was checking initially if their access worked, and then re-visiting the victim for further compromise once their schedule allowed for it.

Stopping a server-side attack

This compromise is reflective of many real-life intrusions: attacks cannot be easily attributed and are often conducted by sophisticated, unidentified threat actors.

Nevertheless, Darktrace managed to detect each stage of the attack cycle: initial compromise, reconnaissance, lateral movement, established foothold, and privilege escalation, and had Antigena been in active mode, it would have blocked these connections, and even prevented the initial desktop from ever exploiting the SQL vulnerability, which allowed the attacker to execute code remotely.

One day later, after seeing the power of Autonomous Response, the company decided to deploy Antigena in active mode.

Thanks to Darktrace analyst Isabel Finn for her insights on the above threat find.

Darktrace model detections:

  • Device / Anomalous Nmap SMB Activity
  • Device / Network Scan - Low Anomaly Score
  • Device / Network Scan
  • Device / ICMP Address Scan
  • Device / Suspicious Network Scan Activity
  • Anomalous Connection / New or Uncommon Service Control
  • Device / Multiple Lateral Movement Model Breaches
  • Device / New User Agent To Internal Server
  • Compliance / Pastebin
  • Device / Repeated Unknown RPC Service Bind Errors
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Unusual Connections to Rare Lets Encrypt
  • User / Anomalous Domain User Creation Or Addition To Group

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Max Heinemeyer
Global Field CISO

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

February 3, 2025

/

Cloud

CNAPP Alone Isn’t Enough: Focusing on CDR for Real-Time Cross Domain Protection

Default blog imageDefault blog image

Forecasts predict public cloud spending will soar to over $720 billion by 2025, with 90%[1] of organizations embracing a hybrid cloud approach by 2027. These figures could also be eclipsed as more businesses unearth the potential impact that AI can make on their productivity. The pace of evolution is staggering, but one thing hasn’t changed: the cloud security market is a maze of complexity. Filled with acronyms, overlapping capabilities, and endless use cases tailored to every buyer persona.

On top of this, organizations face a fragmented landscape of security tools, each designed to cover just one slice of the cloud security puzzle. Then there’s CNAPP (Cloud-Native Application Protection Platform) — a broad platform promising to do it all but often falling short, especially around providing runtime detection and response capabilities. It’s no wonder organizations struggle to cut through the noise and find the precision they require.

Looking more closely at what CNAPP has to offer, it can feel like as if it is all you would ever need, but is that really the case?

Strengths and limitations of CNAPP

A CNAPP is undeniably a compelling solution, originally coming from CSPM (Cloud Security Posture Management), it provided organizations with a snapshot of their deployed cloud assets, highlighting whether they were as secure as intended. However, this often resulted in an overwhelming list of issues to fix, leaving organizations unsure where to focus their energy for maximum impact.

To address this, CNAPP’s evolved, incorporating capabilities like; identifying software vulnerabilities, mapping attack paths, and understanding which identities could act within the cloud. The goal became clear: prioritize fixes to reduce the risk of compromise.

But what if we could avoid these problems altogether? Imagine deploying software securely from the start — preventing the merging of vulnerable packages and ensuring proper configurations in production environments by shifting left. This preventative approach is vital to any “secure by design” strategy, CNAPP’s again evolving to add this functionality alongside.

However, as applications grow more complex, so do the variety and scope of potential issues. The responsibility for addressing these challenges often falls to engineers, who are left balancing the pressure to write code with the burden of fixing critical findings that may never even pose a real risk to the organization.

While CNAPP serves as an essential risk prevention tool — focusing on hygiene, compliance, and enabling organizations to deploy high-quality code on well-configured infrastructure — its role is largely limited to reducing the potential for issues. Once applications and infrastructure are live, the game changes. Security’s focus shifts to detecting unwanted activity and responding to real-time risks.

Limitations of CNAPP

Here’s where CNAPP shows its limitations:

1. Blind spots for on-premises workloads

Designed for cloud-native environments, it can leave blind spots for workloads that remain on-premises — a significant concern given that 90% of organizations are expected to adopt a hybrid cloud strategy by 2027. These blind spots can increase the risk of cross-domain attacks, underscoring the need for a solution that goes beyond purely prevention but adds real-time detection and response.

2. Detecting and mitigating cross-domain threats

Adversaries have evolved to exploit the complexity of hybrid and cloud environments through cross-domain attacks. These attacks span multiple domains — including traditional network environments, identity systems, SaaS platforms, and cloud environments — making them exceptionally difficult to detect and mitigate. Attackers are human and will naturally choose the path of least resistance, why spend time writing a detailed software exploit for a vulnerability if you can just target the identity?

Imagine a scenario where an attacker compromises an organization via leaked credentials and then moves laterally, similar to the example outlined in this blog: The Price of Admission: Countering Stolen Credentials with Darktrace. If an attacker identifies cloud credentials and moves into the cloud control plane, they could access additional sensitive data. Without a detection platform that monitors these areas for unusual activity, while working to consolidate findings into a unified timeline, detecting these types of attacks becomes incredibly challenging.

A CNAPP might only point to a potential misconfiguration of an identity or for example a misconfiguration around secret storage, but it cannot detect when that misconfiguration has been exploited — let alone respond to it.

Identity + Network: Unlocking cross-domain threats

Identity is more than just a role or username; it is essentially an access point for attackers to leverage and move between different areas of a digital estate. Real-time monitoring of human and non-human identities is crucial for understanding intent, spotting anomalies, and preventing possible attacks before they spread.

Non-human roles, such as service accounts or automation tooling, often operate with trust and without oversight. In 2024, the Cybersecurity and Critical Infrastructure Agency (CISA) [2] released a warning regarding new strategies employed by SolarWinds attackers. These strategies were primarily aimed at cloud infrastructure and non-human identities. The warning details how attackers leverage credentials and valid applications for malicious purposes.

With organizations opting for a hybrid approach, combining network, identity, cloud management and cloud runtime activity is essential to detecting and mitigating cross domain attacks, these are just some of the capabilities needed for effective detection and response:

  • AI driven automated and unified investigation of events – due to the volume of data and activity within businesses digital estates leveraging AI is vital, to enable SOC teams in understanding and facilitating proportional and effective responses.
  • Real-time monitoring auditing combined with anomaly detection for human and non-human identities.
  • A unified investigation platform that can deliver a real-time understanding of Identity, deployed cloud assets, runtime and contextual findings as well as coverage for remaining on premises workloads.
  • The ability to leverage threat intelligence automatically to detect potential malicious activities quickly.

The future of cloud security: Balancing risk management with real-time detection and response

Darktrace / CLOUD's CDR approach enhances CNAPP by providing the essential detection and native response needed to protect against cross-domain threats. Its agentless, default setup is both cost-effective and scalable, creating a runtime baseline that significantly boosts visibility for security teams. While proactive controls are crucial for cloud security, pairing them with Cloud Detection and Response solutions addresses a broader range of challenges.

With Darktrace / CLOUD, organizations benefit from continuous, real-time monitoring and advanced AI-driven behavioural detection, ensuring proactive detection and a robust cloud-native response. This integrated approach delivers comprehensive protection across the digital estate.

Unlock advanced cloud protection

Darktrace / CLOUD solution brief screenshot

Download the Darktrace / CLOUD solution brief to discover how autonomous, AI-driven defense can secure your environment in real-time.

  • Achieve 60% more accurate detection of unknown and novel cloud threats.
  • Respond instantly with autonomous threat response, cutting response time by 90%.
  • Streamline investigations with automated analysis, improving ROI by 85%.
  • Gain a 30% boost in cloud asset visibility with real-time architecture modeling.
  • References

    1. https://www.gartner.com/en/newsroom/press-releases/2024-11-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-total-723-billion-dollars-in-2025
    2. https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-057a
    Continue reading
    About the author
    Adam Stevens
    Director of Product, Cloud Security

    Blog

    /

    February 4, 2025

    /
    No items found.

    Reimagining Your SOC: Overcoming Alert Fatigue with AI-Led Investigations  

    Default blog imageDefault blog image

    The efficiency of a Security Operations Center (SOC) hinges on its ability to detect, analyze and respond to threats effectively. With advancements in AI and automation, key early SOC team metrics such as Mean Time to Detect (MTTD) have seen significant improvements:

    • 96% of defenders believing AI-powered solutions significantly boost the speed and efficiency of prevention, detection, response, and recovery.
    • Organizations leveraging AI and automation can shorten their breach lifecycle by an average of 108 days compared to those without these technologies.

    While tool advances have improved performance and effectiveness in the detection phase, this has not been as beneficial to the next step of the process where initial alerts are investigated further to determine their relevance and how they relate to other activities. This is often measured with the metric Mean Time to Analysis (MTTA), although some SOC teams operate a two-level process with teams for initial triage to filter out more obviously uninteresting alerts and for more detailed analysis of the remainder. SOC teams continue to grapple with alert fatigue, overwhelmed analysts, and inefficient triage processes, preventing them from achieving the operational efficiency necessary for a high-performing SOC.

    Addressing this core inefficiency requires extending AI's capabilities beyond detection to streamline and optimize the following investigative workflows that underpin effective analysis.

    Challenges with SOC alert investigation

    Detecting cyber threats is only the beginning of a much broader challenge of SOC efficiency. The real bottleneck often lies in the investigation process.

    Detection tools and techniques have evolved significantly with the use of machine learning methods, improving early threat detection. However, after a detection pops up, human analysts still typically step in to evaluate the alert, gather context, and determine whether it’s a true threat or a false alarm and why. If it is a threat, further investigation must be performed to understand the full scope of what may be a much larger problem. This phase, measured by the mean time to analysis, is critical for swift incident response.

    Challenges with manual alert investigation:

    • Too many alerts
    • Alerts lack context
    • Cognitive load sits with analysts
    • Insufficient talent in the industry
    • Fierce competition for experienced analysts

    For many organizations, investigation is where the struggle of efficiency intensifies. Analysts face overwhelming volumes of alerts, a lack of consolidated context, and the mental strain of juggling multiple systems. With a worldwide shortage of 4 million experienced level two and three SOC analysts, the cognitive burden placed on teams is immense, often leading to alert fatigue and missed threats.

    Even with advanced systems in place not all potential detections are investigated. In many cases, only a quarter of initial alerts are triaged (or analyzed). However, the issue runs deeper. Triaging occurs after detection engineering and alert tuning, which often disable many alerts that could potentially reveal true threats but are not accurate enough to justify the time and effort of the security team. This means some potential threats slip through unnoticed.

    Understanding alerts in the SOC: Stopping cyber incidents is hard

    Let’s take a look at the cyber-attack lifecycle and the steps involved in detecting and stopping an attack:

    First we need a trace of an attack…

    The attack will produce some sort of digital trace. Novel attacks, insider threats, and attacker techniques such as living-off-the-land can make attacker activities extremely hard to distinguish.

    A detection is created…

    Then we have to detect the trace, for example some beaconing to a rare domain. Initial detection alerts being raised underpin the MTTD (mean time to detection). Reducing this initial unseen duration is where we have seen significant improvement with modern threat detection tools.

    When it comes to threat detection, the possibilities are vast. Your initial lead could come from anything: an alert about unusual network activity, a potential known malware detection, or an odd email. Once that lead comes in, it’s up to your security team to investigate further and determine if this is this a legitimate threat or a false alarm and what the context is behind the alert.

    Investigation begins…

    It doesn’t just stop at a detection. Typically, humans also need to look at the alert, investigate, understand, analyze, and conclude whether this is a genuine threat that needs a response. We normally measure this as MTTA (mean time to analyze).

    Conducting the investigation effectively requires a high degree of skill and efficiency, as every second counts in mitigating potential damage. Security teams must analyze the available data, correlate it across multiple sources, and piece together the timeline of events to understand the full scope of the incident. This process involves navigating through vast amounts of information, identifying patterns, and discerning relevant details. All while managing the pressure of minimizing downtime and preventing further escalation.

    Containment begins…

    Once we confirm something as a threat, and the human team determines a response is required and understand the scope, we need to contain the incident. That's normally the MTTC (mean time to containment) and can be further split into immediate and more permanent measures.

    For more about how AI-led solutions can help in the containment stage read here: Autonomous Response: Streamlining Cybersecurity and Business Operations

    The challenge is not only in 1) detecting threats quickly, but also 2) triaging and investigating them rapidly and with precision, and 3) prioritizing the most critical findings to avoid missed opportunities. Effective investigation demands a combination of advanced tools, robust workflows, and the expertise to interpret and act on the insights they generate. Without these, organizations risk delaying critical containment and response efforts, leaving them vulnerable to greater impacts.

    While there are further steps (remediation, and of course complete recovery) here we will focus on investigation.

    Developing an AI analyst: How Darktrace replicates human investigation

    Darktrace has been working on understanding the investigative process of a skilled analyst since 2017. By conducting internal research between Darktrace expert SOC analysts and machine learning engineers, we developed a formalized understanding of investigative processes. This understanding formed the basis of a multi-layered AI system that systematically investigates data, taking advantage of the speed and breadth afforded by machine systems.

    With this research we found that the investigative process often revolves around iterating three key steps: hypothesis creation, data collection, and results evaluation.

    All these details are crucial for an analyst to determine the nature of a potential threat. Similarly, they are integral components of our Cyber AI Analyst which is an integral component across our product suite. In doing so, Darktrace has been able to replicate the human-driven approach to investigating alerts using machine learning speed and scale.

    Here’s how it works:

    • When an initial or third-party alert is triggered, the Cyber AI Analyst initiates a forensic investigation by building multiple hypotheses and gathering relevant data to confirm or refute the nature of suspicious activity, iterating as necessary, and continuously refining the original hypothesis as new data emerges throughout the investigation.
    • Using a combination of machine learning including supervised and unsupervised methods, NLP and graph theory to assess activity, this investigation engine conducts a deep analysis with incidents raised to the human team only when the behavior is deemed sufficiently concerning.
    • After classification, the incident information is organized and processed to generate the analysis summary, including the most important descriptive details, and priority classification, ensuring that critical alerts are prioritized for further action by the human-analyst team.
    • If the alert is deemed unimportant, the complete analysis process is made available to the human team so that they can see what investigation was performed and why this conclusion was drawn.
    Darktrace cyber ai analyst workflow, how it works

    To illustrate this via example, if a laptop is beaconing to a rare domain, the Cyber AI Analyst would create hypotheses including whether this could be command and control traffic, data exfiltration, or something else. The AI analyst then collects data, analyzes it, makes decisions, iterates, and ultimately raises a new high-level incident alert describing and detailing its findings for human analysts to review and follow up.

    Learn more about Darktrace's Cyber AI Analyst

    • Cost savings: Equivalent to adding up to 30 full-time Level 2 analysts without increasing headcount
    • Minimize business risk: Takes on the busy work from human analysts and elevates a team’s overall decision making
    • Improve security outcomes: Identifies subtle, sophisticated threats through holistic investigations

    Unlocking an efficient SOC

    To create a mature and proactive SOC, addressing the inefficiencies in the alert investigation process is essential. By extending AI's capabilities beyond detection, SOC teams can streamline and optimize investigative workflows, reducing alert fatigue and enhancing analyst efficiency.

    This holistic approach not only improves Mean Time to Analysis (MTTA) but also ensures that SOCs are well-equipped to handle the evolving threat landscape. Embracing AI augmentation and automation in every phase of threat management will pave the way for a more resilient and proactive security posture, ultimately leading to a high-performing SOC that can effectively safeguard organizational assets.

    Every relevant alert is investigated

    The Cyber AI Analyst is not a generative AI system, or an XDR or SEIM aggregator that simply prompts you on what to do next. It uses a multi-layered combination of many different specialized AI methods to investigate every relevant alert from across your enterprise, native, 3rd party, and manual triggers, operating at machine speed and scale. This also positively affects detection engineering and alert tuning, because it does not suffer from fatigue when presented with low accuracy but potentially valuable alerts.

    Retain and improve analyst skills

    Transferring most analysis processes to AI systems can risk team skills if they don't maintain or build them and if the AI doesn't explain its process. This can reduce the ability to challenge or build on AI results and cause issues if the AI is unavailable. The Cyber AI Analyst, by revealing its investigation process, data gathering, and decisions, promotes and improves these skills. Its deep understanding of cyber incidents can be used for skill training and incident response practice by simulating incidents for security teams to handle.

    Create time for cyber risk reduction

    Human cybersecurity professionals excel in areas that require critical thinking, strategic planning, and nuanced decision-making. With alert fatigue minimized and investigations streamlined, your analysts can avoid the tedious data collection and analysis stages and instead focus on critical decision-making tasks such as implementing recovery actions and performing threat hunting.

    Stay tuned for part 3/3

    Part 3/3 in the Reimagine your SOC series explores the preventative security solutions market and effective risk management strategies.

    Coming soon!

    Continue reading
    About the author
    Brittany Woodsmall
    Product Marketing Manager, AI & Attack Surface
    Your data. Our AI.
    Elevate your network security with Darktrace AI