Blog
/

Inside the SOC

/
October 3, 2023

Revealing ViperSoftX Intrusion: Detecting Malware

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
Oct 2023
Read how Darktrace effectively detects and responds to ViperSoftX malware across their customer base, even with its advanced evasion tactics. Learn more.

Fighting Info-Stealing Malware

The escalating threat posed by information-stealing malware designed to harvest and steal the sensitive data of individuals and organizations alike has become a paramount concern for security teams across the threat landscape. In direct response to security teams improving their threat detection and prevention capabilities, threat actors are forced to continually adapt and advance their techniques, striving for greater sophistication to ensure they can achieve the malicious goals.

What is ViperSoftX?

ViperSoftX is an information stealer and Remote Access Trojan (RAT) malware known to steal privileged information such as cryptocurrency wallet addresses and password information stored in browsers and password managers. It is commonly distributed via the download of cracked software from multiple sources such as suspicious domains, torrent downloads, and key generators (keygens) from third-party sites.

ViperSoftX was first observed in the wild in 2020 [1] but more recently, new strains were identified in 2022 and 2023 utilizing more sophisticated detection evasion techniques, making it more difficult for security teams to identify and analyze. This includes using more advanced encryption methods alongside monthly changes to command-and-control servers (C2) [2], using dynamic-link library (DLL) sideloading for execution techiques, and subsequently loading a malicious browser extension upon infection which works as an independent info-stealer named VenomSoftX [3].

Between February and June 2023, Darktrace detected activity related to the VipersoftX and VenomSoftX information stealers on the networks of more than 100 customers across its fleet. Darktrace DETECT™ was able to successfully identify the anomalous network activity surrounding these emerging information stealer infections and bring them to the attention of the customers, while Darktrace RESPOND™, when enabled in autonomous response mode, was able to quickly intervene and shut down malicious downloads and data exfiltration attempts.

ViperSoftX Attack & Darktrace Coverage

In cases of ViperSoftX information stealer activity observed by Darktrace, the initial infection was caused through the download of malicious files from multimedia sites, endpoints of cracked software like Adobe Illustrator, and torrent sites. Endpoint users typically unknowingly download the malware from these endpoints with a sideloaded DLL, posing as legitimate software executables.

Darktrace detected multiple downloads from such multimedia sites and endpoints related to cracked software and BitTorrent, which were likely representative of the initial source of ViperSoftX infection. Darktrace DETECT models such as ‘Anomalous File / Anomalous Octet Stream (No User Agent)’ breached in response to this activity and were brought to the immediate attention of customer security teams. In instances where Darktrace RESPOND was configured in autonomous response mode, Darktrace was able to enforce a pattern of life on offending devices, preventing them from downloading malicious files.  This ensures that devices are limited to conducting only their pre-established expected activit, minimizing disruption to the business whilst targetedly mitigating suspicious file downloads.

The downloads are then extracted, decrypted and begin to run on the device. The now compromised device will then proceed to make external connections to C2 servers to retrieve secondary PowerShell executable. Darktrace identified that infected devices using PowerShell user agents whilst making HTTP GET requests to domain generation algorithm (DGA) ViperSoftX domains represented new, and therefore unusual, activity in a large number of cases.

For example, Darktrace detected one customer device making an HTTP GET request to the endpoint ‘chatgigi2[.]com’, using the PowerShell user agent ‘Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.19041.2364’. This new activity triggered a number of DETECT models, including ‘Anomalous Connection / PowerShell to Rare External’ and ‘Device / New PowerShell User Agent’. Repeated connections to these endpoints also triggered C2 beaconing models including:  

  • Compromise / Agent Beacon (Short Period)
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Agent Beacon (Long Period)
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / SSL or HTTP Beacon

Although a large number of different DGA domains were detected, commonalities in URI formats were seen across affected customers which matched formats previously identified as ViperSoftX C2 communication by open-source intelligence (OSINT), and in other Darktrace investigations.  

URI paths for example, were always of the format /api/, /api/v1/, /v2/, or /v3/, appearing to detail version number, as can be seen in Figure 1.

Figure 1: A Packet Capture (PCAP) taken from Darktrace showing a connection made to a ViperSoftX C2 endpoint containing versioning information, consistent with ViperSoftX pattern of communication.  

Before the secondary PowerShell executables are loaded, ViperSoftX takes a digital fingerprint of the infected machine to gather its configuration details, and exfiltrates them to the C2 server. These include the computer name, username, Operating System (OS), and ensures there are no anti-virus or montoring tools on the device. If no security tool are detected, ViperSoftX then downloads, decrypts and executes the PowerShell file.

Following the GET requests Darktrace observed numerous devices performing HTTP POST requests and beaconing connections to ViperSoftX endpoints with varying globally unique identifiers (GUIDs) within the URIs. These connections represented the exfiltration of device configuration details, such as “anti-virus detected”, “app used”, and “device name”. As seen on another customer’s deployment, this caused the model ‘Anomalous Connection / Multiple HTTP POSTs to Rare Hostname’ to breach, which was also detected by Cyber AI Analyst as seen in Figure 2.

Figure 2: Cyber AI Analyst’s detection of HTTP POSTs being made to apibiling[.]com, a ViperSoftX C2 endpoint.

The malicious PowerShell download then crawls the infected device’s systems and directories looking for any cryptocurrency wallet information and password managers, and exfiltrates harvest data to the C2 infrastructure. The C2 server then provides further browser extensions to Chromium browsers to be downloaded and act as a separate stand-alone information stealer, also known as VenomSoftX.

Similar to the initial download of ViperSoftX, these malicious extensions are disguised as legitimate browser extensions to evade the detection of security teams. VenomSoft X, in turn, searches through and attempts to gather sensitive data from password managers and crypto wallets stored in user browsers. Using this information, VenomSoftX is able to redirect crypocurrency transactions by intercepting and manipulating API requests between the sender and the intended recipient, directing the cryptocurrency to the attacker instead [3].

Following investigation into VipersoftX activity across the customer base, Darktrace notified all affected customers and opened Ask the Expert (ATE) tickets through which customer’s could directly contact the analyst team for support and guidance in the face on the information stealer infection.

How did the attack bypass the rest of the security stack?

As previously mentioned, both the initial download of ViperSoftX and the subsequent download of the VenomX browser extension are disguised as legitimate software or browser downloads. This is a common technique employed by threat actors to infect target devices with malicious software, while going unnoticed by security teams traditional security measures. Furthermore, by masquerading as a legitimate piece of software endpoint users are more likely to trust and therefore download the malware, increasing the likelihood of threat actor’s successfully carrying out their objectives. Additionally, post-infection analysis of shellcode, the executable code used as the payload, is made significantly more difficult by VenomSoftX’s use of bytemapping. Bytemapping prevents the encryption of shellcodes without its corresponding byte map, meaning that the payloads cannot easily be decrypted and analysed by security researchers. [3]

ViperSoftX also takes numerous attempts to prevent their C2 infrastructure from being identified by blocking access to it on browsers, and using multiple DGA domains, thus renderring defunct traditional security measures that rely on threat intelligence and static lists of indicators of compromise (IoCs).

Fortunately for Darktrace customers, Darktrace’s anomaly-based approach to threat detection means that it was able to detect and alert customers to this suspicious activity that may have gone unnoticed by other security tools.

Insights/Conclusion

Faced with the challenge of increasingly competent and capable security teams, malicious actors are having to adopt more sophisticated techniques to successfully compromise target systems and achieve their nefarious goals.

ViperSoftX information stealer makes use of numerous tactics, techniques and procedures (TTPs) designed to fly under the radar and carry out their objectives without being detected. ViperSoftX does not rely on just one information stealing malware, but two with the subsequent injection of the VenomSoftX browser extension, adding an additional layer of sophistication to the informational stealing operation and increasing the potential yield of sensitive data. Furthermore, the use of evasion techniques like disguising malicious file downloads as legitimate software and frequently changing DGA domains means that ViperSoftX is well equipped to infiltrate target systems and exfiltrate confidential information without being detected.

However, the anomaly-based detection capabilities of Darktrace DETECT allows it to identify subtle changes in a device’s behavior, that could be indicative of an emerging compromise, and bring it to the customer’s security team. Darktrace RESPOND is then autonomously able to take action against suspicious activity and shut it down without latency, minimizing disruption to the business and preventing potentially significant financial losses.

Credit to: Zoe Tilsiter, Senior Cyber Analyst, Nathan Lorenzo, Cyber Analyst.

Appendices

References

[1] https://www.fortinet.com/blog/threat-research/vipersoftx-new-javascript-threat

[2] https://www.trendmicro.com/en_us/research/23/d/vipersoftx-updates-encryption-steals-data.html

[3] https://decoded.avast.io/janrubin/vipersoftx-hiding-in-system-logs-and-spreading-venomsoftx/

Darktrace DETECT Model Detections

·       Anomalous File / Anomalous Octet Stream (No User Agent)

·       Anomalous Connection / PowerShell to Rare External

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

·       Anomalous Connection / Lots of New Connections

·       Anomalous Connection / Multiple Failed Connections to Rare Endpoint

·       Anomalous Server Activity / Outgoing from Server

·       Compromise / Large DNS Volume for Suspicious Domain

·       Compromise / Quick and Regular Windows HTTP Beaconing

·       Compromise / Beacon for 4 Days

·       Compromise / Suspicious Beaconing Behaviour

·       Compromise / Large Number of Suspicious Failed Connections

·       Compromise / Large Number of Suspicious Successful Connections

·       Compromise / POST and Beacon to Rare External

·       Compromise / DGA Beacon

·       Compromise / Agent Beacon (Long Period)

·       Compromise / Agent Beacon (Medium Period)

·       Compromise / Agent Beacon (Short Period)

·       Compromise / Fast Beaconing to DGA

·       Compromise / SSL or HTTP Beacon

·       Compromise / Slow Beaconing Activity To External Rare

·       Compromise / Beaconing Activity To External Rare

·       Compromise / Excessive Posts to Root

·       Compromise / Connections with Suspicious DNS

·       Compromise / HTTP Beaconing to Rare Destination

·       Compromise / High Volume of Connections with Beacon Score

·       Compromise / Sustained SSL or HTTP Increase

·       Device / New PowerShell User Agent

·       Device / New User Agent and New IP

Darktrace RESPOND Model Detections

·       Antigena / Network / External Threat / Antigena Suspicious File Block

·       Antigena / Network / External Threat / Antigena File then New Outbound Block

·       Antigena / Network / External Threat / Antigena Watched Domain Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

·       Antigena / Network / External Threat / Antigena Suspicious Activity Block

·       Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

·       Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

·       Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

·       Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

List of IoCs

Indicator - Type - Description

ahoravideo-blog[.]com - Hostname - ViperSoftX C2 endpoint

ahoravideo-blog[.]xyz - Hostname - ViperSoftX C2 endpoint

ahoravideo-cdn[.]com - Hostname - ViperSoftX C2 endpoint

ahoravideo-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

ahoravideo-chat[.]com - Hostname - ViperSoftX C2 endpoint

ahoravideo-chat[.]xyz - Hostname - ViperSoftX C2 endpoint

ahoravideo-endpoint[.]xyz - Hostname - ViperSoftX C2 endpoint

ahoravideo-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

ahoravideo-schnellvpn[.]xyz - Hostname - ViperSoftX C2 endpoint

apibilng[.]com - Hostname - ViperSoftX C2 endpoint

arrowlchat[.]com - Hostname - ViperSoftX C2 endpoint

bideo-blog[.]com - Hostname - ViperSoftX C2 endpoint

bideo-blog[.]xyz - Hostname - ViperSoftX C2 endpoint

bideo-cdn[.]com - Hostname - ViperSoftX C2 endpoint

bideo-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

bideo-chat[.]com - Hostname - ViperSoftX C2 endpoint

bideo-chat[.]xyz - Hostname - ViperSoftX C2 endpoint

bideo-endpoint[.]com - Hostname - ViperSoftX C2 endpoint

bideo-endpoint[.]xyz - Hostname - ViperSoftX C2 endpoint

bideo-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

chatgigi2[.]com - Hostname - ViperSoftX C2 endpoint

counter[.]wmail-service[.]com - Hostname - ViperSoftX C2 endpoint

fairu-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

fairu-chat[.]xyz - Hostname - ViperSoftX C2 endpoint

fairu-endpoint[.]com - Hostname - ViperSoftX C2 endpoint

fairu-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

fairu-schnellvpn[.]xyz - Hostname - ViperSoftX C2 endpoint

privatproxy-blog[.]com - Hostname - ViperSoftX C2 endpoint

privatproxy-blog[.]xyz - Hostname - ViperSoftX C2 endpoint

privatproxy-cdn[.]com - Hostname - ViperSoftX C2 endpoint

privatproxy-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

privatproxy-endpoint[.]xyz - Hostname - ViperSoftX C2 endpoint

privatproxy-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

privatproxy-schnellvpn[.]xyz - Hostname - ViperSoftX C2 endpoint

static-cdn-349[.]net - Hostname - ViperSoftX C2 endpoint

wmail-blog[.]com - Hostname - ViperSoftX C2 endpoint

wmail-cdn[.]xyz - Hostname - ViperSoftX C2 endpoint

wmail-chat[.]com - Hostname - ViperSoftX C2 endpoint

wmail-schnellvpn[.]com - Hostname - ViperSoftX C2 endpoint

wmail-schnellvpn[.]xyz - Hostname - ViperSoftX C2 endpoint

Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.19041.2364 - User Agent -PowerShell User Agent

MITRE ATT&CK Mapping

Tactic - Technique - Notes

Command and Control - T1568.002 Dynamic Resolution: Domain Generation Algorithms

Command and Control - T1321 Data Encoding

Credential Access - T1555.005 Credentials from Password Stores: Password Managers

Defense Evasion - T1027 Obfuscated Files or Information

Execution - T1059.001 Command and Scripting Interpreter: PowerShell

Execution - T1204 User Execution T1204.002 Malicious File

Persistence - T1176 Browser Extensions - VenomSoftX specific

Persistence, Privilege Escalation, Defense Evasion - T1574.002 Hijack Execution Flow: DLL Side-Loading

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Zoe Tilsiter
Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 14, 2025

/

Ransomware

RansomHub Ransomware: Darktrace’s Investigation of the Newest Tool in ShadowSyndicate's Arsenal

Default blog imageDefault blog image

What is ShadowSyndicate?

ShadowSyndicate, also known as Infra Storm, is a threat actor reportedly active since July 2022, working with various ransomware groups and affiliates of ransomware programs, such as Quantum, Nokoyawa, and ALPHV. This threat actor employs tools like Cobalt Strike, Sliver, IcedID, and Matanbuchus malware in its attacks. ShadowSyndicate utilizes the same SSH fingerprint (1ca4cbac895fc3bd12417b77fc6ed31d) on many of their servers—85 as of September 2023. At least 52 of these servers have been linked to the Cobalt Strike command and control (C2) framework [1].

What is RansomHub?

First observed following the FBI's takedown of ALPHV/BlackCat in December 2023, RansomHub quickly gained notoriety as a Ransomware-as-a-Service (RaaS) operator. RansomHub capitalized on the law enforcement’s disruption of the LockBit group’s operations in February 2024 to market themselves to potential affiliates who had previously relied on LockBit’s encryptors. RansomHub's success can be largely attributed to their aggressive recruitment on underground forums, leading to the absorption of ex-ALPHV and ex-LockBit affiliates. They were one of the most active ransomware operators in 2024, with approximately 500 victims reported since February, according to their Dedicated Leak Site (DLS) [2].

ShadowSyndicate and RansomHub

External researchers have reported that ShadowSyndicate had as many as seven different ransomware families in their arsenal between July 2022, and September 2023. Now, ShadowSyndicate appears to have added RansomHub’s their formidable stockpile, becoming an affiliate of the RaaS provider [1].

Darktrace’s analysis of ShadowSyndicate across its customer base indicates that the group has been leveraging RansomHub ransomware in multiple attacks in September and October 2024. ShadowSyndicate likely shifted to using RansomHub due to the lucrative rates offered by this RaaS provider, with affiliates receiving up to 90% of the ransom—significantly higher than the general market rate of 70-80% [3].

In many instances where encryption was observed, ransom notes with the naming pattern “README_[a-zA-Z0-9]{6}.txt” were written to affected devices. The content of these ransom notes threatened to release stolen confidential data via RansomHub’s DLS unless a ransom was paid. During these attacks, data exfiltration activity to external endpoints using the SSH protocol was observed. The external endpoints to which the data was transferred were found to coincide with servers previously associated with ShadowSyndicate activity.

Darktrace’s coverage of ShadowSyndicate and RansomHub

Darktrace’s Threat Research team identified high-confidence indicators of compromise (IoCs) linked to the ShadowSyndicate group deploying RansomHub. The investigation revealed four separate incidents impacting Darktrace customers across various sectors, including education, manufacturing, and social services. In the investigated cases, multiple stages of the kill chain were observed, starting with initial internal reconnaissance and leading to eventual file encryption and data exfiltration.

Attack Overview

Timeline attack overview of ransomhub ransomware

Internal Reconnaissance

The first observed stage of ShadowSyndicate attacks involved devices making multiple internal connection attempts to other internal devices over key ports, suggesting network scanning and enumeration activity. In this initial phase of the attack, the threat actor gathers critical details and information by scanning the network for open ports that might be potentially exploitable. In cases observed by Darktrace affected devices were typically seen attempting to connect to other internal locations over TCP ports including 22, 445 and 3389.

C2 Communication and Data Exfiltration

In most of the RansomHub cases investigated by Darktrace, unusual connections to endpoints associated with Splashtop, a remote desktop access software, were observed briefly before outbound SSH connections were identified.

Following this, Darktrace detected outbound SSH connections to the external IP address 46.161.27[.]151 using WinSCP, an open-source SSH client for Windows used for secure file transfer. The Cybersecurity and Infrastructure Security Agency (CISA) identified this IP address as malicious and associated it with ShadowSyndicate’s C2 infrastructure [4]. During connections to this IP, multiple gigabytes of data were exfiltrated from customer networks via SSH.

Data exfiltration attempts were consistent across investigated cases; however, the method of egress varied from one attack to another, as one would expect with a RaaS strain being employed by different affiliates. In addition to transfers to ShadowSyndicate’s infrastructure, threat actors were also observed transferring data to the cloud storage and file transfer service, MEGA, via HTTP connections using the ‘rclone’ user agent – a command-line program used to manage files on cloud storage. In another case, data exfiltration activity occurred over port 443, utilizing SSL connections.

Lateral Movement

In investigated incidents, lateral movement activity began shortly after C2 communications were established. In one case, Darktrace identified the unusual use of a new administrative credential which was quickly followed up with multiple suspicious executable file writes to other internal devices on the network.

The filenames for this executable followed the regex naming convention “[a-zA-Z]{6}.exe”, with two observed examples being “bWqQUx.exe” and “sdtMfs.exe”.

Cyber AI Analyst Investigation Process for the SMB Writes of Suspicious Files to Multiple Devices' incident.
Figure 1: Cyber AI Analyst Investigation Process for the SMB Writes of Suspicious Files to Multiple Devices' incident.

Additionally, script files such as “Defeat-Defender2.bat”, “Share.bat”, and “def.bat” were also seen written over SMB, suggesting that threat actors were trying to evade network defenses and detection by antivirus software like Microsoft Defender.

File Encryption

Among the three cases where file encryption activity was observed, file names were changed by adding an extension following the regex format “.[a-zA-Z0-9]{6}”. Ransom notes with a similar naming convention, “README_[a-zA-Z0-9]{6}.txt”, were written to each share. While the content of the ransom notes differed slightly in each case, most contained similar text. Clear indicators in the body of the ransom notes pointed to the use of RansomHub ransomware in these attacks. As is increasingly the case, threat actors employed double extortion tactics, threatening to leak confidential data if the ransom was not paid. Like most ransomware, RansomHub included TOR site links for communication between its "customer service team" and the target.

Figure 2: The graph shows the behavior of a device with encryption activity, using the “SMB Sustained Mimetype Conversion” and “Unusual Activity Events” metrics over three weeks.

Since Darktrace’s Autonomous Response capability was not enabled during the compromise, the ransomware attack succeeded in its objective. However, Darktrace’s Cyber AI Analyst provided comprehensive coverage of the kill chain, enabling the customer to quickly identify affected devices and initiate remediation.

Figure 3: Cyber AI Analyst panel showing the critical incidents of the affected device from one of the cases investigated.

In lieu of Autonomous Response being active on the networks, Darktrace was able to suggest a variety of manual response actions intended to contain the compromise and prevent further malicious activity. Had Autonomous Response been enabled at the time of the attack, these actions would have been quickly applied without any human interaction, potentially halting the ransomware attack earlier in the kill chain.

Figure 4: A list of suggested Autonomous Response actions on the affected devices."

Conclusion

The Darktrace Threat Research team has noted a surge in attacks by the ShadowSyndicate group using RansomHub’s RaaS of late. RaaS has become increasingly popular across the threat landscape due to its ease of access to malware and script execution. As more individual threat actors adopt RaaS, security teams are struggling to defend against the increasing number of opportunistic attacks.

For customers subscribed to Darktrace’s Security Operations Center (SOC) services, the Analyst team promptly investigated detections of the aforementioned unusual and anomalous activities in the initial infection phases. Multiple alerts were raised via Darktrace’s Managed Threat Detection to warn customers of active ransomware incidents. By emphasizing anomaly-based detection and response, Darktrace can effectively identify devices affected by ransomware and take action against emerging activity, minimizing disruption and impact on customer networks.

Credit to Kwa Qing Hong (Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore) and Signe Zahark (Principal Cyber Analyst, Japan)

Appendices

Darktrace Model Detections

Antigena Models / Autonomous Response:

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Insider Threat / Antigena Internal Anomalous File Activity

Antigena / Network / Insider Threat / Antigena Large Data Volume Outbound Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

Antigena / Network / External Threat / Antigena File then New Outbound Block


Network Reconnaissance:

Device / Network Scan

Device / ICMP Address Scan

Device / RDP Scan
Device / Anomalous LDAP Root Searches
Anomalous Connection / SMB Enumeration
Device / Spike in LDAP Activity

C2:

Enhanced Monitoring - Device / Lateral Movement and C2 Activity

Enhanced Monitoring - Device / Initial Breach Chain Compromise

Enhanced Monitoring - Compromise / Suspicious File and C2

Compliance / Remote Management Tool On Server

Anomalous Connection / Outbound SSH to Unusual Port


External Data Transfer:

Enhanced Monitoring - Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data to New Endpoint

Compliance / SSH to Rare External Destination

Anomalous Connection / Application Protocol on Uncommon Port

Enhanced Monitoring - Anomalous File / Numeric File Download

Anomalous File / New User Agent Followed By Numeric File Download

Anomalous Server Activity / Outgoing from Server

Device / Large Number of Connections to New Endpoints

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / Uncommon 1 GiB Outbound

Lateral Movement:

User / New Admin Credentials on Server

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous File / Internal / Executable Uploaded to DC

Anomalous Connection / Suspicious Activity On High Risk Device

File Encryption:

Compliance / SMB Drive Write

Anomalous File / Internal / Additional Extension Appended to SMB File

Compromise / Ransomware / Possible Ransom Note Write

Anomalous Connection / Suspicious Read Write Ratio

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

83.97.73[.]198 - IP - Data exfiltration endpoint

108.181.182[.]143 - IP - Data exfiltration endpoint

46.161.27[.]151 - IP - Data exfiltration endpoint

185.65.212[.]164 - IP - Data exfiltration endpoint

66[.]203.125.21 - IP - MEGA endpoint used for data exfiltration

89[.]44.168.207 - IP - MEGA endpoint used for data exfiltration

185[.]206.24.31 - IP - MEGA endpoint used for data exfiltration

31[.]216.148.33 - IP - MEGA endpoint used for data exfiltration

104.226.39[.]18 - IP - C2 endpoint

103.253.40[.]87 - IP - C2 endpoint

*.relay.splashtop[.]com - Hostname - C2 & data exfiltration endpoint

gfs***n***.userstorage.mega[.]co.nz - Hostname - MEGA endpoint used for data exfiltration

w.api.mega[.]co.nz - Hostname - MEGA endpoint used for data exfiltration

ams-rb9a-ss.ams.efscloud[.]net - Hostname - Data exfiltration endpoint

MITRE ATT&CK Mapping

Tactic - Technqiue

RECONNAISSANCE – T1592.004 Client Configurations

RECONNAISSANCE – T1590.005 IP Addresses

RECONNAISSANCE – T1595.001 Scanning IP Blocks

RECONNAISSANCE – T1595.002 Vulnerability Scanning

DISCOVERY – T1046 Network Service Scanning

DISCOVERY – T1018 Remote System Discovery

DISCOVERY – T1083 File and Directory Discovery
INITIAL ACCESS - T1189 Drive-by Compromise

INITIAL ACCESS - T1190 Exploit Public-Facing Application

COMMAND AND CONTROL - T1001 Data Obfuscation

COMMAND AND CONTROL - T1071 Application Layer Protocol

COMMAND AND CONTROL - T1071.001 Web Protocols

COMMAND AND CONTROL - T1573.001 Symmetric Cryptography

COMMAND AND CONTROL - T1571 Non-Standard Port

DEFENSE EVASION – T1078 Valid Accounts

DEFENSE EVASION – T1550.002 Pass the Hash

LATERAL MOVEMENT - T1021.004 SSH

LATERAL MOVEMENT – T1080 Taint Shared Content

LATERAL MOVEMENT – T1570 Lateral Tool Transfer

LATERAL MOVEMENT – T1021.002 SMB/Windows Admin Shares

COLLECTION - T1185 Man in the Browser

EXFILTRATION - T1041 Exfiltration Over C2 Channel

EXFILTRATION - T1567.002 Exfiltration to Cloud Storage

EXFILTRATION - T1029 Scheduled Transfer

IMPACT – T1486 Data Encrypted for Impact

References

1.     https://www.group-ib.com/blog/shadowsyndicate-raas/

2.     https://www.techtarget.com/searchsecurity/news/366617096/ESET-RansomHub-most-active-ransomware-group-in-H2-2024

3.     https://cyberint.com/blog/research/ransomhub-the-new-kid-on-the-block-to-know/

4.     https://www.cisa.gov/sites/default/files/2024-05/AA24-131A.stix_.xml

Continue reading
About the author
Qing Hong Kwa
Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore

Blog

/

January 14, 2025

/

Email

Why AI-powered Email Protection Became Essential for this Global Financial Services Leader

Default blog imageDefault blog image

When agile cyber-attackers don’t stop, but pivot  

When he first joined this leading financial services provider, it was clear to the CISO that email security needed to be a top priority. The organization provides transfer services to millions of consumers via a network of thousands of agent locations across the US. Those agents are connected to hundreds of thousands of global payers to complete consumer transfers, ranging from leading financial institutions to small local businesses.

With this vast network of agents and payers, the provider relies on email as its primary communications channel. Transmitting billions of dollars every year, the organization is a prime target for cyber criminals looking to steal credentials, financial assets, and sensitive data.

Vulnerable to attacks with gaps in email security and visibility

The CISO discovered that employees were under constant attack by phishing emails impersonating his company’s own executives. The business email compromise (BEC) attacks were designed to deceive employees into sharing credentials or clicking on malicious links.

Upon discovering that their Microsoft 365 tenant lacked secure configuration, the CISO implemented necessary changes to strengthen the service, including enabling authentication controls. While his efforts significantly reduced BEC attacks, cyber criminals changed their tactics, sending employees malicious phishing emails from seemingly valid email accounts from trusted domains like Google and Yahoo. The emails passed through the organization’s native email filters without detection.

The CISO also sought to strengthen defenses against third-party supply chain attacks that could originate with any of the hundreds of thousands of third-party agents and payers the company works with around the world. While the larger institutions typically have sophisticated email security strategies in place, the smaller businesses may lack the cybersecurity expertise needed to effectively secure and manage their data, putting the organization at risk.

While the CISO knew the company was vulnerable to phishing and third-party threats, he didn’t have visibility across the flow of email. Without access to key metrics and valuable data, he couldn’t get the crucial insights needed to quickly identify possible threats and adjust security protocols.  

Skilled analysts bogged down with low-level tasks

Like many enterprise organizations, this leading financial services provider relied on a crew of highly skilled analysts to respond to alerts and analyze and triage emails most of their workday. “That shouldn’t be how we operate,” said the CISO. “My role and the role of my staff should be to focus on more strategic projects, support the business, and work on important new product development.”

Balancing user experience with mitigating threats

Enabling greater email security measures without negatively impacting the business, user experience, and customer satisfaction was a daunting challenge the CISO and his security team faced. Imposing restrictions that are too stringent could restrict communication, delay the delivery of important messages, or block legitimate emails – potentially slowing down money transfers, frustrating customers, affecting employee productivity, and impacting revenue. However, maintaining controls that are too permissive could result in serious outcomes like data theft, financial fraud, operational disruption, compliance penalties, and customer attrition.  

Self-Learning AI is a game changer

After conducting a thorough POC with several modern security solution providers, this global financial services provider chose the Darktrace / EMAIL an AI-driven email security platform. The CISO said they chose the solution for two key reasons:

First, Darktrace / EMAIL offers modern capabilities

  • Self-Learning AI uses business data to recognize anomalies in communication patterns and user behavior to stop known and unknown threats
  • Secures the organization’s entire mailflow across all inbound, outbound, and lateral email
  • Protects against account takeover attacks by identifying subtle anomalies in cloud SaaS
  • Catches sophisticated threats like impersonations, session token misuse, adversary-in-the-middle attacks, credential theft, and data exfiltration

Second, they pointed to Darktrace’s experience, innovation, and expertise

  • Deep cybersecurity and industry knowledge
  • Demonstrated customers successes worldwide
  • At the forefront of innovation and research, establishing new thresholds in cybersecurity, with technology advances backed by over 200 patents and pending applications

Moreover, and most importantly, this organization trusted Darktrace to deliver on its promises.  And according to the CISO, that’s just what happened.

Significantly reduced phishing threats and business risk

Since implementing Darktrace / EMAIL, the threat posed by BEC attacks has dropped sharply. “Phishing is not an issue that concerns me anymore. I estimate we are now identifying and blocking more than 85% of threats our previous solution was missing,” said the CISO. The biggest factor contributing to this success? The power of AI.

With Darktrace / EMAIL, this leadingglobal financial services provider is identifying and blocking more than 85% ofthe phishing email threats its previous solution missed.

AI wasn’t originally on the financial service provider’s list of criteria. But after seeing AI in action and understanding its potential to vastly scale their detection and response capabilities–without adding headcount, the CISO determined AI wasn’t an option but an imperative. “AI is essential when it comes to email security, it’s an absolute necessity,” he said.  

Darktrace / EMAIL’s Self-Learning AI is uniquely powerful because it learns the content and context of every internal and external user and can spot the subtle differences in behavioral patterns that point to possible social engineering attacks. Through patented behavioral anomaly detection, Darktrace / EMAIL continuously learns about the organization’s business and users, based on its own operations and data, adjusting security protocols accordingly.  

For example, when clients are transferring large amounts of money, they are required to send photos of their driver’s licenses and passports via email to the organization for verification – accounting for a large percentage of its’ inbound email. Darktrace / EMAIL recognizes that it’s normal for customers to send this sensitive information, and it also knows that it’s not normal for that same sensitive information to leave the organization via outbound mail. In addition, Darktrace identifies patterns in user behavior, including who employees communicate with and what kind of information they share. When user behavior falls outside of established norms, such as an email sent from the CFO to employees the CEO would not typically communicate with, Darktrace can take the appropriate action to remove the threat.  

“After the implementation, we gave the solution two weeks to ingest our data and learn the specifics of our business. After that, it was perfect, just amazing,” said the CISO.  

Boosted team productivity and elevated value to the business

With Darktrace / EMAIL, the organization has successfully scaled its detection and response efforts without scaling personnel. The security team has reduced the number of emails requiring manual investigation by 90%. And because analysts now have the benefit of Darktrace / EMAIL’s analytics and reporting, the investigation process is much easier and faster. “The impact of this solution on my team has been very positive,” said the CISO. “Darktrace / EMAIL essentially manages itself, freeing up time for our skilled analysts–and for myself–to focus on more important projects.”  

The security team has scaled its detection and response efforts without scaling personnel,reducing the number of emails it manually investigates by 90%

Increased visibility delivers business-critical insights

You can’t control what you can’t see, and with zero visibility into critical data and metrics, this financial services provider was at a serious disadvantage. That has all changed. “Something that I love about Darktrace / EMAIL is the visibility that it provides into key metrics from a single dashboard. We can now understand the behavior of our email flow and data traffic and can make insight-driven decisions to continuously optimize our email security. It’s awesome,” said the CISO.  

An efficient user interface also improves productivity and reduces mean time to action by enabling teams to easily visualize key data points and quickly evaluate what actions need to be taken. Darktrace / EMAIL was developed with that experience in mind, allowing users to access data and take quick action without having to constantly log into the solution.

Keeping the business focused on cybersecurity

The leadership of this global organization takes information security very seriously, understanding that cyber-attacks aren’t just an IT problem but a business problem. When it came to evaluating Darktrace, the CISO said numerous stakeholders were involved including C-level executives, infrastructure, and IT, which operates separately from information security. The CISO initially identified the need, conducted the market research, engaged the target vendors, and then brought the other decision makers into the process for the solution evaluation and final decision. “Our IT group, infrastructure team, CTO and CEO are all involved when it comes to making major cybersecurity investments. We always try to make these decisions jointly to ensure we are taking everything into consideration.”

The organization has reached a higher level of maturity when it comes to email cybersecurity. The ability to automate routine email detection and investigation tasks has both strengthened the organization’s cyber resilience and enabled the CISO and his team to contribute more to the business. His advice for other IT leaders facing the same email security and visibility challenges he once experienced: “For those companies that need greater insight and control over their email but have limited resources and people, AI is the answer.”  

Darktrace / Email solution brief screenshot

Secure Your Inbox with Cutting-Edge AI Email Protection

Discover the most advanced cloud-native AI email security solution to protect your domain and brand while preventing phishing, novel social engineering, business email compromise, account takeover, and data loss.

  • Gain up to 13 days of earlier threat detection and maximize ROI on your current email security
  • Experience 20-25% more threat blocking power with Darktrace / EMAIL
  • Stop the 58% of threats bypassing traditional email security

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI