Blog
/
No items found.
/
December 16, 2024

Breaking Down Nation State Attacks on Supply Chains

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Dec 2024
Explore how nation-state supply chain attacks like 3CX, NotPetya, and SolarWinds exploited trusted providers to cause global disruption, highlighting the urgent need for robust security measures.

Introduction: Nation state attacks on supply chains

In recent years, supply chain attacks have surged in both frequency and sophistication, evolving into one of the most severe threats to organizations across almost every industry. By exploiting third-party vendors and service providers, these attacks can inflict widespread disruption with a single breach. They have become a go-to choice for nation state actors and show no signs of slowing down. According to Gartner, the costs from these attacks will skyrocket “from $46 billion in 2023 to $138 billion by 2031” [1].  

But why are supply chains specifically such an irresistible target for threat actors? Dwight D. Eisenhower, the General of the US Army in World War II and former US President, once said, “you won’t find it difficult to prove that battles, campaigns, and even wars have been won or lost primarily because of logistics.”

The same is true in cyberspace and cyberwarfare. We live in an increasingly interconnected world. The provision of almost every service integral to our daily lives relies on a complex web of interdependent third parties.  

Naturally, threat actors gravitate towards these service providers. By compromising just one of them, they can spread through supply chains downstream to other organizations and raise the odds of winning their battle, campaign, or war.  

software supply chain sequence
Figure 1: Software supply chain attack cycle

A house built on open-source sand

Software developers face immense pressure to produce functional code quickly, often under tight deadlines. Adding to this challenge is the need to comply with stringent security requirements set by their DevSecOps counterparts, who aim to ensure that code is safe from vulnerabilities.  

Open-source repositories alleviate some of this pressure by providing pre-built packages of code and fully functioning tools that developers can freely access and integrate. These highly accessible resources enhance productivity and boost innovation. As a result, they have a huge, diverse user base spanning industries and geographies. However, given their extensive adoption, any security lapse can result in widespread compromise across businesses.

Cautionary tales for open-source dependencies

This is exactly what happened in December 2021 when a remote code execution vulnerability was discovered in Log4J’s software. In simple terms, it exposed an alarmingly straightforward way for attackers to take control of any system using Log4J.  

The scope for potential attack was unprecedented. Some estimates say up to 3 billion devices were affected worldwide, in what was quickly labelled the “single biggest, most critical vulnerability of the last decade” [2].

What ensued was a race between opportunistic nefarious actors and panicked security professionals. The astronomical number of vulnerable devices laid expansive groundwork for attackers, who quickly began probing potentially exploitable systems. 48% of corporate networks globally were scanned for the vulnerability, while security teams scrambled to apply the remediating patch [3].

The vulnerability attracted nation states like a moth to a flame, who, unsurprisingly, beat many security teams to it. According to the FBI and the US Cybersecurity and Infrastructure Agency (CISA), Iranian government-sponsored threat groups were found using the Log4J vulnerability to install cryptomining software, credential stealers and Ngrok reverse proxies onto no less than US Federal networks [4].  

Research from Microsoft and Mandiant revealed nation state groups from China, North Korea and Turkey also taking advantage of the Log4J vulnerability to deploy malware on target systems [5].  

If Log4j taught us anything, it’s that vulnerabilities in open-source technologies can be highly attractive target for nation states. When these technologies are universally adopted, geopolitical adversaries have a much wider net of opportunity to successfully weaponize them.  

It therefore comes as no surprise that nation states have ramped up their operations targeting the open-source link of the supply chain in recent years.  

Since 2020, there has been a 1300% increase in malicious threats circulating on open-source repositories. PyPI is the official open-source code repository for programming done in the Python language and used by over 800,000 developers worldwide. In the first 9 months of 2023 alone, 7,000 malicious packages were found on PyPI, some of which were linked to the North Korea state-sponsored threat group, Lazarus [6].  

Most of them were found using a technique called typosquatting, in which the malicious payloads are disguised with names that very closely resemble those of legitimate packages, ready for download by an unwitting software developer. This trickery of the eye is an example of social engineering in the supply chain.  

A hop, skip, and a jump into the most sensitive networks on earth

One of the most high-profile supply chain attacks in recent history occurred in 2023, targeting 3CX’s Desktop App – a widely used video communications by over 600,000 customers in various sectors such as aerospace, healthcare and hospitality.

The incident gained notoriety as a double supply chain attack. The initial breach originated from financial trading software called X_Trader, which had been infected with a backdoor.  A 3CX employee unknowingly downloaded the compromised X_Trader software onto a corporate device. This allowed attackers to steal the employee’s credentials and use them to gain access to 3CX’s network, spread laterally and compromising Windows and Mac systems.  

The attack moved along another link of the supply chain to several of 3CX’s customers, impacting critical national infrastructure like energy sector in US and Europe.  

For the average software provider, this attack shed more light on how a compromise of their technology could cause chaos for their customers.  

But nation states already knew this. The 3CX attack was attributed, yet again, to Lazarus, the same North Korean nation state blamed for implanting malicious packages in the Python repository.  

It’s also worth mentioning the astounding piece of evidence in a separate social engineering campaign which linked the 3CX hack to North Korea. It was an attack worthy of a Hollywood cyber block buster. The threat group, Lazarus, lured hopeful job candidates on LinkedIn into clicking on malicious ZIP file disguised as an attractive PDF offer for a position as a Developer at HSBC. The malware’s command and control infrastructure, journalide[.]org, was the same one discovered in the 3CX campaign.  

Though not strictly a supply chain attack, the LinkedIn campaign illustrates how nation states employ a diverse array of methods that span beyond the supply chain to achieve their goals. These sophisticated and well-resourced adversaries are adaptable and capable of repurposing their command-and-control infrastructure to orchestrate a range of attacks. This attack, along with the typosquatting attacks found in PyPI, serve as a critical reminder for security teams: supply chain attacks are often coupled with another powerful tactic – social engineering of human teams.

When the cure is worse than the disease

Updates to the software are a core pillar of cybersecurity, designed to patch vulnerabilities like Log4J and ensure it is safe. However, they have also proven to serve as alarmingly efficient delivery vessels for nation states to propagate their cyberattacks.  

Two of the most prolific supply chain breaches in recent history have been deployed through malicious updates, illustrating how they can be a double-edged sword when it comes to cyber defense.  

NotPetya (2017) and Solarwinds (2020)

The 2017 NotPetya ransomware attack exemplified the mass spread of ransomware via a single software update. A Russian military group injected malware on accounting software used by Ukrainian businesses for tax reporting. Via an automatic update, the ransomware was pushed out to thousands of customers within hours, crippled Ukrainian infrastructure including airports, financial institutions and government agencies.  

Some of the hardest hit victims were suppliers themselves. Maersk, the global shipping giant responsible for shipping one fifth of the world’s goods, had their entire global operations brought to a halt and their 76 ports temporarily shut down. The interruptions to global trade were then compounded when a FedEx subsidiary was hit by the same ransomware. Meanwhile, Merck, a pharmaceutical company, was unable to supply vaccines to the Center for Disease Control and Prevention due to the attack.  

In 2020, another devastating supply chain attack unfolded in a similar way. Threat actors tied to Russian intelligence embedded malicious code into Solarwinds’ Orion IT software, which was then distributed as an update to 18,000 organizations. Victims included at least eight U.S. government agencies, as well as several major tech companies.  

These two attacks highlighted two key lessons. First, in a hyperconnected digital world, nation states will exploit the trust organizations place in software updates to cause a ripple effect of devastation downstream. Secondly, the economies of scale for the threat actor themselves are staggering: a single malicious update provided the heavy lifting work of dissemination to the attacker. A colossal number of originations were infected, and they obtained the keys to the world’s most sensitive networks.

The conclusion is obvious, albeit challenging to implement; organizations must rigorously scrutinize the authenticity and security of updates to prevent far-reaching consequences.  

Some of the biggest supply chain attacks in recent history and the nation state actor they are attributed to
Figure 2: Some of the biggest supply chain attacks in recent history and the nation state actor they are attributed to

Geopolitics and nation States in 2024: Beyond the software supply chain

The threat to our increasingly complex web of global supply is real. But organizations must look beyond their software to successfully mitigate supply chain disruption. Securing hardware and logistics is crucial, as these supply chain links are also in the crosshairs of nation states.  

In July 2024, suspicious packages caused a warehouse fire at a depot belonging to courier giant DHL in Birmingham, UK. British counter-terrorism authorities investigated Russian involvement in this fire, which was linked to a very similar incident that same month at a DHL facility in Germany.  

In September 2024, camouflaged explosives were hidden in walkie talkies and pagers in Lebanon and Syria – a supply chain attack widely believed to be carried out by Israel.

While these attacks targeted hardware and logistics rather than software, the underlying rule of thumb remained the same: the compromise of a single distributor can provide the attackers with considerable economies of scale.

These attacks sparked growing concerns of coordinated efforts to sabotage the supply chain. This sentiment was reflected in a global survey carried out by HP in August 2024, in which many organisations reported “nation-state threat actors targeting physical supply chains and tampering with device hardware and firmware integrity” [7].

More recently, in November 2024, the Russian military unit 29155 vowed to “turn the lights out for millions” by threatening to launch cyberattacks on the blood supply of NATO countries, critical national infrastructure (CNI). Today, CNI encompasses more than the electric grid and water supply; it includes ICT services and IT infrastructure – the digital systems that underpin the foundations of modern society.    

This is nothing new. The supply and logistics-focused tactic has been central to warfare throughout history. What’s changed is that cyberspace has merely expanded the scale and efficiency of these tactics, turning single software compromises into attack multipliers. The supply chain threat is now more multi-faceted than ever before.  

Learnings from the supply chain threat landscape

Consider some of the most disastrous nation-state supply chain attacks in recent history – 3CX, NotPetya and Solarwinds. They share a remarkable commonality: the attackers only needed to compromise a single piece of software to cause rampant disruption. By targeting a technology provider whose products were deeply embedded across industries, threat actors leveraged the trust inherent in the supply chain to infiltrate networks at scale.

From a nation-state’s perspective, targeting a specific technology, device or service used by vast swathes of society amplifies operational efficiency. For software, hardware and critical service suppliers, these examples serve as an urgent wake-up call. Without rigorous security measures, they risk becoming conduits for global disruption. Sanity-checking code, implementing robust validation processes, and fostering a culture of security throughout the supply chain are no longer optional—they are essential.  

The stakes are clear: in the interconnected digital age, the safety of countless systems, industries and society at large depends on their vigilance.  

Screenshot of supply chain security whitepaper

Gain a deeper understanding of the evolving risks in supply chain security and explore actionable strategies to protect your organization against emerging threats. Download the white paper to empower your decision-making with expert insights tailored for CISOs

Download: Securing the Supply Chain White Paper

References

  1. https://www.gartner.com/en/documents/5524495
  1. CISA Insights “Remediate Vulnerabilities for Internet-Accessible Systems.”
  1. https://blog.checkpoint.com/security/the-numbers-behind-a-cyber-pandemic-detailed-dive/
  1. https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-320a  
  1. https://www.microsoft.com/en-us/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/  
  1. https://content.reversinglabs.com/state-of-sscs-report/the-state-of-sscs-report-24  
  1. https://www.hp.com/us-en/newsroom/press-releases/2024/hp-wolf-security-study-supply-chains.html
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Benjamin Druttman
Cyber Security AI Technical Instructor

Benjamin Druttman is a Training Manager at Darktrace, based in the Madrid Office. As a trainer, he delivers technical sessions to customers and partners across Southern Europe, Middle East and Africa. His sessions are designed to help users maximize their Darktrace products and optimize their workflow. He is expert in Datktrace Threat Detect, Autonomous Response, and Email products.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

January 28, 2025

/
No items found.

Reimagining Your SOC: How to Achieve Proactive Network Security

Default blog imageDefault blog image

Introduction: Challenges and solutions to SOC efficiency

For Security Operation Centers (SOCs), reliance on signature or rule-based tools – solutions that are always chasing the latest update to prevent only what is already known – creates an excess of false positives. SOC analysts are therefore overwhelmed by a high volume of context-lacking alerts, with human analysts able to address only about 10% due to time and resource constraints. This forces many teams to accept the risks of addressing only a fraction of the alerts while novel threats go completely missed.

74% of practitioners are already grappling with the impact of an AI-powered threat landscape, which amplifies challenges like tool sprawl, alert fatigue, and burnout. Thus, achieving a resilient network, where SOC teams can spend most of their time getting proactive and stopping threats before they occur, feels like an unrealistic goal as attacks are growing more frequent.

Despite advancements in security technology (advanced detection systems with AI, XDR tools, SIEM aggregators, etc...), practitioners are still facing the same issues of inefficiency in their SOC, stopping them from becoming proactive. How can they select security solutions that help them achieve a proactive state without dedicating more human hours and resources to managing and triaging alerts, tuning rules, investigating false positives, and creating reports?

To overcome these obstacles, organizations must leverage security technology that is able to augment and support their teams. This can happen in the following ways:

  1. Full visibility across the modern network expanding into hybrid environments
  2. Have tools that identifies and stops novel threats autonomously, without causing downtime
  3. Apply AI-led analysis to reduce time spent on manual triage and investigation

Your current solutions might be holding you back

Traditional cybersecurity point solutions are reliant on using global threat intelligence to pattern match, determine signatures, and consequently are chasing the latest update to prevent only what is known. This means that unknown threats will evade detection until a patient zero is identified. This legacy approach to threat detection means that at least one organization needs to be ‘patient zero’, or the first victim of a novel attack before it is formally identified.

Even the point solutions that claim to use AI to enhance threat detection rely on a combination of supervised machine learning, deep learning, and transformers to

train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized dataset gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

While using AI in this way reduces the workload of security teams who would traditionally input this data by hand, it emanates the same risk – namely, that AI systems trained on known threats cannot deal with the threats of tomorrow. Ultimately, it is the unknown threats that bring down an organization.

The promise and pitfalls of XDR in today's threat landscape

Enter Extended Detection and Response (XDR): a platform approach aimed at unifying threat detection across the digital environment. XDR was developed to address the limitations of traditional, fragmented tools by stitching together data across domains, providing SOC teams with a more cohesive, enterprise-wide view of threats. This unified approach allows for improved detection of suspicious activities that might otherwise be missed in siloed systems.

However, XDR solutions still face key challenges: they often depend heavily on human validation, which can aggravate the already alarmingly high alert fatigue security analysts experience, and they remain largely reactive, focusing on detecting and responding to threats rather than helping prevent them. Additionally, XDR frequently lacks full domain coverage, relying on EDR as a foundation and are insufficient in providing native NDR capabilities and visibility, leaving critical gaps that attackers can exploit. This is reflected in the current security market, with 57% of organizations reporting that they plan to integrate network security products into their current XDR toolset[1].

Why settling is risky and how to unlock SOC efficiency

The result of these shortcomings within the security solutions market is an acceptance of inevitable risk. From false positives driving the barrage of alerts, to the siloed tooling that requires manual integration, and the lack of multi-domain visibility requiring human intervention for business context, security teams have accepted that not all alerts can be triaged or investigated.

While prioritization and processes have improved, the SOC is operating under a model that is overrun with alerts that lack context, meaning that not all of them can be investigated because there is simply too much for humans to parse through. Thus, teams accept the risk of leaving many alerts uninvestigated, rather than finding a solution to eliminate that risk altogether.

Darktrace / NETWORK is designed for your Security Operations Center to eliminate alert triage with AI-led investigations , and rapidly detect and respond to known and unknown threats. This includes the ability to scale into other environments in your infrastructure including cloud, OT, and more.

Beyond global threat intelligence: Self-Learning AI enables novel threat detection & response

Darktrace does not rely on known malware signatures, external threat intelligence, historical attack data, nor does it rely on threat trained machine learning to identify threats.

Darktrace’s unique Self-learning AI deeply understands your business environment by analyzing trillions of real-time events that understands your normal ‘pattern of life’, unique to your business. By connecting isolated incidents across your business, including third party alerts and telemetry, Darktrace / NETWORK uses anomaly chains to identify deviations from normal activity.

The benefit to this is that when we are not predefining what we are looking for, we can spot new threats, allowing end users to identify both known threats and subtle, never-before-seen indicators of malicious activity that traditional solutions may miss if they are only looking at historical attack data.

AI-led investigations empower your SOC to prioritize what matters

Anomaly detection is often criticized for yielding high false positives, as it flags deviations from expected patterns that may not necessarily indicate a real threat or issues. However, Darktrace applies an investigation engine to automate alert triage and address alert fatigue.

Darktrace’s Cyber AI Analyst revolutionizes security operations by conducting continuous, full investigations across Darktrace and third-party alerts, transforming the alert triage process. Instead of addressing only a fraction of the thousands of daily alerts, Cyber AI Analyst automatically investigates every relevant alert, freeing up your team to focus on high-priority incidents and close security gaps.

Powered by advanced machine-learning techniques, including unsupervised learning, models trained by expert analysts, and tailored security language models, Cyber AI Analyst emulates human investigation skills, testing hypotheses, analyzing data, and drawing conclusions. According to Darktrace Internal Research, Cyber AI Analyst typically provides a SOC with up to  50,000 additional hours of Level 2 analysis and written reporting annually, enriching security operations by producing high level incident alerts with full details so that human analysts can focus on Level 3 tasks.

Containing threats with Autonomous Response

Simply quarantining a device is rarely the best course of action - organizations need to be able to maintain normal operations in the face of threats and choose the right course of action. Different organizations also require tailored response functions because they have different standards and protocols across a variety of unique devices. Ultimately, a ‘one size fits all’ approach to automated response actions puts organizations at risk of disrupting business operations.

Darktrace’s Autonomous Response tailors its actions to contain abnormal behavior across users and digital assets by understanding what is normal and stopping only what is not. Unlike blanket quarantines, it delivers a bespoke approach, blocking malicious activities that deviate from regular patterns while ensuring legitimate business operations remain uninterrupted.

Darktrace offers fully customizable response actions, seamlessly integrating with your workflows through hundreds of native integrations and an open API. It eliminates the need for costly development, natively disarming threats in seconds while extending capabilities with third-party tools like firewalls, EDR, SOAR, and ITSM solutions.

Unlocking a proactive state of security

Securing the network isn’t just about responding to incidents — it’s about being proactive, adaptive, and prepared for the unexpected. The NIST Cybersecurity Framework (CSF 2.0) emphasizes this by highlighting the need for focused risk management, continuous incident response (IR) refinement, and seamless integration of these processes with your detection and response capabilities.

Despite advancements in security technology, achieving a proactive posture is still a challenge to overcome because SOC teams face inefficiencies from reliance on pattern-matching tools, which generate excessive false positives and leave many alerts unaddressed, while novel threats go undetected. If SOC teams are spending all their time investigating alerts then there is no time spent getting ahead of attacks.

Achieving proactive network resilience — a state where organizations can confidently address challenges at every stage of their security posture — requires strategically aligned solutions that work seamlessly together across the attack lifecycle.

References

1.       Market Guide for Extended Detection and Response, Gartner, 17thAugust 2023 - ID G00761828

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI