Blog
/

Threat Finds

RESPOND

/
September 19, 2021

Defending Tokyo Olympics: AI Neutralizes IoT Attack

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
Sep 2021
Learn how Darktrace autonomously thwarted a cyber-attack on a national sporting body before the Tokyo Olympics in this detailed breakdown.

One of the greatest issues in security is how to deal with high-stress scenarios when there is a significant breach, and there is too much to do in too little time. The nightmare scenario for any CISO is when this happens during a critical moment for the organization: an important acquisition, a crucial news announcement, or in this case, a global sporting event attracting an audience of millions.

Threat actors often exploit the pressure of these events to cause disruption or extract hefty sums. Sporting occasions, especially Formula 1 races, the Super Bowl, and the Olympics, attract a great deal of criminal interest.

The games begin

There have been several recorded attacks and data breaches at the Olympics this year, including an incident when a volleyball commentator asked his colleague for his computer password – not realizing he was still on air.

In a more nefarious case discovered by Darktrace, a Raspberry Pi device was covertly implanted into a national sporting body directly involved in the Olympics, in an attempt to exfiltrate sensitive data. The events took place one week before the start of the Games, and a data breach at this time would have had significant ramifications for the reputation of the organization, the confidentiality of their plans, and potentially the safety of their athletes.

Darktrace AI recognized this activity as malicious given its evolving understanding of ‘self’ for the organization, and Antigena – Darktrace’s autonomous response capability – took action at machine speed to interrupt the threat, affording the human security team the critical time they needed to catch up and neutralize the attack.

In what follows, we break down the attack.

Figure 1: The overall dwell time was three days.

Breaking down the attack

July 15, 14:09 — Initial intrusion

An unauthorized Raspberry Pi device connected to the organization’s digital environment – disguised and named in a way which mimicked the corporate naming convention. As a small IoT device, Raspberry Pis can be easily hidden and are difficult to locate physically in large environments. They have been used in various high-profile hacks in the past including the 2018 NASA breach.

IoT devices – from printers to fish tanks – pose a serious risk to security, as they can be exploited to gather information, move laterally, and escalate privileges.

July 15, 15:25 — External VPN activity

Anomalous UDP connections were made to an external endpoint over port 1194 (Open VPN activity). URIs showed that the device downloaded data potentially associated with Open VPN configuration files. This could represent an attempt to establish a secure channel for malicious activity such as data exfiltration.

By establishing an outgoing VPN, the attacker obfuscated their activity and bypassed the organization’s signature-based security, which could not detect the encrypted traffic. Antigena immediately blocked the suspicious connectivity, regardless of the encryption, identifying that the activity was a deviation from the ‘pattern of life’ for new devices.

July 15, 16:04 — Possible C2 activity

The Raspberry Pi soon began making repeated HTTP connections to a new external endpoint and downloaded octet streams — arbitrary binary data. It seems the activity was initiated by a standalone software process as opposed to a web browser.

Darktrace revealed that the device was performing an unusual external data transfer to the same endpoint, uploading 7.5 MB which likely contained call home data about the new location and name of the device.

July 15, 16:41 — Internal reconnaissance

The device engaged in TCP scanning across three unique internal IP addresses over a wide range of ports. Although the network scan only targeted three internal servers, the activity was identified by Darktrace as a suspicious increase in internal connections and failed internal connections.

Antigena instantly stopped the Raspberry Pi from making internal connections over the ports involved in the scanning activity, as well as enforcing the device’s ‘pattern of life’.

Figure 2: Device event log showing the components which enable Darktrace to detect network scanning.

July 15, 18:14 — Multiple internal reconnaissance tactics

The Raspberry Pi then scanned a large number of devices on SMB port 445 and engaged in suspicious use of the outdated SMB version 1 protocol, suggesting more in-depth reconnaissance to find exploitable vulnerabilities.

Reacting to the scanning activity alongside the insecure protocol SMBv1, Antigena blocked connections from the source device to the destination IPs for one hour.

Four minutes later, the device engaged in connections to the open-source vulnerability scanner, Nmap. Nmap can be used legitimately for vulnerability scanning and so often is not alerted to by traditional security tools. However, Darktrace’s AI detected that the use of the tool was highly anomalous, and so blocked all outgoing traffic for ten minutes.

July 15, 22:03 — Final reconnaissance

Three hours later, the Raspberry Pi initiated another network scan across six unique external IPs – this was in preparation for the final data exfiltration. Antigena responded with instant, specific blocks to the external IPs which the device was attempting to connect to – before any data could be exfiltrated.

After 30 minutes, Darktrace detected bruteforcing activity from the Raspberry Pi using the SMB and NTLM authentication protocols. The device made a large number of failed login attempts to a single internal device using over 100 unique user accounts. Antigena blocked the activity, successfully stopping another wave of attempted SMB lateral movement.

By this stage, Antigena had bought the security team enough time to respond. The team applied an Antigena quarantine rule (the most severe action Antigena can take) to the Raspberry Pi, until they were able to find the physical location of the device and unplug it from the network.

How AI Analyst stitched together the incident

Cyber AI Analyst autonomously reported on three key moments of the attack:

  • Unusual External Data Transfer
  • Possible HTTP Command and Control
  • TCP Scanning of Multiple Devices (the attempted data exfiltration)

It tied together activities over the span of multiple days, which could have been easily missed by human analysis. The AI provided crucial pieces of information, including the extent of the scanning activity. Such insights are time-consuming to calculate manually.

Figure 3: A screenshot from Cyber AI Analyst summarizing potential C2 activity.

Autonomous Response

Antigena took targeted action throughout to neutralize the suspicious behavior, while allowing normal business operations to continue unhindered.

Rather than widespread blocking, Antigena implemented a range of nuanced responses depending on the situation, always taking the smallest action necessary to deal with the threat.

Figure 4: Darktrace’s UI reveals the attempted network reconnaissance, and Antigena actions a targeted response. All IP addresses have been randomized.

Raspberry Pi: IoT threats

In an event involving 206 countries and 11,000 athletes, facing attacks from hacktivists, criminal groups, and nation states, with many broadcasters working remotely and millions watching from home, organizations involved in the Olympics needed a security solution which could rise to the occasion.

Even with the largest affairs, threats can come from the smallest places. The ability to detect unauthorized IoT devices and maintain visibility over all activity in your digital estate is essential.

Autonomous Response protects against the unexpected, stopping malicious activity at machine speed without any user input. This is necessary for rapid response and remediation, especially for resource-stretched internal security teams. When it comes to defending systems and outpacing attackers, AI always wins the race.

Thanks to Darktrace analysts Emma Foulger and Greg Chapman for their insights on the above threat find.

Learn how two rogue Raspberry Pi devices infected a healthcare provider

Darktrace model detections:

  • Compromise / Ransomware / Suspicious SMB Activity
  • Tags / New Raspberry Pi Device
  • Device / Network Scan
  • Unusual Activity / Unusual Raspberry Pi Activity
  • Antigena / Network / Insider Threat / Antigena Network Scan Block
  • Device / Suspicious Network Scan Activity
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
  • Device / Suspicious SMB Scanning Activity
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Device / Attack and Recon Tools
  • Device / New Device with Attack Tools
  • Device / Anomalous Nmap Activity
  • Device / External Network Scan
  • Device / SMB Session Bruteforce
  • Antigena / Network / Manual / Block All Outgoing Connections
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Oakley Cox
Director of Product

Oakley is a Product Manager within the Darktrace R&D team. He collaborates with global customers, including all critical infrastructure sectors and Government agencies, to ensure Darktrace/OT remains the first in class solution for OT Cyber Security. He draws on 7 years’ experience as a Cyber Security Consultant to organizations across EMEA, APAC and ANZ. His research into cyber-physical security has been published by Cyber Security journals and by CISA. Oakley has a Doctorate (PhD) from the University of Oxford.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

February 3, 2025

/

Cloud

CNAPP Alone Isn’t Enough: Focusing on CDR for Real-Time Cross Domain Protection

Default blog imageDefault blog image

Forecasts predict public cloud spending will soar to over $720 billion by 2025, with 90%[1] of organizations embracing a hybrid cloud approach by 2027. These figures could also be eclipsed as more businesses unearth the potential impact that AI can make on their productivity. The pace of evolution is staggering, but one thing hasn’t changed: the cloud security market is a maze of complexity. Filled with acronyms, overlapping capabilities, and endless use cases tailored to every buyer persona.

On top of this, organizations face a fragmented landscape of security tools, each designed to cover just one slice of the cloud security puzzle. Then there’s CNAPP (Cloud-Native Application Protection Platform) — a broad platform promising to do it all but often falling short, especially around providing runtime detection and response capabilities. It’s no wonder organizations struggle to cut through the noise and find the precision they require.

Looking more closely at what CNAPP has to offer, it can feel like as if it is all you would ever need, but is that really the case?

Strengths and limitations of CNAPP

A CNAPP is undeniably a compelling solution, originally coming from CSPM (Cloud Security Posture Management), it provided organizations with a snapshot of their deployed cloud assets, highlighting whether they were as secure as intended. However, this often resulted in an overwhelming list of issues to fix, leaving organizations unsure where to focus their energy for maximum impact.

To address this, CNAPP’s evolved, incorporating capabilities like; identifying software vulnerabilities, mapping attack paths, and understanding which identities could act within the cloud. The goal became clear: prioritize fixes to reduce the risk of compromise.

But what if we could avoid these problems altogether? Imagine deploying software securely from the start — preventing the merging of vulnerable packages and ensuring proper configurations in production environments by shifting left. This preventative approach is vital to any “secure by design” strategy, CNAPP’s again evolving to add this functionality alongside.

However, as applications grow more complex, so do the variety and scope of potential issues. The responsibility for addressing these challenges often falls to engineers, who are left balancing the pressure to write code with the burden of fixing critical findings that may never even pose a real risk to the organization.

While CNAPP serves as an essential risk prevention tool — focusing on hygiene, compliance, and enabling organizations to deploy high-quality code on well-configured infrastructure — its role is largely limited to reducing the potential for issues. Once applications and infrastructure are live, the game changes. Security’s focus shifts to detecting unwanted activity and responding to real-time risks.

Limitations of CNAPP

Here’s where CNAPP shows its limitations:

1. Blind spots for on-premises workloads

Designed for cloud-native environments, it can leave blind spots for workloads that remain on-premises — a significant concern given that 90% of organizations are expected to adopt a hybrid cloud strategy by 2027. These blind spots can increase the risk of cross-domain attacks, underscoring the need for a solution that goes beyond purely prevention but adds real-time detection and response.

2. Detecting and mitigating cross-domain threats

Adversaries have evolved to exploit the complexity of hybrid and cloud environments through cross-domain attacks. These attacks span multiple domains — including traditional network environments, identity systems, SaaS platforms, and cloud environments — making them exceptionally difficult to detect and mitigate. Attackers are human and will naturally choose the path of least resistance, why spend time writing a detailed software exploit for a vulnerability if you can just target the identity?

Imagine a scenario where an attacker compromises an organization via leaked credentials and then moves laterally, similar to the example outlined in this blog: The Price of Admission: Countering Stolen Credentials with Darktrace. If an attacker identifies cloud credentials and moves into the cloud control plane, they could access additional sensitive data. Without a detection platform that monitors these areas for unusual activity, while working to consolidate findings into a unified timeline, detecting these types of attacks becomes incredibly challenging.

A CNAPP might only point to a potential misconfiguration of an identity or for example a misconfiguration around secret storage, but it cannot detect when that misconfiguration has been exploited — let alone respond to it.

Identity + Network: Unlocking cross-domain threats

Identity is more than just a role or username; it is essentially an access point for attackers to leverage and move between different areas of a digital estate. Real-time monitoring of human and non-human identities is crucial for understanding intent, spotting anomalies, and preventing possible attacks before they spread.

Non-human roles, such as service accounts or automation tooling, often operate with trust and without oversight. In 2024, the Cybersecurity and Critical Infrastructure Agency (CISA) [2] released a warning regarding new strategies employed by SolarWinds attackers. These strategies were primarily aimed at cloud infrastructure and non-human identities. The warning details how attackers leverage credentials and valid applications for malicious purposes.

With organizations opting for a hybrid approach, combining network, identity, cloud management and cloud runtime activity is essential to detecting and mitigating cross domain attacks, these are just some of the capabilities needed for effective detection and response:

  • AI driven automated and unified investigation of events – due to the volume of data and activity within businesses digital estates leveraging AI is vital, to enable SOC teams in understanding and facilitating proportional and effective responses.
  • Real-time monitoring auditing combined with anomaly detection for human and non-human identities.
  • A unified investigation platform that can deliver a real-time understanding of Identity, deployed cloud assets, runtime and contextual findings as well as coverage for remaining on premises workloads.
  • The ability to leverage threat intelligence automatically to detect potential malicious activities quickly.

The future of cloud security: Balancing risk management with real-time detection and response

Darktrace / CLOUD's CDR approach enhances CNAPP by providing the essential detection and native response needed to protect against cross-domain threats. Its agentless, default setup is both cost-effective and scalable, creating a runtime baseline that significantly boosts visibility for security teams. While proactive controls are crucial for cloud security, pairing them with Cloud Detection and Response solutions addresses a broader range of challenges.

With Darktrace / CLOUD, organizations benefit from continuous, real-time monitoring and advanced AI-driven behavioural detection, ensuring proactive detection and a robust cloud-native response. This integrated approach delivers comprehensive protection across the digital estate.

Unlock advanced cloud protection

Darktrace / CLOUD solution brief screenshot

Download the Darktrace / CLOUD solution brief to discover how autonomous, AI-driven defense can secure your environment in real-time.

  • Achieve 60% more accurate detection of unknown and novel cloud threats.
  • Respond instantly with autonomous threat response, cutting response time by 90%.
  • Streamline investigations with automated analysis, improving ROI by 85%.
  • Gain a 30% boost in cloud asset visibility with real-time architecture modeling.
  • References

    1. https://www.gartner.com/en/newsroom/press-releases/2024-11-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-total-723-billion-dollars-in-2025
    2. https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-057a
    Continue reading
    About the author
    Adam Stevens
    Director of Product, Cloud Security

    Blog

    /

    February 4, 2025

    /
    No items found.

    Reimagining Your SOC: Overcoming Alert Fatigue with AI-Led Investigations  

    Default blog imageDefault blog image

    The efficiency of a Security Operations Center (SOC) hinges on its ability to detect, analyze and respond to threats effectively. With advancements in AI and automation, key early SOC team metrics such as Mean Time to Detect (MTTD) have seen significant improvements:

    • 96% of defenders believing AI-powered solutions significantly boost the speed and efficiency of prevention, detection, response, and recovery.
    • Organizations leveraging AI and automation can shorten their breach lifecycle by an average of 108 days compared to those without these technologies.

    While tool advances have improved performance and effectiveness in the detection phase, this has not been as beneficial to the next step of the process where initial alerts are investigated further to determine their relevance and how they relate to other activities. This is often measured with the metric Mean Time to Analysis (MTTA), although some SOC teams operate a two-level process with teams for initial triage to filter out more obviously uninteresting alerts and for more detailed analysis of the remainder. SOC teams continue to grapple with alert fatigue, overwhelmed analysts, and inefficient triage processes, preventing them from achieving the operational efficiency necessary for a high-performing SOC.

    Addressing this core inefficiency requires extending AI's capabilities beyond detection to streamline and optimize the following investigative workflows that underpin effective analysis.

    Challenges with SOC alert investigation

    Detecting cyber threats is only the beginning of a much broader challenge of SOC efficiency. The real bottleneck often lies in the investigation process.

    Detection tools and techniques have evolved significantly with the use of machine learning methods, improving early threat detection. However, after a detection pops up, human analysts still typically step in to evaluate the alert, gather context, and determine whether it’s a true threat or a false alarm and why. If it is a threat, further investigation must be performed to understand the full scope of what may be a much larger problem. This phase, measured by the mean time to analysis, is critical for swift incident response.

    Challenges with manual alert investigation:

    • Too many alerts
    • Alerts lack context
    • Cognitive load sits with analysts
    • Insufficient talent in the industry
    • Fierce competition for experienced analysts

    For many organizations, investigation is where the struggle of efficiency intensifies. Analysts face overwhelming volumes of alerts, a lack of consolidated context, and the mental strain of juggling multiple systems. With a worldwide shortage of 4 million experienced level two and three SOC analysts, the cognitive burden placed on teams is immense, often leading to alert fatigue and missed threats.

    Even with advanced systems in place not all potential detections are investigated. In many cases, only a quarter of initial alerts are triaged (or analyzed). However, the issue runs deeper. Triaging occurs after detection engineering and alert tuning, which often disable many alerts that could potentially reveal true threats but are not accurate enough to justify the time and effort of the security team. This means some potential threats slip through unnoticed.

    Understanding alerts in the SOC: Stopping cyber incidents is hard

    Let’s take a look at the cyber-attack lifecycle and the steps involved in detecting and stopping an attack:

    First we need a trace of an attack…

    The attack will produce some sort of digital trace. Novel attacks, insider threats, and attacker techniques such as living-off-the-land can make attacker activities extremely hard to distinguish.

    A detection is created…

    Then we have to detect the trace, for example some beaconing to a rare domain. Initial detection alerts being raised underpin the MTTD (mean time to detection). Reducing this initial unseen duration is where we have seen significant improvement with modern threat detection tools.

    When it comes to threat detection, the possibilities are vast. Your initial lead could come from anything: an alert about unusual network activity, a potential known malware detection, or an odd email. Once that lead comes in, it’s up to your security team to investigate further and determine if this is this a legitimate threat or a false alarm and what the context is behind the alert.

    Investigation begins…

    It doesn’t just stop at a detection. Typically, humans also need to look at the alert, investigate, understand, analyze, and conclude whether this is a genuine threat that needs a response. We normally measure this as MTTA (mean time to analyze).

    Conducting the investigation effectively requires a high degree of skill and efficiency, as every second counts in mitigating potential damage. Security teams must analyze the available data, correlate it across multiple sources, and piece together the timeline of events to understand the full scope of the incident. This process involves navigating through vast amounts of information, identifying patterns, and discerning relevant details. All while managing the pressure of minimizing downtime and preventing further escalation.

    Containment begins…

    Once we confirm something as a threat, and the human team determines a response is required and understand the scope, we need to contain the incident. That's normally the MTTC (mean time to containment) and can be further split into immediate and more permanent measures.

    For more about how AI-led solutions can help in the containment stage read here: Autonomous Response: Streamlining Cybersecurity and Business Operations

    The challenge is not only in 1) detecting threats quickly, but also 2) triaging and investigating them rapidly and with precision, and 3) prioritizing the most critical findings to avoid missed opportunities. Effective investigation demands a combination of advanced tools, robust workflows, and the expertise to interpret and act on the insights they generate. Without these, organizations risk delaying critical containment and response efforts, leaving them vulnerable to greater impacts.

    While there are further steps (remediation, and of course complete recovery) here we will focus on investigation.

    Developing an AI analyst: How Darktrace replicates human investigation

    Darktrace has been working on understanding the investigative process of a skilled analyst since 2017. By conducting internal research between Darktrace expert SOC analysts and machine learning engineers, we developed a formalized understanding of investigative processes. This understanding formed the basis of a multi-layered AI system that systematically investigates data, taking advantage of the speed and breadth afforded by machine systems.

    With this research we found that the investigative process often revolves around iterating three key steps: hypothesis creation, data collection, and results evaluation.

    All these details are crucial for an analyst to determine the nature of a potential threat. Similarly, they are integral components of our Cyber AI Analyst which is an integral component across our product suite. In doing so, Darktrace has been able to replicate the human-driven approach to investigating alerts using machine learning speed and scale.

    Here’s how it works:

    • When an initial or third-party alert is triggered, the Cyber AI Analyst initiates a forensic investigation by building multiple hypotheses and gathering relevant data to confirm or refute the nature of suspicious activity, iterating as necessary, and continuously refining the original hypothesis as new data emerges throughout the investigation.
    • Using a combination of machine learning including supervised and unsupervised methods, NLP and graph theory to assess activity, this investigation engine conducts a deep analysis with incidents raised to the human team only when the behavior is deemed sufficiently concerning.
    • After classification, the incident information is organized and processed to generate the analysis summary, including the most important descriptive details, and priority classification, ensuring that critical alerts are prioritized for further action by the human-analyst team.
    • If the alert is deemed unimportant, the complete analysis process is made available to the human team so that they can see what investigation was performed and why this conclusion was drawn.
    Darktrace cyber ai analyst workflow, how it works

    To illustrate this via example, if a laptop is beaconing to a rare domain, the Cyber AI Analyst would create hypotheses including whether this could be command and control traffic, data exfiltration, or something else. The AI analyst then collects data, analyzes it, makes decisions, iterates, and ultimately raises a new high-level incident alert describing and detailing its findings for human analysts to review and follow up.

    Learn more about Darktrace's Cyber AI Analyst

    • Cost savings: Equivalent to adding up to 30 full-time Level 2 analysts without increasing headcount
    • Minimize business risk: Takes on the busy work from human analysts and elevates a team’s overall decision making
    • Improve security outcomes: Identifies subtle, sophisticated threats through holistic investigations

    Unlocking an efficient SOC

    To create a mature and proactive SOC, addressing the inefficiencies in the alert investigation process is essential. By extending AI's capabilities beyond detection, SOC teams can streamline and optimize investigative workflows, reducing alert fatigue and enhancing analyst efficiency.

    This holistic approach not only improves Mean Time to Analysis (MTTA) but also ensures that SOCs are well-equipped to handle the evolving threat landscape. Embracing AI augmentation and automation in every phase of threat management will pave the way for a more resilient and proactive security posture, ultimately leading to a high-performing SOC that can effectively safeguard organizational assets.

    Every relevant alert is investigated

    The Cyber AI Analyst is not a generative AI system, or an XDR or SEIM aggregator that simply prompts you on what to do next. It uses a multi-layered combination of many different specialized AI methods to investigate every relevant alert from across your enterprise, native, 3rd party, and manual triggers, operating at machine speed and scale. This also positively affects detection engineering and alert tuning, because it does not suffer from fatigue when presented with low accuracy but potentially valuable alerts.

    Retain and improve analyst skills

    Transferring most analysis processes to AI systems can risk team skills if they don't maintain or build them and if the AI doesn't explain its process. This can reduce the ability to challenge or build on AI results and cause issues if the AI is unavailable. The Cyber AI Analyst, by revealing its investigation process, data gathering, and decisions, promotes and improves these skills. Its deep understanding of cyber incidents can be used for skill training and incident response practice by simulating incidents for security teams to handle.

    Create time for cyber risk reduction

    Human cybersecurity professionals excel in areas that require critical thinking, strategic planning, and nuanced decision-making. With alert fatigue minimized and investigations streamlined, your analysts can avoid the tedious data collection and analysis stages and instead focus on critical decision-making tasks such as implementing recovery actions and performing threat hunting.

    Stay tuned for part 3/3

    Part 3/3 in the Reimagine your SOC series explores the preventative security solutions market and effective risk management strategies.

    Coming soon!

    Continue reading
    About the author
    Brittany Woodsmall
    Product Marketing Manager, AI & Attack Surface
    Your data. Our AI.
    Elevate your network security with Darktrace AI