Blog
/
Cloud
/
January 13, 2025

Agent vs. Agentless Cloud Security: Why Deployment Methods Matter

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Jan 2025
Cloud security solutions can be deployed with agentless or agent-based approaches or use a combination of methods. Organizations must weigh which method applies best to the assets and data the tool will protect.

The rapid adoption of cloud technologies has brought significant security challenges for organizations of all sizes. According to recent studies, over 70% of enterprises now operate in hybrid or multi-cloud environments, with 93% employing a multi-cloud strategy[1]. This complexity requires robust security tools, but opinions vary on the best deployment method—agent-based, agentless, or a combination of both.

Agent-based and agentless cloud security approaches offer distinct benefits and limitations, and organizations often make deployment choices based on their unique needs depending on the function of the specific assets covered, the types of data stored, and cloud architecture, such as hybrid or multi-cloud deployments.

For example, agentless solutions are increasingly favored for their ease of deployment and ability to provide broad visibility across dynamic cloud environments. These are especially useful for DevOps teams, with 64% of organizations citing faster deployment as a key reason for adopting agentless tools[2].

On the other hand, agent-based solutions remain the preferred choice for environments requiring deep monitoring and granular control, such as securing sensitive high-value workloads in industries like finance and healthcare. In fact, over 50% of enterprises with critical infrastructure report relying on agent-based solutions for their advanced protection capabilities[3].

As the debate continues, many organizations are turning to combined approaches, leveraging the strengths of both agent-based and agentless tools to address the full spectrum of their security needs for comprehensive coverage. Understanding the capabilities and limitations of these methods is critical to building an effective cloud security strategy that adapts to evolving threats and complex infrastructures.

Agent-based cloud security

Agent-based security solutions involve deploying software agents on each device or system that needs protection. Agent-based solutions are great choices when you need in-depth monitoring and protection capabilities. They are ideal for organizations that require deep security controls and real-time active response, particularly in hybrid and on-premises environments.

Key advantages include:

1. Real-time monitoring and protection: Agents detect and block threats like malware, ransomware, and anomalous behaviors in real time, providing ongoing protection and enforcing compliance by continuously monitoring workload activities.  Agents enable full control over workloads for active response such as blocking IP addresses, killing processes, disabling accounts, and isolating infected systems from the network, stopping lateral movement.

2. Deep visibility for hybrid environments: Agent-based approaches allow for full visibility across on-premises, hybrid, and multi-cloud environments by deploying agents on physical and virtual machines. Agents offer detailed insights into system behavior, including processes, files, memory, network connections, and more, detecting subtle anomalies that might indicate security threats. Host-based monitoring tracks vulnerabilities at the system and application level, including unpatched software, rogue processes, and unauthorized network activity.

3. Comprehensive coverage: Agents are very effective in hybrid environments (cloud and on-premises), as they can be installed on both physical and virtual machines.  Agents can function independently on each host device onto which they are installed, which is especially helpful for endpoints that may operate outside of constant network connectivity.

Challenges:

1. Resource-intensive: Agents can consume CPU, memory, and network resources, which may affect performance, especially in environments with large numbers of workloads or ephemeral resources.

2. Challenging in dynamic environments: Managing hundreds or thousands of agents in highly dynamic or ephemeral environments (e.g., containers, serverless functions) can be complex and labor-intensive.

3. Slower deployment: Requires agent installation on each workload or instance, which can be time-consuming, particularly in large or complex environments.  

Agentless cloud security

Agentless security does not require software agents to be installed on each device. Instead, it uses cloud infrastructure and APIs to perform security checks. Agentless solutions are highly scalable with minimal impact on performance, and ideal for cloud-native and highly dynamic environments like serverless and containerized. These solutions are great choices for your cloud-native and multi-cloud environments where rapid deployment, scalability, and minimal impact on performance are critical, but response actions can be handled through external tools or manual processes.

Key advantages include:

1. Scalability and ease of deployment: Because agentless security doesn’t require installation on each individual device, it is much easier to deploy and can quickly scale across a vast number of cloud assets. This approach is ideal for environments where resources are frequently created and destroyed (e.g., serverless, containerized workloads), as there is no need for agent installation or maintenance.

2. Reduced system overhead: Without the need to run local agents, agentless security minimizes the impact on system performance. This is crucial in high-performance environments.

3. Broad visibility: Agentless security connects via API to cloud service providers, offering near-instant visibility and threat detection. It provides a comprehensive view of your cloud environment, making it easier to manage and secure large and complex infrastructures.

Challenges

1. Infrastructure-level monitoring: Agentless solutions rely on cloud service provider logs and API calls, meaning that detection might not be as immediate as agent-based solutions. They collect configuration data and logs, focusing on infrastructure misconfigurations, identity risks, exposed resources, and network traffic, but lack visibility and access to detailed, system-level information such as running processes and host-level vulnerabilities.

2. Cloud-focused: Primarily for cloud environments, although some tools may integrate with on-premises systems through API-based data gathering. For organizations with hybrid cloud environments, this approach fragments visibility and security, leading to blind spots and increasing security risk.

3. Passive remediation: Typically provides alerts and recommendations, but lacks deep control over workloads, requiring manual intervention or orchestration tools (e.g., SOAR platforms) to execute responses. Some agentless tools trigger automated responses via cloud provider APIs (e.g., revoking permissions, adjusting security groups), but with limited scope.

Combined agent-based and agentless approaches

A combined approach leverages the strengths of both agent-based and agentless security for complete coverage. This hybrid strategy helps security teams achieve comprehensive coverage by:

  • Using agent-based solutions for deep, real-time protection and detailed monitoring of critical systems or sensitive workloads.
  • Employing agentless solutions for fast deployment, broader visibility, and easier scalability across all cloud assets, which is particularly useful in dynamic cloud environments where workloads frequently change.

The combined approach has distinct practical applications. For example, imagine a financial services company that deals with sensitive transactions. Its security team might use agent-based security for critical databases to ensure stringent protections are in place. Meanwhile, agentless solutions could be ideal for less critical, transient workloads in the cloud, where rapid scalability and minimal performance impact are priorities. With different data types and infrastructures, the combined approach is best.

Best of both worlds: The benefits of a combined approach

The combined approach not only maximizes security efficacy but also aligns with diverse operational needs. This means that all parts of the cloud environment are secured according to their risk profile and functional requirements. Agent-based deployment provides in-depth monitoring and active protection against threats, suitable for environments requiring tight security controls, such as financial services or healthcare data processing systems. Agentless deployment complements agents by offering broader visibility and easier scalability across diverse and dynamic cloud environments, ideal for rapidly changing cloud resources.

There are three major benefits from combining agent-based and agentless approaches.

1. Building a holistic security posture: By integrating both agent-based and agentless technologies, organizations can ensure that all parts of their cloud environments are covered—from persistent, high-risk endpoints to transient cloud resources. This comprehensive coverage is crucial for detecting and responding to threats promptly and effectively.

2. Reducing overhead while boosting scalability: Agentless systems require no software installation on each device, reducing overhead and eliminating the need to update and maintain agents on a large number of endpoints. This makes it easier to scale security as the organization grows or as the cloud environment changes.

3. Applying targeted protection where needed: Agent-based solutions can be deployed on selected assets that handle sensitive information or are critical to business operations, thus providing focused protection without incurring the costs and complexity of universal deployment.

Use cases for a combined approach

A combined approach gives security teams the flexibility to deploy agent-based and agentless solutions based on the specific security requirements of different assets and environments. As a result, organizations can optimize their security expenditures and operational efforts, allowing for greater adaptability in cloud security use cases.

Let’s take a look at how this could practically play out. In the combined approach, agent-based security can perform the following:

1. Deep monitoring and real-time protection:

  • Workload threat detection: Agent-based solutions monitor individual workloads for suspicious activity, such as unauthorized file changes or unusual resource usage, providing high granularity for detecting threats within critical cloud applications.
  • Behavioral analysis of applications: By deploying agents on virtual machines or containers, organizations can monitor behavior patterns and flag anomalies indicative of insider threats, lateral movement, or Advanced Persistent Threats (APTs).
  • Protecting high-sensitivity environments: Agents provide continuous monitoring and advanced threat protection for environments processing sensitive data, such as payment processing systems or healthcare records, leveraging capabilities like memory protection and file integrity monitoring.

2. Cloud asset protection:

  • Securing critical infrastructure: Agent-based deployments are ideal for assets like databases or storage systems that require real-time defense against exploits and ransomware.
  • Advanced packet inspection: For high-value assets, agents offer deep packet inspection and in-depth logging to detect stealthy attacks such as data exfiltration.
  • Customizable threat response: Agents allow for tailored security rules and automated responses at the workload level, such as shutting down compromised instances or quarantining infected files.

At the same time, agentless cloud security provides complementary benefits such as:

1. Broad visibility and compliance:

  • Asset discovery and management: Agentless systems can quickly scan the entire cloud environment to identify and inventory all assets, a crucial capability for maintaining compliance with regulations like GDPR or HIPAA, which require up-to-date records of data locations and usage.
  • Regulatory compliance auditing and configuration management: Quickly identify gaps in compliance frameworks like PCI DSS or SOC 2 by scanning configurations, permissions, and audit trails without installing agents. Using APIs to check configurations across cloud services ensures that all instances comply with organizational and regulatory standards, an essential aspect for maintaining security hygiene and compliance.
  • Shadow IT Detection: Detect and map unauthorized cloud services or assets that are spun up without security oversight, ensuring full inventory coverage.

2. Rapid environmental assessment:

  • Vulnerability assessment of new deployments: In environments where new code is frequently deployed, agentless security can quickly assess new instances, containers, or workloads in CI/CD pipelines for vulnerabilities and misconfigurations, enabling secure deployments at DevOps speed.
  • Misconfiguration alerts: Detect and alert on common cloud configuration issues, such as exposed storage buckets or overly permissive IAM roles, across cloud providers like AWS, Azure, and GCP.
  • Policy enforcement: Validate that new resources adhere to established security baselines and organizational policies, preventing security drift during rapid cloud scaling.

Combining agent-based and agentless approaches in cloud security not only maximizes the protective capabilities, but also offers flexibility, efficiency, and comprehensive coverage tailored to the diverse and evolving needs of modern cloud environments. This integrated strategy ensures that organizations can protect their assets more effectively while also adapting quickly to new threats and regulatory requirements.

Darktrace offers complementary and flexible deployment options for holistic cloud security

Powered by multilayered AI, Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that is agentless by default, with optional lightweight, host-based server agents for enhanced real-time actioning and deep inspection. As such, it can deploy in cloud environments in minutes and provide unified visibility and security across hybrid, multi-cloud environments.

With any deployment method, Darktrace supports multi-tenant, hybrid, and serverless cloud environments. Its Self-Learning AI learns the normal behavior across architectures, assets, and users to identify unusual activity that may indicate a threat. With this approach, Darktrace / CLOUD quickly disarms threats, whether they are known, unknown, or completely novel. It then accelerates the investigation process and responds to threats at machine speed.

Learn more about how Darktrace / CLOUD secures multi and hybrid cloud environments in the Solution Brief.

References:

1. Flexera 2023 State of the Cloud Report

2. ESG Research 2023 Report on Cloud-Native Security

3. Gartner, Market Guide for Cloud Workload Protection Platforms, 2023

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Kellie Regan
Director, Product Marketing - Cloud Security
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Network

/

March 13, 2025

Darktrace's Detection of State-Linked ShadowPad Malware

Default blog imageDefault blog image

An integral part of cybersecurity is anomaly detection, which involves identifying unusual patterns or behaviors in network traffic that could indicate malicious activity, such as a cyber-based intrusion. However, attribution remains one of the ever present challenges in cybersecurity. Attribution involves the process of accurately identifying and tracing the source to a specific threat actor(s).

Given the complexity of digital networks and the sophistication of attackers who often use proxies or other methods to disguise their origin, pinpointing the exact source of a cyberattack is an arduous task. Threat actors can use proxy servers, botnets, sophisticated techniques, false flags, etc. Darktrace’s strategy is rooted in the belief that identifying behavioral anomalies is crucial for identifying both known and novel threat actor campaigns.

The ShadowPad cluster

Between July 2024 and November 2024, Darktrace observed a cluster of activity threads sharing notable similarities. The threads began with a malicious actor using compromised user credentials to log in to the target organization's Check Point Remote Access virtual private network (VPN) from an attacker-controlled, remote device named 'DESKTOP-O82ILGG'.  In one case, the IP from which the initial login was carried out was observed to be the ExpressVPN IP address, 194.5.83[.]25. After logging in, the actor gained access to service account credentials, likely via exploitation of an information disclosure vulnerability affecting Check Point Security Gateway devices. Recent reporting suggests this could represent exploitation of CVE-2024-24919 [27,28]. The actor then used these compromised service account credentials to move laterally over RDP and SMB, with files related to the modular backdoor, ShadowPad, being delivered to the  ‘C:\PerfLogs\’ directory of targeted internal systems. ShadowPad was seen communicating with its command-and-control (C2) infrastructure, 158.247.199[.]185 (dscriy.chtq[.]net), via both HTTPS traffic and DNS tunneling, with subdomains of the domain ‘cybaq.chtq[.]net’ being used in the compromised devices’ TXT DNS queries.

Darktrace’s Advanced Search data showing the VPN-connected device initiating RDP connections to a domain controller (DC). The device subsequently distributes likely ShadowPad-related payloads and makes DRSGetNCChanges requests to a second DC.
Figure 1: Darktrace’s Advanced Search data showing the VPN-connected device initiating RDP connections to a domain controller (DC). The device subsequently distributes likely ShadowPad-related payloads and makes DRSGetNCChanges requests to a second DC.
Event Log data showing a DC making DNS queries for subdomains of ‘cbaq.chtq[.]net’ to 158.247.199[.]185 after receiving SMB and RDP connections from the VPN-connected device, DESKTOP-O82ILGG.
Figure 2: Event Log data showing a DC making DNS queries for subdomains of ‘cbaq.chtq[.]net’ to 158.247.199[.]185 after receiving SMB and RDP connections from the VPN-connected device, DESKTOP-O82ILGG.

Darktrace observed these ShadowPad activity threads within the networks of European-based customers in the manufacturing and financial sectors.  One of these intrusions was followed a few months later by likely state-sponsored espionage activity, as detailed in the investigation of the year in Darktrace’s Annual Threat Report 2024.

Related ShadowPad activity

Additional cases of ShadowPad were observed across Darktrace’s customer base in 2024. In some cases, common C2 infrastructure with the cluster discussed above was observed, with dscriy.chtq[.]net and cybaq.chtq[.]net both involved; however, no other common features were identified. These ShadowPad infections were observed between April and November 2024, with customers across multiple regions and sectors affected.  Darktrace’s observations align with multiple other public reports that fit the timeframe of this campaign.

Darktrace has also observed other cases of ShadowPad without common infrastructure since September 2024, suggesting the use of this tool by additional threat actors.

The data theft thread

One of the Darktrace customers impacted by the ShadowPad cluster highlighted above was a European manufacturer. A distinct thread of activity occurred within this organization’s network several months after the ShadowPad intrusion, in October 2024.

The thread involved the internal distribution of highly masqueraded executable files via Sever Message Block (SMB) and WMI (Windows Management Instrumentation), the targeted collection of sensitive information from an internal server, and the exfiltration of collected information to a web of likely compromised sites. This observed thread of activity, therefore, consisted of three phrases: lateral movement, collection, and exfiltration.

The lateral movement phase began when an internal user device used an administrative credential to distribute files named ‘ProgramData\Oracle\java.log’ and 'ProgramData\Oracle\duxwfnfo' to the c$ share on another internal system.  

Darktrace model alert highlighting an SMB write of a file named ‘ProgramData\Oracle\java.log’ to the c$ share on another device.
Figure 3: Darktrace model alert highlighting an SMB write of a file named ‘ProgramData\Oracle\java.log’ to the c$ share on another device.

Over the next few days, Darktrace detected several other internal systems using administrative credentials to upload files with the following names to the c$ share on internal systems:

ProgramData\Adobe\ARM\webservices.dll

ProgramData\Adobe\ARM\wksprt.exe

ProgramData\Oracle\Java\wksprt.exe

ProgramData\Oracle\Java\webservices.dll

ProgramData\Microsoft\DRM\wksprt.exe

ProgramData\Microsoft\DRM\webservices.dll

ProgramData\Abletech\Client\webservices.dll

ProgramData\Abletech\Client\client.exe

ProgramData\Adobe\ARM\rzrmxrwfvp

ProgramData\3Dconnexion\3DxWare\3DxWare.exe

ProgramData\3Dconnexion\3DxWare\webservices.dll

ProgramData\IDMComp\UltraCompare\updater.exe

ProgramData\IDMComp\UltraCompare\webservices.dll

ProgramData\IDMComp\UltraCompare\imtrqjsaqmm

Cyber AI Analyst highlighting an SMB write of a file named ‘ProgramData\Adobe\ARM\webservices.dll’ to the c$ share on an internal system.
Figure 4: Cyber AI Analyst highlighting an SMB write of a file named ‘ProgramData\Adobe\ARM\webservices.dll’ to the c$ share on an internal system.

The threat actor appears to have abused the Microsoft RPC (MS-RPC) service, WMI, to execute distributed payloads, as evidenced by the ExecMethod requests to the IWbemServices RPC interface which immediately followed devices’ SMB uploads.  

Cyber AI Analyst data highlighting a thread of activity starting with an SMB data upload followed by ExecMethod requests.
Figure 5: Cyber AI Analyst data highlighting a thread of activity starting with an SMB data upload followed by ExecMethod requests.

Several of the devices involved in these lateral movement activities, both on the source and destination side, were subsequently seen using administrative credentials to download tens of GBs of sensitive data over SMB from a specially selected server.  The data gathering stage of the threat sequence indicates that the threat actor had a comprehensive understanding of the organization’s system architecture and had precise objectives for the information they sought to extract.

Immediately after collecting data from the targeted server, devices went on to exfiltrate stolen data to multiple sites. Several other likely compromised sites appear to have been used as general C2 infrastructure for this intrusion activity. The sites used by the threat actor for C2 and data exfiltration purport to be sites for companies offering a variety of service, ranging from consultancy to web design.

Screenshot of one of the likely compromised sites used in the intrusion. 
Figure 6: Screenshot of one of the likely compromised sites used in the intrusion.

At least 16 sites were identified as being likely data exfiltration or C2 sites used by this threat actor in their operation against this organization. The fact that the actor had such a wide web of compromised sites at their disposal suggests that they were well-resourced and highly prepared.  

Darktrace model alert highlighting an internal device slowly exfiltrating data to the external endpoint, yasuconsulting[.]com.
Figure 7: Darktrace model alert highlighting an internal device slowly exfiltrating data to the external endpoint, yasuconsulting[.]com.
Darktrace model alert highlighting an internal device downloading nearly 1 GB of data from an internal system just before uploading a similar volume of data to another suspicious endpoint, www.tunemmuhendislik[.]com    
Figure 8: Darktrace model alert highlighting an internal device downloading nearly 1 GB of data from an internal system just before uploading a similar volume of data to another suspicious endpoint, www.tunemmuhendislik[.]com  

Cyber AI Analyst spotlight

Cyber AI Analyst identifying and piecing together the various steps of a ShadowPad intrusion.
Figure 9: Cyber AI Analyst identifying and piecing together the various steps of a ShadowPad intrusion.  
Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.
Figure 10: Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.

As shown in the above figures, Cyber AI Analyst’s ability to thread together the different steps of these attack chains are worth highlighting.

In the ShadowPad attack chains, Cyber AI Analyst was able to identify SMB writes from the VPN subnet to the DC, and the C2 connections from the DC. It was also able to weave together this activity into a single thread representing the attacker’s progression.

Similarly, in the data exfiltration attack chain, Cyber AI Analyst identified and connected multiple types of lateral movement over SMB and WMI and external C2 communication to various external endpoints, linking them in a single, connected incident.

These Cyber AI Analyst actions enabled a quicker understanding of the threat actor sequence of events and, in some cases, faster containment.

Attribution puzzle

Publicly shared research into ShadowPad indicates that it is predominantly used as a backdoor in People’s Republic of China (PRC)-sponsored espionage operations [5][6][7][8][9][10]. Most publicly reported intrusions involving ShadowPad  are attributed to the China-based threat actor, APT41 [11][12]. Furthermore, Google Threat Intelligence Group (GTIG) recently shared their assessment that ShadowPad usage is restricted to clusters associated with APT41 [13]. Interestingly, however, there have also been public reports of ShadowPad usage in unattributed intrusions [5].

The data theft activity that later occurred in the same Darktrace customer network as one of these ShadowPad compromises appeared to be the targeted collection and exfiltration of sensitive data. Such an objective indicates the activity may have been part of a state-sponsored operation. The tactics, techniques, and procedures (TTPs), artifacts, and C2 infrastructure observed in the data theft thread appear to resemble activity seen in previous Democratic People’s Republic of Korea (DPRK)-linked intrusion activities [15] [16] [17] [18] [19].

The distribution of payloads to the following directory locations appears to be a relatively common behavior in DPRK-sponsored intrusions.

Observed examples:

C:\ProgramData\Oracle\Java\  

C:\ProgramData\Adobe\ARM\  

C:\ProgramData\Microsoft\DRM\  

C:\ProgramData\Abletech\Client\  

C:\ProgramData\IDMComp\UltraCompare\  

C:\ProgramData\3Dconnexion\3DxWare\

Additionally, the likely compromised websites observed in the data theft thread, along with some of the target URI patterns seen in the C2 communications to these sites, resemble those seen in previously reported DPRK-linked intrusion activities.

No clear evidence was found to link the ShadowPad compromise to the subsequent data theft activity that was observed on the network of the manufacturing customer. It should be noted, however, that no clear signs of initial access were found for the data theft thread – this could suggest the ShadowPad intrusion itself represents the initial point of entry that ultimately led to data exfiltration.

Motivation-wise, it seems plausible for the data theft thread to have been part of a DPRK-sponsored operation. DPRK is known to pursue targets that could potentially fulfil its national security goals and had been publicly reported as being active in months prior to this intrusion [21]. Furthermore, the timing of the data theft aligns with the ratification of the mutual defense treaty between DPRK and Russia and the subsequent accused activities [20].

Darktrace assesses with medium confidence that a nation-state, likely DPRK, was responsible, based on our investigation, the threat actor applied resources, patience, obfuscation, and evasiveness combined with external reporting, collaboration with the cyber community, assessing the attacker’s motivation and world geopolitical timeline, and undisclosed intelligence.

Conclusion

When state-linked cyber activity occurs within an organization’s environment, previously unseen C2 infrastructure and advanced evasion techniques will likely be used. State-linked cyber actors, through their resources and patience, are able to bypass most detection methods, leaving anomaly-based methods as a last line of defense.

Two threads of activity were observed within Darktrace’s customer base over the last year: The first operation involved the abuse of Check Point VPN credentials to log in remotely to organizations’ networks, followed by the distribution of ShadowPad to an internal domain controller. The second operation involved highly targeted data exfiltration from the network of one of the customers impacted by the previously mentioned ShadowPad activity.

Despite definitive attribution remaining unresolved, both the ShadowPad and data exfiltration activities were detected by Darktrace’s Self-Learning AI, with Cyber AI Analyst playing a significant role in identifying and piecing together the various steps of the intrusion activities.  

Credit to Sam Lister (R&D Detection Analyst), Emma Foulger (Principal Cyber Analyst), Nathaniel Jones (VP), and the Darktrace Threat Research team.

Appendices

Darktrace / NETWORK model alerts

User / New Admin Credentials on Client

Anomalous Connection / Unusual Admin SMB Session

Compliance / SMB Drive Write  

Device / Anomalous SMB Followed By Multiple Model Breaches

Anomalous File / Internal / Unusual SMB Script Write

User / New Admin Credentials on Client  

Anomalous Connection / Unusual Admin SMB Session

Compliance / SMB Drive Write

Device / Anomalous SMB Followed By Multiple Model Breaches

Anomalous File / Internal / Unusual SMB Script Write

Device / New or Uncommon WMI Activity

Unusual Activity / Internal Data Transfer

Anomalous Connection / Download and Upload

Anomalous Server Activity / Rare External from Server

Compromise / Beacon to Young Endpoint

Compromise / Agent Beacon (Short Period)

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Connection / POST to PHP on New External Host

Compromise / Sustained SSL or HTTP Increase

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Device / Multiple C2 Model Alerts

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Download and Upload

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Low and Slow Exfiltration

Anomalous Connection / Uncommon 1 GiB Outbound  

MITRE ATT&CK mapping

(Technique name – Tactic ID)

ShadowPad malware threads

Initial Access - Valid Accounts: Domain Accounts (T1078.002)

Initial Access - External Remote Services (T1133)

Privilege Escalation - Exploitation for Privilege Escalation (T1068)

Privilege Escalation - Valid Accounts: Default Accounts (T1078.001)

Defense Evasion - Masquerading: Match Legitimate Name or Location (T1036.005)

Lateral Movement - Remote Services: Remote Desktop Protocol (T1021.001)

Lateral Movement - Remote Services: SMB/Windows Admin Shares (T1021.002)

Command and Control - Proxy: Internal Proxy (T1090.001)

Command and Control - Application Layer Protocol: Web Protocols (T1071.001)

Command and Control - Encrypted Channel: Asymmetric Cryptography (T1573.002)

Command and Control - Application Layer Protocol: DNS (T1071.004)

Data theft thread

Resource Development - Compromise Infrastructure: Domains (T1584.001)

Privilege Escalation - Valid Accounts: Default Accounts (T1078.001)

Privilege Escalation - Valid Accounts: Domain Accounts (T1078.002)

Execution - Windows Management Instrumentation (T1047)

Defense Evasion - Masquerading: Match Legitimate Name or Location (T1036.005)

Defense Evasion - Obfuscated Files or Information (T1027)

Lateral Movement - Remote Services: SMB/Windows Admin Shares (T1021.002)

Collection - Data from Network Shared Drive (T1039)

Command and Control - Application Layer Protocol: Web Protocols (T1071.001)

Command and Control - Encrypted Channel: Asymmetric Cryptography (T1573.002)

Command and Control - Proxy: External Proxy (T1090.002)

Exfiltration - Exfiltration Over C2 Channel (T1041)

Exfiltration - Data Transfer Size Limits (T1030)

List of indicators of compromise (IoCs)

IP addresses and/or domain names (Mid-high confidence):

ShadowPad thread

- dscriy.chtq[.]net • 158.247.199[.]185 (endpoint of C2 comms)

- cybaq.chtq[.]net (domain name used for DNS tunneling)  

Data theft thread

- yasuconsulting[.]com (45.158.12[.]7)

- hobivan[.]net (94.73.151[.]72)

- mediostresbarbas.com[.]ar (75.102.23[.]3)

- mnmathleague[.]org (185.148.129[.]24)

- goldenborek[.]com (94.138.200[.]40)

- tunemmuhendislik[.]com (94.199.206[.]45)

- anvil.org[.]ph (67.209.121[.]137)

- partnerls[.]pl (5.187.53[.]50)

- angoramedikal[.]com (89.19.29[.]128)

- awork-designs[.]dk (78.46.20[.]225)

- digitweco[.]com (38.54.95[.]190)

- duepunti-studio[.]it (89.46.106[.]61)

- scgestor.com[.]br (108.181.92[.]71)

- lacapannadelsilenzio[.]it (86.107.36[.]15)

- lovetamagotchith[.]com (203.170.190[.]137)

- lieta[.]it (78.46.146[.]147)

File names (Mid-high confidence):

ShadowPad thread:

- perflogs\1.txt

- perflogs\AppLaunch.exe

- perflogs\F4A3E8BE.tmp

- perflogs\mscoree.dll

Data theft thread

- ProgramData\Oracle\java.log

- ProgramData\Oracle\duxwfnfo

- ProgramData\Adobe\ARM\webservices.dll

- ProgramData\Adobe\ARM\wksprt.exe

- ProgramData\Oracle\Java\wksprt.exe

- ProgramData\Oracle\Java\webservices.dll

- ProgramData\Microsoft\DRM\wksprt.exe

- ProgramData\Microsoft\DRM\webservices.dll

- ProgramData\Abletech\Client\webservices.dll

- ProgramData\Abletech\Client\client.exe

- ProgramData\Adobe\ARM\rzrmxrwfvp

- ProgramData\3Dconnexion\3DxWare\3DxWare.exe

- ProgramData\3Dconnexion\3DxWare\webservices.dll

- ProgramData\IDMComp\UltraCompare\updater.exe

- ProgramData\IDMComp\UltraCompare\webservices.dll

- ProgramData\IDMComp\UltraCompare\imtrqjsaqmm

- temp\HousecallLauncher64.exe

Attacker-controlled device hostname (Mid-high confidence)

- DESKTOP-O82ILGG

References  

[1] https://www.kaspersky.com/about/press-releases/shadowpad-how-attackers-hide-backdoor-in-software-used-by-hundreds-of-large-companies-around-the-world  

[2] https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/08/07172148/ShadowPad_technical_description_PDF.pdf

[3] https://blog.avast.com/new-investigations-in-ccleaner-incident-point-to-a-possible-third-stage-that-had-keylogger-capacities

[4] https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/

[5] https://assets.sentinelone.com/c/Shadowpad?x=P42eqA

[6] https://www.cyfirma.com/research/the-origins-of-apt-41-and-shadowpad-lineage/

[7] https://www.csoonline.com/article/572061/shadowpad-has-become-the-rat-of-choice-for-several-state-sponsored-chinese-apts.html

[8] https://global.ptsecurity.com/analytics/pt-esc-threat-intelligence/shadowpad-new-activity-from-the-winnti-group

[9] https://cymulate.com/threats/shadowpad-privately-sold-malware-espionage-tool/

[10] https://www.secureworks.com/research/shadowpad-malware-analysis

[11] https://blog.talosintelligence.com/chinese-hacking-group-apt41-compromised-taiwanese-government-affiliated-research-institute-with-shadowpad-and-cobaltstrike-2/

[12] https://hackerseye.net/all-blog-items/tails-from-the-shadow-apt-41-injecting-shadowpad-with-sideloading/

[13] https://cloud.google.com/blog/topics/threat-intelligence/scatterbrain-unmasking-poisonplug-obfuscator

[14] https://www.domaintools.com/wp-content/uploads/conceptualizing-a-continuum-of-cyber-threat-attribution.pdf

[15] https://www.nccgroup.com/es/research-blog/north-korea-s-lazarus-their-initial-access-trade-craft-using-social-media-and-social-engineering/  

[16] https://www.microsoft.com/en-us/security/blog/2021/01/28/zinc-attacks-against-security-researchers/

[17] https://www.microsoft.com/en-us/security/blog/2022/09/29/zinc-weaponizing-open-source-software/  

[18] https://www.welivesecurity.com/en/eset-research/lazarus-luring-employees-trojanized-coding-challenges-case-spanish-aerospace-company/  

[19] https://blogs.jpcert.or.jp/en/2021/01/Lazarus_malware2.html  

[20] https://usun.usmission.gov/joint-statement-on-the-unlawful-arms-transfer-by-the-democratic-peoples-republic-of-korea-to-russia/

[21] https://media.defense.gov/2024/Jul/25/2003510137/-1/-1/1/Joint-CSA-North-Korea-Cyber-Espionage-Advance-Military-Nuclear-Programs.PDF  

[22] https://kyivindependent.com/first-north-korean-troops-deployed-to-front-line-in-kursk-oblast-ukraines-military-intelligence-says/

[23] https://www.microsoft.com/en-us/security/blog/2024/12/04/frequent-freeloader-part-i-secret-blizzard-compromising-storm-0156-infrastructure-for-espionage/  

[24] https://www.microsoft.com/en-us/security/blog/2024/12/11/frequent-freeloader-part-ii-russian-actor-secret-blizzard-using-tools-of-other-groups-to-attack-ukraine/  

[25] https://www.sentinelone.com/labs/chamelgang-attacking-critical-infrastructure-with-ransomware/    

[26] https://thehackernews.com/2022/06/state-backed-hackers-using-ransomware.html/  

[27] https://blog.checkpoint.com/security/check-point-research-explains-shadow-pad-nailaolocker-and-its-protection/

[28] https://www.orangecyberdefense.com/global/blog/cert-news/meet-nailaolocker-a-ransomware-distributed-in-europe-by-shadowpad-and-plugx-backdoors

Continue reading
About the author
Sam Lister
SOC Analyst

Blog

/

AI

/

March 11, 2025

Survey findings: AI Cyber Threats are a Reality, the People are Acting Now

Default blog imageDefault blog image

Artificial intelligence is changing the cybersecurity field as fast as any other, both on the offensive and defensive side. We surveyed over 1,500 cybersecurity professionals from around the world to uncover their attitudes, understanding, and priorities when it comes to AI cybersecurity in 2025. Our full report, unearthing some telling trends, is out now.

Download the full report to explore these findings in depth

How is AI impacting the threat landscape?

state of ai in cybersecurity report graphic showing ai powered cyber threats having an impact on organizations

Nearly 74% of participants say AI-powered threats are a major challenge for their organization and 90% expect these threats to have a significant impact over the next one to two years, a slight increase from last year. These statistics highlight that AI is not just an emerging risk but a present and evolving one.

As attackers harness AI to automate and scale their operations, security teams must adapt just as quickly. Organizations that fail to prioritize AI-specific security measures risk falling behind, making proactive defense strategies more critical than ever.

Some of the most pressing AI-driven cyber threats include:

  • AI-powered social engineering: Attackers are leveraging AI to craft highly personalized and convincing phishing emails, making them harder to detect and more likely to bypass traditional defenses.
  • More advanced attacks at speed and scale: AI lowers the barrier for less skilled threat actors, allowing them to launch sophisticated attacks with minimal effort.
  • Attacks targeting AI systems: Cybercriminals are increasingly going after AI itself, compromising machine learning models, tampering with training data, and exploiting vulnerabilities in AI-driven applications and APIs.

Safe and secure use of AI

AI is having an effect on the cyber-threat landscape, but it also is starting to impact every aspect of a business – from marketing to HR to operations. The accessibility of AI tools for employees improves workflows, but also poses risks like data privacy violations, shadow AI, and violation of industry regulations.

How are security practitioners accommodating for this uptick in AI use across business?

Among survey participants 45% of security practitioners say they had already established a policy on the safe and secure use of AI and around 50% are in discussions to do so.

While almost all participants acknowledge that this is a topic that needs to be addressed, the gap between discussion and execution could underscore a need for greater insight, stronger leadership commitment, and adaptable security frameworks to keep pace with AI advancements in the workplace. The most popular actions taken are:

  1. Implemented security controls to prevent unwanted exposure of corporate data when using AI technology (67%)
  2. Implemented security controls to protect against other threats/risks associated with using AI technology (62%)

This year specifically, we see further action being taken with the implementation of security controls, training, and oversight.

For a more detailed breakdown that includes results based on industry and organizational size, download the full report here.

AI threats are rising, but security teams still face major challenges

78% of CISOs say AI-powered cyber-threats are already having a significant impact on their organization, a 5% increase from last year.

While cyber professionals feel more prepared for AI powered threats than they did 12 months ago, 45% still say their organization is not adequately prepared—down from 60% last year.

Despite this optimism, key challenges remain, including:

  • A shortage of personnel to manage tools and alerts
  • Gaps in knowledge and skills related to AI-driven countermeasures

Confidence in traditional security tools vs. new AI based tools

This year, 73% of survey participants expressed confidence in their security team’s proficiency in using AI within their tool stack, marking an increase from the previous year.

However, only 50% of participants have confidence in traditional cybersecurity tools to detect and block AI-powered threats. In contrast, 75% of participants are confident in AI-powered security solutions for detecting and blocking such threats and attacks.

As leading organizations continue to implement and optimize their use of AI, they are incorporating it into an increasing number of workflows. This growing familiarity with AI is likely to boost the confidence levels of practitioners even further.

The data indicates a clear trend towards greater reliance on AI-powered security solutions over traditional tools. As organizations become more adept at integrating AI into their operations, their confidence in these advanced technologies grows.

This shift underscores the importance of staying current with AI advancements and ensuring that security teams are well-trained in utilizing these tools effectively. The increasing confidence in AI-driven solutions reflects their potential to enhance cybersecurity measures and better protect against sophisticated threats.

State of AI report

Download the full report to explore these findings in depth

The full report for Darktrace’s State of AI Cybersecurity is out now. Download the paper to dig deeper into these trends, and see how results differ by industry, region, organization size, and job title.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI