Blog
/
Cloud
/
January 13, 2025

Agent vs. Agentless Cloud Security: Why Deployment Methods Matter

Cloud security solutions can be deployed with agentless or agent-based approaches or use a combination of methods. Organizations must weigh which method applies best to the assets and data the tool will protect.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Kellie Regan
Director, Product Marketing - Cloud Security
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Jan 2025

The rapid adoption of cloud technologies has brought significant security challenges for organizations of all sizes. According to recent studies, over 70% of enterprises now operate in hybrid or multi-cloud environments, with 93% employing a multi-cloud strategy[1]. This complexity requires robust security tools, but opinions vary on the best deployment method—agent-based, agentless, or a combination of both.

Agent-based and agentless cloud security approaches offer distinct benefits and limitations, and organizations often make deployment choices based on their unique needs depending on the function of the specific assets covered, the types of data stored, and cloud architecture, such as hybrid or multi-cloud deployments.

For example, agentless solutions are increasingly favored for their ease of deployment and ability to provide broad visibility across dynamic cloud environments. These are especially useful for DevOps teams, with 64% of organizations citing faster deployment as a key reason for adopting agentless tools[2].

On the other hand, agent-based solutions remain the preferred choice for environments requiring deep monitoring and granular control, such as securing sensitive high-value workloads in industries like finance and healthcare. In fact, over 50% of enterprises with critical infrastructure report relying on agent-based solutions for their advanced protection capabilities[3].

As the debate continues, many organizations are turning to combined approaches, leveraging the strengths of both agent-based and agentless tools to address the full spectrum of their security needs for comprehensive coverage. Understanding the capabilities and limitations of these methods is critical to building an effective cloud security strategy that adapts to evolving threats and complex infrastructures.

Agent-based cloud security

Agent-based security solutions involve deploying software agents on each device or system that needs protection. Agent-based solutions are great choices when you need in-depth monitoring and protection capabilities. They are ideal for organizations that require deep security controls and real-time active response, particularly in hybrid and on-premises environments.

Key advantages include:

1. Real-time monitoring and protection: Agents detect and block threats like malware, ransomware, and anomalous behaviors in real time, providing ongoing protection and enforcing compliance by continuously monitoring workload activities.  Agents enable full control over workloads for active response such as blocking IP addresses, killing processes, disabling accounts, and isolating infected systems from the network, stopping lateral movement.

2. Deep visibility for hybrid environments: Agent-based approaches allow for full visibility across on-premises, hybrid, and multi-cloud environments by deploying agents on physical and virtual machines. Agents offer detailed insights into system behavior, including processes, files, memory, network connections, and more, detecting subtle anomalies that might indicate security threats. Host-based monitoring tracks vulnerabilities at the system and application level, including unpatched software, rogue processes, and unauthorized network activity.

3. Comprehensive coverage: Agents are very effective in hybrid environments (cloud and on-premises), as they can be installed on both physical and virtual machines.  Agents can function independently on each host device onto which they are installed, which is especially helpful for endpoints that may operate outside of constant network connectivity.

Challenges:

1. Resource-intensive: Agents can consume CPU, memory, and network resources, which may affect performance, especially in environments with large numbers of workloads or ephemeral resources.

2. Challenging in dynamic environments: Managing hundreds or thousands of agents in highly dynamic or ephemeral environments (e.g., containers, serverless functions) can be complex and labor-intensive.

3. Slower deployment: Requires agent installation on each workload or instance, which can be time-consuming, particularly in large or complex environments.  

Agentless cloud security

Agentless security does not require software agents to be installed on each device. Instead, it uses cloud infrastructure and APIs to perform security checks. Agentless solutions are highly scalable with minimal impact on performance, and ideal for cloud-native and highly dynamic environments like serverless and containerized. These solutions are great choices for your cloud-native and multi-cloud environments where rapid deployment, scalability, and minimal impact on performance are critical, but response actions can be handled through external tools or manual processes.

Key advantages include:

1. Scalability and ease of deployment: Because agentless security doesn’t require installation on each individual device, it is much easier to deploy and can quickly scale across a vast number of cloud assets. This approach is ideal for environments where resources are frequently created and destroyed (e.g., serverless, containerized workloads), as there is no need for agent installation or maintenance.

2. Reduced system overhead: Without the need to run local agents, agentless security minimizes the impact on system performance. This is crucial in high-performance environments.

3. Broad visibility: Agentless security connects via API to cloud service providers, offering near-instant visibility and threat detection. It provides a comprehensive view of your cloud environment, making it easier to manage and secure large and complex infrastructures.

Challenges

1. Infrastructure-level monitoring: Agentless solutions rely on cloud service provider logs and API calls, meaning that detection might not be as immediate as agent-based solutions. They collect configuration data and logs, focusing on infrastructure misconfigurations, identity risks, exposed resources, and network traffic, but lack visibility and access to detailed, system-level information such as running processes and host-level vulnerabilities.

2. Cloud-focused: Primarily for cloud environments, although some tools may integrate with on-premises systems through API-based data gathering. For organizations with hybrid cloud environments, this approach fragments visibility and security, leading to blind spots and increasing security risk.

3. Passive remediation: Typically provides alerts and recommendations, but lacks deep control over workloads, requiring manual intervention or orchestration tools (e.g., SOAR platforms) to execute responses. Some agentless tools trigger automated responses via cloud provider APIs (e.g., revoking permissions, adjusting security groups), but with limited scope.

Combined agent-based and agentless approaches

A combined approach leverages the strengths of both agent-based and agentless security for complete coverage. This hybrid strategy helps security teams achieve comprehensive coverage by:

  • Using agent-based solutions for deep, real-time protection and detailed monitoring of critical systems or sensitive workloads.
  • Employing agentless solutions for fast deployment, broader visibility, and easier scalability across all cloud assets, which is particularly useful in dynamic cloud environments where workloads frequently change.

The combined approach has distinct practical applications. For example, imagine a financial services company that deals with sensitive transactions. Its security team might use agent-based security for critical databases to ensure stringent protections are in place. Meanwhile, agentless solutions could be ideal for less critical, transient workloads in the cloud, where rapid scalability and minimal performance impact are priorities. With different data types and infrastructures, the combined approach is best.

Best of both worlds: The benefits of a combined approach

The combined approach not only maximizes security efficacy but also aligns with diverse operational needs. This means that all parts of the cloud environment are secured according to their risk profile and functional requirements. Agent-based deployment provides in-depth monitoring and active protection against threats, suitable for environments requiring tight security controls, such as financial services or healthcare data processing systems. Agentless deployment complements agents by offering broader visibility and easier scalability across diverse and dynamic cloud environments, ideal for rapidly changing cloud resources.

There are three major benefits from combining agent-based and agentless approaches.

1. Building a holistic security posture: By integrating both agent-based and agentless technologies, organizations can ensure that all parts of their cloud environments are covered—from persistent, high-risk endpoints to transient cloud resources. This comprehensive coverage is crucial for detecting and responding to threats promptly and effectively.

2. Reducing overhead while boosting scalability: Agentless systems require no software installation on each device, reducing overhead and eliminating the need to update and maintain agents on a large number of endpoints. This makes it easier to scale security as the organization grows or as the cloud environment changes.

3. Applying targeted protection where needed: Agent-based solutions can be deployed on selected assets that handle sensitive information or are critical to business operations, thus providing focused protection without incurring the costs and complexity of universal deployment.

Use cases for a combined approach

A combined approach gives security teams the flexibility to deploy agent-based and agentless solutions based on the specific security requirements of different assets and environments. As a result, organizations can optimize their security expenditures and operational efforts, allowing for greater adaptability in cloud security use cases.

Let’s take a look at how this could practically play out. In the combined approach, agent-based security can perform the following:

1. Deep monitoring and real-time protection:

  • Workload threat detection: Agent-based solutions monitor individual workloads for suspicious activity, such as unauthorized file changes or unusual resource usage, providing high granularity for detecting threats within critical cloud applications.
  • Behavioral analysis of applications: By deploying agents on virtual machines or containers, organizations can monitor behavior patterns and flag anomalies indicative of insider threats, lateral movement, or Advanced Persistent Threats (APTs).
  • Protecting high-sensitivity environments: Agents provide continuous monitoring and advanced threat protection for environments processing sensitive data, such as payment processing systems or healthcare records, leveraging capabilities like memory protection and file integrity monitoring.

2. Cloud asset protection:

  • Securing critical infrastructure: Agent-based deployments are ideal for assets like databases or storage systems that require real-time defense against exploits and ransomware.
  • Advanced packet inspection: For high-value assets, agents offer deep packet inspection and in-depth logging to detect stealthy attacks such as data exfiltration.
  • Customizable threat response: Agents allow for tailored security rules and automated responses at the workload level, such as shutting down compromised instances or quarantining infected files.

At the same time, agentless cloud security provides complementary benefits such as:

1. Broad visibility and compliance:

  • Asset discovery and management: Agentless systems can quickly scan the entire cloud environment to identify and inventory all assets, a crucial capability for maintaining compliance with regulations like GDPR or HIPAA, which require up-to-date records of data locations and usage.
  • Regulatory compliance auditing and configuration management: Quickly identify gaps in compliance frameworks like PCI DSS or SOC 2 by scanning configurations, permissions, and audit trails without installing agents. Using APIs to check configurations across cloud services ensures that all instances comply with organizational and regulatory standards, an essential aspect for maintaining security hygiene and compliance.
  • Shadow IT Detection: Detect and map unauthorized cloud services or assets that are spun up without security oversight, ensuring full inventory coverage.

2. Rapid environmental assessment:

  • Vulnerability assessment of new deployments: In environments where new code is frequently deployed, agentless security can quickly assess new instances, containers, or workloads in CI/CD pipelines for vulnerabilities and misconfigurations, enabling secure deployments at DevOps speed.
  • Misconfiguration alerts: Detect and alert on common cloud configuration issues, such as exposed storage buckets or overly permissive IAM roles, across cloud providers like AWS, Azure, and GCP.
  • Policy enforcement: Validate that new resources adhere to established security baselines and organizational policies, preventing security drift during rapid cloud scaling.

Combining agent-based and agentless approaches in cloud security not only maximizes the protective capabilities, but also offers flexibility, efficiency, and comprehensive coverage tailored to the diverse and evolving needs of modern cloud environments. This integrated strategy ensures that organizations can protect their assets more effectively while also adapting quickly to new threats and regulatory requirements.

Darktrace offers complementary and flexible deployment options for holistic cloud security

Powered by multilayered AI, Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that is agentless by default, with optional lightweight, host-based server agents for enhanced real-time actioning and deep inspection. As such, it can deploy in cloud environments in minutes and provide unified visibility and security across hybrid, multi-cloud environments.

With any deployment method, Darktrace supports multi-tenant, hybrid, and serverless cloud environments. Its Self-Learning AI learns the normal behavior across architectures, assets, and users to identify unusual activity that may indicate a threat. With this approach, Darktrace / CLOUD quickly disarms threats, whether they are known, unknown, or completely novel. It then accelerates the investigation process and responds to threats at machine speed.

Learn more about how Darktrace / CLOUD secures multi and hybrid cloud environments in the Solution Brief.

References:

1. Flexera 2023 State of the Cloud Report

2. ESG Research 2023 Report on Cloud-Native Security

3. Gartner, Market Guide for Cloud Workload Protection Platforms, 2023

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Kellie Regan
Director, Product Marketing - Cloud Security

More in this series

No items found.

Blog

/

Email

/

June 18, 2025

Darktrace Collaborates with Microsoft: Unifying Email Security with a Shared Vision

Default blog imageDefault blog image

In today’s threat landscape, email remains the most targeted vector for cyberattacks. Organizations require not only multi-layered defenses but also advanced, integrated systems that work collaboratively to proactively mitigate threats before they cause damage

That’s why we’re proud to announce a new integration between Darktrace / EMAIL and Microsoft Defender for Office 365, delivering a Unified Quarantine experience that empowers security teams with seamless visibility, control, and response across both platforms.

This announcement builds on a strong and growing collaboration. In 2024, Darktrace was honored as Microsoft UK Partner of the Year and recognized as a Security Trailblazer at the annual Microsoft Security 20/20 Awards, a testament to our shared commitment to innovation and customer-centric security.

A Shared Mission: Stopping Threats at Machine Speed

This integration is more than a technical milestone,as it’s a reflection of a shared mission: to protect organizations from both known and unknown threats, with efficiency, accuracy, and transparency.

  • Microsoft Defender for Office 365 delivers a comprehensive security framework that safeguards Microsoft 365 email and collaboration workloads leveraging advanced AI, global threat intelligence and information on known attack infrastructure.
  • Darktrace / EMAIL complements this with Self-Learning AI that understands the unique communication patterns within each organization, detecting subtle anomalies that evade traditional detection methods.

Together, we’re delivering multi-layered, adaptive protection that’s greater than the sum of its parts.

“Our integration with Microsoft gives security teams the tools they need to act faster and more precisely to detect and respond to threats,” said Jill Popelka, CEO of Darktrace. “Together, we’re strengthening defenses where it matters most to our customers: at the inbox.”

Unified Quarantine: One View, Total Clarity

The new Unified Quarantine experience gives customers a single pane of glass to view and manage email threatsregardless of which product took action. This means:

  • Faster investigations with consolidated visibility
  • Clear attribution of actions and outcomes across both platforms
  • Streamlined workflows for security teams managing complex environments

“This integration is a testament to the power of combining Microsoft’s global threat intelligence with Darktrace’s unique ability to understand the ‘self’ of an organization,” said Jack Stockdale, CTO of Darktrace. “Together, we’re delivering a new standard in proactive, adaptive email security.”

A New Era of Collaborative Cyber Defense

This collaboration represents a broader shift in cybersecurity: from siloed tools to integrated ecosystems. As attackers become more sophisticated, defenders must move faster, smarter, and in unison.

Through this integration, Darktrace and Microsoft establish a new standard for collaboration between native and third-party security solutions, enhancing not only threat detection but also comprehensive understanding and proactive measures against threats.

We’re excited to bring this innovation to our customers and continue building a future where AI and human expertise collaborate to secure the enterprise.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Network

/

June 19, 2025

Customer Case Study: Leading Petrochemical Manufacturer

Default blog imageDefault blog image

Headquartered in Saudi Arabia, this industry leading petrochemical manufacturer serves customers in more than 80 countries across diverse markets throughout Europe, Africa, Latin America, the Middle East, China, and Southeast Asia.

Cyber resiliency critical to growth strategy

This leading petrochemical manufacturer’s vision is to be one of the major global players in the production and marketing of designated petrochemicals and downstream products. The company aims to significantly increase its capacity to up to a million metric tons within the next few years.

With cyber-attacks on critical infrastructure increasing 30% globally last year, cyber resiliency is essential to supporting the company’s strategic business goals of:

  • Maximizing production through efficient asset utilization
  • Maximizing sales by conducting 90% of its business outside Saudi Arabia
  • Optimizing resources and processes by integrating with UN Global Compact principles for sustainability and efficiency
  • Growing its business portfolio by engaging in joint ventures to diversify production and add value to the economy

However, the industry leader faced several challenges in its drive to fortify its cybersecurity defenses.

Visibility gaps delay response time

The company’s existing security setup provided limited visibility to the in-house security team, hindering its ability to detect anomalous network and user activity in real time. This resulted in delayed responses to potential incidents, making proactive issue resolution difficult and any remediation in the event of a successful attack costly and time-consuming.

Manual detection drains resources

Without automated detection and response capabilities, the organization’s security team had to manually monitor for suspicious activity – a time-consuming and inefficient approach that strained resources and left the organization vulnerable. This made it difficult for the team to stay current with training or acquire new skills and certifications, which are core to the ethos of both the company’s owners and the team itself.

Cyber-attacks on critical infrastructure increasing

The petrochemical manufacturer is part of a broader ecosystem of companies, making the protection of its supply chain – both upstream and downstream – critical. With several manufacturing entities and multiple locations, the customer’s internal structure is complex and challenging to secure. As cyber-attacks on critical infrastructure escalate, it needed a more comprehensive approach to safeguard its business and the wider ecosystem.

Keeping and growing skills and focus in-house

To strengthen its cybersecurity strategy, the company considered two options:

  1. Make a significant initial and ongoing investment in a Security Operations Center (SOC), which would involve skills development outside the company and substantial management overhead.
  2. Use a combination of new, automated tools and an outsourced Managed Detection and Response (MDR) service to reduce the burden on internal security specialists and allow the company to invest in upskilling its staff so they can focus on more strategic tasks.

Faced with this choice between entirely outsourcing security and augmenting the security team with new capabilities, the customer chose the second option, selecting Darktrace to automate the company’s monitoring, detection, and response. Today, the petrochemical manufacturer is using:

Extending the SOC with 24/7 expert support

To alleviate the burden on its lean security team, the company augmented its in-house capabilities with Darktrace’s Managed Detection & Response service. This support acts as an extension of its SOC, providing 24/7 monitoring, investigation, and escalation of high-priority threats. With Darktrace’s global SOC managing alert triage and autonomously containing threats, the organization’s internal team can focus on strategic initiatives. The result is a stronger security posture and increased capacity to proactively address evolving cyber risks – without expanding headcount or sacrificing visibility.

A unique approach to AI

In its search for a new security platform, the company’s Director of Information Technology said Darktrace’s autonomous response capability, coupled with Self-Learning AI-driven threat reduction, were two big reasons for selecting Darktrace over competing products and services.

AI was a huge factor – no one else was doing what Darktrace was doing with [AI].”

Demonstrated visibility

Before Darktrace, the customer had no visibility into the network activity to and from remote worker devices. Some employees need the ability to connect to its networks at any time and from any location, including the Director of Information Technology. The trial deployment of Darktrace / ENDPOINT was a success and gave the team peace of mind that, no matter the location or device, high-value remote workers were protected by Darktrace.

Modular architecture  

Darktrace's modular architecture allowed the company to deploy security controls across its complex, multi-entity environment. The company’s different locations run on segregated networks but are still interconnected and need to be protected. Darktrace / NETWORK provides a unified view and coordinated security response across the organization’s entire network infrastructure, including endpoint devices.

Results

The petrochemical manufacturer is using Darktrace across all of its locations and has achieved total visibility across network and user activity. “Darktrace is increasing in value every day,” said the Director of Information Technology.

I don’t have a big team, and Darktrace makes our lives very, very easy, not least the automation of some of the tasks that require constant manual review.”

Time savings frees analysts to focus on proactive security

Darktrace / NETWORK provides continuous, AI-driven monitoring and analysis of the company’s network activity, user behavior, and threat patterns, establishing a baseline of what normal activity looks like, and then alerting analysts to any deviations from normal traffic, activity, and behaviors. Darktrace’s autonomous response capabilities speed up response to detected threats, meaning intervention from the security team is required for fewer incidents and alerts.

In October 2024 alone, Darktrace Cyber AI Analyst saved the team 810 investigation hours, and autonomously responded to 180 anomalous behaviors that were uncovered during the investigations. With Darktrace managing the majority of threat detection and response efforts, the security team has been able to change its day-to-day activity from manual review of traffic and alerts and belated response to activity, to proactively fortifying its detection and response posture and upskilling to meet evolving requirements.  

Layered email protection reduces phishing threats

The company’s email infrastructure posed a challenge due to petrochemical industry regulations requiring on-premises email servers, with some security delivered via Microsoft Azure. By integrating Darktrace / EMAIL into the Azure stack, the organization has reduced the volume of phishing emails its users receive by 5%.

“Now we have one more layer of security related to email – every email goes through two filters. If something is not being caught or traced by Azure, it is being detected by Darktrace,” said the Director of Information Technology. “As a result, we’re now seeing only about 15% to 20% of the phishing emails we used to receive before implementing Darktrace.”

Preparing for a secure future

The time saved using Darktrace has helped the security team take proactive steps, including preparing for new cyber resilience regulations for Saudi Arabia’s Critical National Infrastructure, as mandated by the National Cybersecurity Authority (NCA).

“The team now has ample time to prepare policies and procedures that meet the new NCA regulations and, in some cases, enhance the requirements of the new law,” said the Director of Information Technology. “All of this is possible because they don’t need to keep watch; Darktrace takes on so much of that task for them.”

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI