Blog
/
/
September 19, 2021

Defending Tokyo Olympics: AI Neutralizes IoT Attack

Learn how Darktrace autonomously thwarted a cyber-attack on a national sporting body before the Tokyo Olympics in this detailed breakdown.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
Sep 2021

One of the greatest issues in security is how to deal with high-stress scenarios when there is a significant breach, and there is too much to do in too little time. The nightmare scenario for any CISO is when this happens during a critical moment for the organization: an important acquisition, a crucial news announcement, or in this case, a global sporting event attracting an audience of millions.

Threat actors often exploit the pressure of these events to cause disruption or extract hefty sums. Sporting occasions, especially Formula 1 races, the Super Bowl, and the Olympics, attract a great deal of criminal interest.

The games begin

There have been several recorded attacks and data breaches at the Olympics this year, including an incident when a volleyball commentator asked his colleague for his computer password – not realizing he was still on air.

In a more nefarious case discovered by Darktrace, a Raspberry Pi device was covertly implanted into a national sporting body directly involved in the Olympics, in an attempt to exfiltrate sensitive data. The events took place one week before the start of the Games, and a data breach at this time would have had significant ramifications for the reputation of the organization, the confidentiality of their plans, and potentially the safety of their athletes.

Darktrace AI recognized this activity as malicious given its evolving understanding of ‘self’ for the organization, and Antigena – Darktrace’s autonomous response capability – took action at machine speed to interrupt the threat, affording the human security team the critical time they needed to catch up and neutralize the attack.

In what follows, we break down the attack.

Figure 1: The overall dwell time was three days.

Breaking down the attack

July 15, 14:09 — Initial intrusion

An unauthorized Raspberry Pi device connected to the organization’s digital environment – disguised and named in a way which mimicked the corporate naming convention. As a small IoT device, Raspberry Pis can be easily hidden and are difficult to locate physically in large environments. They have been used in various high-profile hacks in the past including the 2018 NASA breach.

IoT devices – from printers to fish tanks – pose a serious risk to security, as they can be exploited to gather information, move laterally, and escalate privileges.

July 15, 15:25 — External VPN activity

Anomalous UDP connections were made to an external endpoint over port 1194 (Open VPN activity). URIs showed that the device downloaded data potentially associated with Open VPN configuration files. This could represent an attempt to establish a secure channel for malicious activity such as data exfiltration.

By establishing an outgoing VPN, the attacker obfuscated their activity and bypassed the organization’s signature-based security, which could not detect the encrypted traffic. Antigena immediately blocked the suspicious connectivity, regardless of the encryption, identifying that the activity was a deviation from the ‘pattern of life’ for new devices.

July 15, 16:04 — Possible C2 activity

The Raspberry Pi soon began making repeated HTTP connections to a new external endpoint and downloaded octet streams — arbitrary binary data. It seems the activity was initiated by a standalone software process as opposed to a web browser.

Darktrace revealed that the device was performing an unusual external data transfer to the same endpoint, uploading 7.5 MB which likely contained call home data about the new location and name of the device.

July 15, 16:41 — Internal reconnaissance

The device engaged in TCP scanning across three unique internal IP addresses over a wide range of ports. Although the network scan only targeted three internal servers, the activity was identified by Darktrace as a suspicious increase in internal connections and failed internal connections.

Antigena instantly stopped the Raspberry Pi from making internal connections over the ports involved in the scanning activity, as well as enforcing the device’s ‘pattern of life’.

Figure 2: Device event log showing the components which enable Darktrace to detect network scanning.

July 15, 18:14 — Multiple internal reconnaissance tactics

The Raspberry Pi then scanned a large number of devices on SMB port 445 and engaged in suspicious use of the outdated SMB version 1 protocol, suggesting more in-depth reconnaissance to find exploitable vulnerabilities.

Reacting to the scanning activity alongside the insecure protocol SMBv1, Antigena blocked connections from the source device to the destination IPs for one hour.

Four minutes later, the device engaged in connections to the open-source vulnerability scanner, Nmap. Nmap can be used legitimately for vulnerability scanning and so often is not alerted to by traditional security tools. However, Darktrace’s AI detected that the use of the tool was highly anomalous, and so blocked all outgoing traffic for ten minutes.

July 15, 22:03 — Final reconnaissance

Three hours later, the Raspberry Pi initiated another network scan across six unique external IPs – this was in preparation for the final data exfiltration. Antigena responded with instant, specific blocks to the external IPs which the device was attempting to connect to – before any data could be exfiltrated.

After 30 minutes, Darktrace detected bruteforcing activity from the Raspberry Pi using the SMB and NTLM authentication protocols. The device made a large number of failed login attempts to a single internal device using over 100 unique user accounts. Antigena blocked the activity, successfully stopping another wave of attempted SMB lateral movement.

By this stage, Antigena had bought the security team enough time to respond. The team applied an Antigena quarantine rule (the most severe action Antigena can take) to the Raspberry Pi, until they were able to find the physical location of the device and unplug it from the network.

How AI Analyst stitched together the incident

Cyber AI Analyst autonomously reported on three key moments of the attack:

  • Unusual External Data Transfer
  • Possible HTTP Command and Control
  • TCP Scanning of Multiple Devices (the attempted data exfiltration)

It tied together activities over the span of multiple days, which could have been easily missed by human analysis. The AI provided crucial pieces of information, including the extent of the scanning activity. Such insights are time-consuming to calculate manually.

Figure 3: A screenshot from Cyber AI Analyst summarizing potential C2 activity.

Autonomous Response

Antigena took targeted action throughout to neutralize the suspicious behavior, while allowing normal business operations to continue unhindered.

Rather than widespread blocking, Antigena implemented a range of nuanced responses depending on the situation, always taking the smallest action necessary to deal with the threat.

Figure 4: Darktrace’s UI reveals the attempted network reconnaissance, and Antigena actions a targeted response. All IP addresses have been randomized.

Raspberry Pi: IoT threats

In an event involving 206 countries and 11,000 athletes, facing attacks from hacktivists, criminal groups, and nation states, with many broadcasters working remotely and millions watching from home, organizations involved in the Olympics needed a security solution which could rise to the occasion.

Even with the largest affairs, threats can come from the smallest places. The ability to detect unauthorized IoT devices and maintain visibility over all activity in your digital estate is essential.

Autonomous Response protects against the unexpected, stopping malicious activity at machine speed without any user input. This is necessary for rapid response and remediation, especially for resource-stretched internal security teams. When it comes to defending systems and outpacing attackers, AI always wins the race.

Thanks to Darktrace analysts Emma Foulger and Greg Chapman for their insights on the above threat find.

Learn how two rogue Raspberry Pi devices infected a healthcare provider

Darktrace model detections:

  • Compromise / Ransomware / Suspicious SMB Activity
  • Tags / New Raspberry Pi Device
  • Device / Network Scan
  • Unusual Activity / Unusual Raspberry Pi Activity
  • Antigena / Network / Insider Threat / Antigena Network Scan Block
  • Device / Suspicious Network Scan Activity
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
  • Device / Suspicious SMB Scanning Activity
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Device / Attack and Recon Tools
  • Device / New Device with Attack Tools
  • Device / Anomalous Nmap Activity
  • Device / External Network Scan
  • Device / SMB Session Bruteforce
  • Antigena / Network / Manual / Block All Outgoing Connections
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection Moves from Theory to Front-Page Breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI