Blog
/
OT
/
December 16, 2024

Breaking Down Nation State Attacks on Supply Chains

Explore how nation-state supply chain attacks like 3CX, NotPetya, and SolarWinds exploited trusted providers to cause global disruption, highlighting the urgent need for robust security measures.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Benjamin Druttman
Cyber Security AI Technical Instructor
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Dec 2024

Introduction: Nation state attacks on supply chains

In recent years, supply chain attacks have surged in both frequency and sophistication, evolving into one of the most severe threats to organizations across almost every industry. By exploiting third-party vendors and service providers, these attacks can inflict widespread disruption with a single breach. They have become a go-to choice for nation state actors and show no signs of slowing down. According to Gartner, the costs from these attacks will skyrocket “from $46 billion in 2023 to $138 billion by 2031” [1].  

But why are supply chains specifically such an irresistible target for threat actors? Dwight D. Eisenhower, the General of the US Army in World War II and former US President, once said, “you won’t find it difficult to prove that battles, campaigns, and even wars have been won or lost primarily because of logistics.”

The same is true in cyberspace and cyberwarfare. We live in an increasingly interconnected world. The provision of almost every service integral to our daily lives relies on a complex web of interdependent third parties.  

Naturally, threat actors gravitate towards these service providers. By compromising just one of them, they can spread through supply chains downstream to other organizations and raise the odds of winning their battle, campaign, or war.  

software supply chain sequence
Figure 1: Software supply chain attack cycle

A house built on open-source sand

Software developers face immense pressure to produce functional code quickly, often under tight deadlines. Adding to this challenge is the need to comply with stringent security requirements set by their DevSecOps counterparts, who aim to ensure that code is safe from vulnerabilities.  

Open-source repositories alleviate some of this pressure by providing pre-built packages of code and fully functioning tools that developers can freely access and integrate. These highly accessible resources enhance productivity and boost innovation. As a result, they have a huge, diverse user base spanning industries and geographies. However, given their extensive adoption, any security lapse can result in widespread compromise across businesses.

Cautionary tales for open-source dependencies

This is exactly what happened in December 2021 when a remote code execution vulnerability was discovered in Log4J’s software. In simple terms, it exposed an alarmingly straightforward way for attackers to take control of any system using Log4J.  

The scope for potential attack was unprecedented. Some estimates say up to 3 billion devices were affected worldwide, in what was quickly labelled the “single biggest, most critical vulnerability of the last decade” [2].

What ensued was a race between opportunistic nefarious actors and panicked security professionals. The astronomical number of vulnerable devices laid expansive groundwork for attackers, who quickly began probing potentially exploitable systems. 48% of corporate networks globally were scanned for the vulnerability, while security teams scrambled to apply the remediating patch [3].

The vulnerability attracted nation states like a moth to a flame, who, unsurprisingly, beat many security teams to it. According to the FBI and the US Cybersecurity and Infrastructure Agency (CISA), Iranian government-sponsored threat groups were found using the Log4J vulnerability to install cryptomining software, credential stealers and Ngrok reverse proxies onto no less than US Federal networks [4].  

Research from Microsoft and Mandiant revealed nation state groups from China, North Korea and Turkey also taking advantage of the Log4J vulnerability to deploy malware on target systems [5].  

If Log4j taught us anything, it’s that vulnerabilities in open-source technologies can be highly attractive target for nation states. When these technologies are universally adopted, geopolitical adversaries have a much wider net of opportunity to successfully weaponize them.  

It therefore comes as no surprise that nation states have ramped up their operations targeting the open-source link of the supply chain in recent years.  

Since 2020, there has been a 1300% increase in malicious threats circulating on open-source repositories. PyPI is the official open-source code repository for programming done in the Python language and used by over 800,000 developers worldwide. In the first 9 months of 2023 alone, 7,000 malicious packages were found on PyPI, some of which were linked to the North Korea state-sponsored threat group, Lazarus [6].  

Most of them were found using a technique called typosquatting, in which the malicious payloads are disguised with names that very closely resemble those of legitimate packages, ready for download by an unwitting software developer. This trickery of the eye is an example of social engineering in the supply chain.  

A hop, skip, and a jump into the most sensitive networks on earth

One of the most high-profile supply chain attacks in recent history occurred in 2023, targeting 3CX’s Desktop App – a widely used video communications by over 600,000 customers in various sectors such as aerospace, healthcare and hospitality.

The incident gained notoriety as a double supply chain attack. The initial breach originated from financial trading software called X_Trader, which had been infected with a backdoor.  A 3CX employee unknowingly downloaded the compromised X_Trader software onto a corporate device. This allowed attackers to steal the employee’s credentials and use them to gain access to 3CX’s network, spread laterally and compromising Windows and Mac systems.  

The attack moved along another link of the supply chain to several of 3CX’s customers, impacting critical national infrastructure like energy sector in US and Europe.  

For the average software provider, this attack shed more light on how a compromise of their technology could cause chaos for their customers.  

But nation states already knew this. The 3CX attack was attributed, yet again, to Lazarus, the same North Korean nation state blamed for implanting malicious packages in the Python repository.  

It’s also worth mentioning the astounding piece of evidence in a separate social engineering campaign which linked the 3CX hack to North Korea. It was an attack worthy of a Hollywood cyber block buster. The threat group, Lazarus, lured hopeful job candidates on LinkedIn into clicking on malicious ZIP file disguised as an attractive PDF offer for a position as a Developer at HSBC. The malware’s command and control infrastructure, journalide[.]org, was the same one discovered in the 3CX campaign.  

Though not strictly a supply chain attack, the LinkedIn campaign illustrates how nation states employ a diverse array of methods that span beyond the supply chain to achieve their goals. These sophisticated and well-resourced adversaries are adaptable and capable of repurposing their command-and-control infrastructure to orchestrate a range of attacks. This attack, along with the typosquatting attacks found in PyPI, serve as a critical reminder for security teams: supply chain attacks are often coupled with another powerful tactic – social engineering of human teams.

When the cure is worse than the disease

Updates to the software are a core pillar of cybersecurity, designed to patch vulnerabilities like Log4J and ensure it is safe. However, they have also proven to serve as alarmingly efficient delivery vessels for nation states to propagate their cyberattacks.  

Two of the most prolific supply chain breaches in recent history have been deployed through malicious updates, illustrating how they can be a double-edged sword when it comes to cyber defense.  

NotPetya (2017) and Solarwinds (2020)

The 2017 NotPetya ransomware attack exemplified the mass spread of ransomware via a single software update. A Russian military group injected malware on accounting software used by Ukrainian businesses for tax reporting. Via an automatic update, the ransomware was pushed out to thousands of customers within hours, crippled Ukrainian infrastructure including airports, financial institutions and government agencies.  

Some of the hardest hit victims were suppliers themselves. Maersk, the global shipping giant responsible for shipping one fifth of the world’s goods, had their entire global operations brought to a halt and their 76 ports temporarily shut down. The interruptions to global trade were then compounded when a FedEx subsidiary was hit by the same ransomware. Meanwhile, Merck, a pharmaceutical company, was unable to supply vaccines to the Center for Disease Control and Prevention due to the attack.  

In 2020, another devastating supply chain attack unfolded in a similar way. Threat actors tied to Russian intelligence embedded malicious code into Solarwinds’ Orion IT software, which was then distributed as an update to 18,000 organizations. Victims included at least eight U.S. government agencies, as well as several major tech companies.  

These two attacks highlighted two key lessons. First, in a hyperconnected digital world, nation states will exploit the trust organizations place in software updates to cause a ripple effect of devastation downstream. Secondly, the economies of scale for the threat actor themselves are staggering: a single malicious update provided the heavy lifting work of dissemination to the attacker. A colossal number of originations were infected, and they obtained the keys to the world’s most sensitive networks.

The conclusion is obvious, albeit challenging to implement; organizations must rigorously scrutinize the authenticity and security of updates to prevent far-reaching consequences.  

Some of the biggest supply chain attacks in recent history and the nation state actor they are attributed to
Figure 2: Some of the biggest supply chain attacks in recent history and the nation state actor they are attributed to

Geopolitics and nation States in 2024: Beyond the software supply chain

The threat to our increasingly complex web of global supply is real. But organizations must look beyond their software to successfully mitigate supply chain disruption. Securing hardware and logistics is crucial, as these supply chain links are also in the crosshairs of nation states.  

In July 2024, suspicious packages caused a warehouse fire at a depot belonging to courier giant DHL in Birmingham, UK. British counter-terrorism authorities investigated Russian involvement in this fire, which was linked to a very similar incident that same month at a DHL facility in Germany.  

In September 2024, camouflaged explosives were hidden in walkie talkies and pagers in Lebanon and Syria – a supply chain attack widely believed to be carried out by Israel.

While these attacks targeted hardware and logistics rather than software, the underlying rule of thumb remained the same: the compromise of a single distributor can provide the attackers with considerable economies of scale.

These attacks sparked growing concerns of coordinated efforts to sabotage the supply chain. This sentiment was reflected in a global survey carried out by HP in August 2024, in which many organisations reported “nation-state threat actors targeting physical supply chains and tampering with device hardware and firmware integrity” [7].

More recently, in November 2024, the Russian military unit 29155 vowed to “turn the lights out for millions” by threatening to launch cyberattacks on the blood supply of NATO countries, critical national infrastructure (CNI). Today, CNI encompasses more than the electric grid and water supply; it includes ICT services and IT infrastructure – the digital systems that underpin the foundations of modern society.    

This is nothing new. The supply and logistics-focused tactic has been central to warfare throughout history. What’s changed is that cyberspace has merely expanded the scale and efficiency of these tactics, turning single software compromises into attack multipliers. The supply chain threat is now more multi-faceted than ever before.  

Learnings from the supply chain threat landscape

Consider some of the most disastrous nation-state supply chain attacks in recent history – 3CX, NotPetya and Solarwinds. They share a remarkable commonality: the attackers only needed to compromise a single piece of software to cause rampant disruption. By targeting a technology provider whose products were deeply embedded across industries, threat actors leveraged the trust inherent in the supply chain to infiltrate networks at scale.

From a nation-state’s perspective, targeting a specific technology, device or service used by vast swathes of society amplifies operational efficiency. For software, hardware and critical service suppliers, these examples serve as an urgent wake-up call. Without rigorous security measures, they risk becoming conduits for global disruption. Sanity-checking code, implementing robust validation processes, and fostering a culture of security throughout the supply chain are no longer optional—they are essential.  

The stakes are clear: in the interconnected digital age, the safety of countless systems, industries and society at large depends on their vigilance.  

Screenshot of supply chain security whitepaper

Gain a deeper understanding of the evolving risks in supply chain security and explore actionable strategies to protect your organization against emerging threats. Download the white paper to empower your decision-making with expert insights tailored for CISOs

Download: Securing the Supply Chain White Paper

References

  1. https://www.gartner.com/en/documents/5524495
  1. CISA Insights “Remediate Vulnerabilities for Internet-Accessible Systems.”
  1. https://blog.checkpoint.com/security/the-numbers-behind-a-cyber-pandemic-detailed-dive/
  1. https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-320a  
  1. https://www.microsoft.com/en-us/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/  
  1. https://content.reversinglabs.com/state-of-sscs-report/the-state-of-sscs-report-24  
  1. https://www.hp.com/us-en/newsroom/press-releases/2024/hp-wolf-security-study-supply-chains.html
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Benjamin Druttman
Cyber Security AI Technical Instructor

More in this series

No items found.

Blog

/

/

May 7, 2025

Anomaly-based threat hunting: Darktrace's approach in action

person working on laptopDefault blog imageDefault blog image

What is threat hunting?

Threat hunting in cybersecurity involves proactively and iteratively searching through networks and datasets to detect threats that evade existing automated security solutions. It is an important component of a strong cybersecurity posture.

There are several frameworks that Darktrace analysts use to guide how threat hunting is carried out, some of which are:

  • MITRE Attack
  • Tactics, Techniques, Procedures (TTPs)
  • Diamond Model for Intrusion Analysis
  • Adversary, Infrastructure, Victims, Capabilities
  • Threat Hunt Model – Six Steps
  • Purpose, Scope, Equip, Plan, Execute, Feedback
  • Pyramid of Pain

These frameworks are important in baselining how to run a threat hunt. There are also a combination of different methods that allow defenders diversity– regardless of whether it is a proactive or reactive threat hunt. Some of these are:

  • Hypothesis-based threat hunting
  • Analytics-driven threat hunting
  • Automated/machine learning hunting
  • Indicator of Compromise (IoC) hunting
  • Victim-based threat hunting

Threat hunting with Darktrace

At its core, Darktrace is an anomaly-based detection tool. It combines various machine learning types that allows it to characterize what constitutes ‘normal’, based on the analysis of many different measures of a device or actor’s behavior. Those types of learning are then curated into what are called models.

Darktrace models leverage anomaly detection and integrate outputs from Darktrace Deep Packet Inspection, telemetry inputs, and additional modules, creating tailored activity detection.

This dynamic understanding allows Darktrace to identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign.  On top of machine learning models for detection, there is also the ability to change and create models showcasing the tool’s diversity. The Model Editor allows security teams to specify values, priorities, thresholds, and actions they want to detect. That means a team can create custom detection models based on specific use cases or business requirements. Teams can also increase the priority of existing detections based on their own risk assessments to their environment.

This level of dexterity is particularly useful when conducting a threat hunt. As described above, and in previous ‘Inside the SOC’ blogs such a threat hunt can be on a specific threat actor, specific sector, or a  hypothesis-based threat hunt combined with ‘experimenting’ with some of Darktrace’s models.

Conducting a threat hunt in the energy sector with experimental models

In Darktrace’s recent Threat Research report “AI & Cybersecurity: The state of cyber in UK and US energy sectors” Darktrace’s Threat Research team crafted hypothesis-driven threat hunts, building experimental models and investigating existing models to test them and detect malicious activity across Darktrace customers in the energy sector.

For one of the hunts, which hypothesised utilization of PerfectData software and multi-factor authentication (MFA) bypass to compromise user accounts and destruct data, an experimental model was created to detect a Software-as-a-Service (SaaS) user performing activity relating to 'PerfectData Software’, known to allow a threat actor to exfiltrate whole mailboxes as a PST file. Experimental model alerts caused by this anomalous activity were analyzed, in conjunction with existing SaaS and email-related models that would indicate a multi-stage attack in line with the hypothesis.

Whilst hunting, Darktrace researchers found multiple model alerts for this experimental model associated with PerfectData software usage, within energy sector customers, including an oil and gas investment company, as well as other sectors. Upon further investigation, it was also found that in June 2024, a malicious actor had targeted a renewable energy infrastructure provider via a PerfectData Software attack and demonstrated intent to conduct an Operational Technology (OT) attack.

The actor  logged into Azure AD from a rare US IP address. They then granted Consent to ‘eM Client’ from the same IP. Shortly after, the actor granted ‘AddServicePrincipal’ via Azure  to PerfectData Software. Two days later, the actor created a  new email rule from a London IP to move emails to an RSS Feed Folder, stop processing rules, and mark emails as read. They then accessed mail items in the “\Sent” folder from a malicious IP belonging to anonymization network,  Private Internet Access Virtual Private Network (PIA VPN). The actor then conducted mass email deletions , deleting multiple instances of emails with subject “[Name] shared "[Company Name] Proposal" With You” from the  “\Sent folder”. The emails’ subject suggests the email likely contains a link to file storage for phishing purposes. The mass deletion likely represented an attempt to obfuscate a potential outbound phishing email campaign.

The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.
Figure 1: The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.

A month later, the same user was observed downloading mass mLog CSV files related to proprietary and Operational Technology information. In September, three months after the initial attack, another mass download of operational files occurred by this actor, pertaining to operating instructions and measurements, The observed patience and specific file downloads seemingly demonstrated an intent to conduct or research possible OT attack vectors. An attack on OT could have significant impacts including operational downtime, reputational damage, and harm to everyday operations. Darktrace alerted the impacted customer once findings were verified, and subsequent actions were taken by the internal security team to prevent further malicious activity.

Conclusion

Harnessing the power of different tools in a security stack is a key element to cyber defense. The above hypothesis-based threat hunt and custom demonstrated intent to conduct an experimental model creation demonstrates different threat hunting approaches, how Darktrace’s approach can be operationalized, and that proactive threat hunting can be a valuable complement to traditional security controls and is essential for organizations facing increasingly complex threat landscapes.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO at Darktrace) and Zoe Tilsiter (EMEA Consultancy Lead)

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

May 6, 2025

Combatting the Top Three Sources of Risk in the Cloud

woman working on laptopDefault blog imageDefault blog image

With cloud computing, organizations are storing data like intellectual property, trade secrets, Personally Identifiable Information (PII), proprietary code and statistics, and other sensitive information in the cloud. If this data were to be accessed by malicious actors, it could incur financial loss, reputational damage, legal liabilities, and business disruption.

Last year data breaches in solely public cloud deployments were the most expensive type of data breach, with an average of $5.17 million USD, a 13.1% increase from the year before.

So, as cloud usage continues to grow, the teams in charge of protecting these deployments must understand the associated cybersecurity risks.

What are cloud risks?

Cloud threats come in many forms, with one of the key types consisting of cloud risks. These arise from challenges in implementing and maintaining cloud infrastructure, which can expose the organization to potential damage, loss, and attacks.

There are three major types of cloud risks:

1. Misconfigurations

As organizations struggle with complex cloud environments, misconfiguration is one of the leading causes of cloud security incidents. These risks occur when cloud settings leave gaps between cloud security solutions and expose data and services to unauthorized access. If discovered by a threat actor, a misconfiguration can be exploited to allow infiltration, lateral movement, escalation, and damage.

With the scale and dynamism of cloud infrastructure and the complexity of hybrid and multi-cloud deployments, security teams face a major challenge in exerting the required visibility and control to identify misconfigurations before they are exploited.

Common causes of misconfiguration come from skill shortages, outdated practices, and manual workflows. For example, potential misconfigurations can occur around firewall zones, isolated file systems, and mount systems, which all require specialized skill to set up and diligent monitoring to maintain

2. Identity and Access Management (IAM) failures

IAM has only increased in importance with the rise of cloud computing and remote working. It allows security teams to control which users can and cannot access sensitive data, applications, and other resources.

Cybersecurity professionals ranked IAM skills as the second most important security skill to have, just behind general cloud and application security.

There are four parts to IAM: authentication, authorization, administration, and auditing and reporting. Within these, there are a lot of subcomponents as well, including but not limited to Single Sign-On (SSO), Two-Factor Authentication (2FA), Multi-Factor Authentication (MFA), and Role-Based Access Control (RBAC).

Security teams are faced with the challenge of allowing enough access for employees, contractors, vendors, and partners to complete their jobs while restricting enough to maintain security. They may struggle to track what users are doing across the cloud, apps, and on-premises servers.

When IAM is misconfigured, it increases the attack surface and can leave accounts with access to resources they do not need to perform their intended roles. This type of risk creates the possibility for threat actors or compromised accounts to gain access to sensitive company data and escalate privileges in cloud environments. It can also allow malicious insiders and users who accidentally violate data protection regulations to cause greater damage.

3. Cross-domain threats

The complexity of hybrid and cloud environments can be exploited by attacks that cross multiple domains, such as traditional network environments, identity systems, SaaS platforms, and cloud environments. These attacks are difficult to detect and mitigate, especially when a security posture is siloed or fragmented.  

Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.  

Challenges in securing against cross-domain threats often come from a lack of unified visibility. If a security team does not have unified visibility across the organization’s domains, gaps between various infrastructures and the teams that manage them can leave organizations vulnerable.

Adopting AI cybersecurity tools to reduce cloud risk

For security teams to defend against misconfigurations, IAM failures, and insecure APIs, they require a combination of enhanced visibility into cloud assets and architectures, better automation, and more advanced analytics. These capabilities can be achieved with AI-powered cybersecurity tools.

Such tools use AI and automation to help teams maintain a clear view of all their assets and activities and consistently enforce security policies.

Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that makes cloud security accessible to all security teams and SOCs by using AI to identify and correct misconfigurations and other cloud risks in public, hybrid, and multi-cloud environments.

It provides real-time, dynamic architectural modeling, which gives SecOps and DevOps teams a unified view of cloud infrastructures to enhance collaboration and reveal possible misconfigurations and other cloud risks. It continuously evaluates architecture changes and monitors real-time activity, providing audit-ready traceability and proactive risk management.

Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.
Figure 1: Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.

Darktrace / CLOUD also offers attack path modeling for the cloud. It can identify exposed assets and highlight internal attack paths to get a dynamic view of the riskiest paths across cloud environments, network environments, and between – enabling security teams to prioritize based on unique business risk and address gaps to prevent future attacks.  

Darktrace’s Self-Learning AI ensures continuous cloud resilience, helping teams move from reactive to proactive defense.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI