Blog

Inside the SOC

Threat actor tactics in the Russo-Ukrainian conflict: analyst observations and predictions

Default blog imageDefault blog image
09
Aug 2022
09
Aug 2022

Introduction

Since the beginning of the Russian invasion of Ukraine in February 2022, cyber communities around the world have been witnessing what can be called a ‘renaissance of cyberwarfare' [1]. Rather than being financially motivated, threat actors are being guided by political convictions to defend allies or attack their enemies. This blog reviews some of the main threat actors involved in this conflict and their ongoing tactics, and advises on how organizations can best protect themselves. Darktrace’s preliminary assessments predicted that attacks would be observed globally with a focus on pro-Ukrainian nations such as North Atlantic Treaty Organization (NATO) members and that identified Advanced Persistent Threat (APT) groups would develop new and complex malware deployed through increasingly sophisticated attack vectors. This blog will show that many of these assessments had unexpected outcomes.

Context for Conflict 

Cyber confrontation between Russia and Ukraine dates back to 2013, when Viktor Yanukovych, (former President of Ukraine) rejected an EU trade pact in favour of an agreement with Russia. This sparked mass protests leading to his overthrow, and shortly after, Russian troops annexed Crimea and initiated the beginning of Russian-Ukrainian ground and cyber warfare. Since then, Russian threat actors have been periodically targeting Ukrainian infrastructure. One of the most notable examples of this, an attack against their national power grid in December 2015, resulted in power outages for approximately 255,000 people in Ukraine and was later attributed to the Russian hacking group Sandworm [2 & 3]. 

Another well-known attack in June 2017 overwhelmed the websites of hundreds of Ukrainian organizations using the infamous NotPetya malware. This attack is still considered the most damaging cyberattack in history, with more than €10 billion euros in financial damage [4]. In February 2022, countries witnessed the next stage of cyberwar against Ukraine with both new and familiar actors deploying various techniques to target their rival’s critical infrastructure. 

Tactic 1: Ransomware

Although some sources suggest US ransomware incidents and expectations of ransom may have declined during the conflict, ransomware still remained a significant tactic deployed globally across this period [5] [6] [7]. A Ukrainian hacking group, Network Battalion 65 (NB65), used ransomware to attack the Russian state-owned television and radio broadcasting network VGTRK. NB65 managed to steal 900,000 emails and 4000 files, and later demanded a ransom which they promised to donate to the Ukrainian army. This attack was unique because the group used the previously leaked source code of Conti, another infamous hacker group that had pledged its support to the Russian government earlier in the conflict. NB65 modified the leaked code to make unique ransomware for each of its targets [5]. 

Against expectations, Darktrace’s customer base appeared to deviate from these ransom trends. Analysts have seen relatively unsophisticated ransomware attacks during the conflict period, with limited evidence to suggest they were connected to any APT activity. Between November 2021 and June 2022, there were 51 confirmed ransomware compromises across the Darktrace customer base. This represents an increase of 43.16% compared to the same period the year before, accounting for relative customer growth. Whilst this suggests an overall growth in ransom cases, many of these confirmed incidents were unattributed and did not appear to be targeting any particular verticals or regions. While there was an increase in the energy sector, this could not be explicitly linked to the conflict. 

The Darktrace DETECT family has a variety of models related to ransomware visibility:

Darktrace Detections for T1486 (Data Encrypted for Impact):

- Compromise / Ransomware / Ransom or Offensive Words Written to SMB

- Compromise / Ransomware / Suspicious SMB Activity

- Anomalous Connection / Sustained MIME Type Conversion

- Unusual Activity / Sustained Anomalous SMB Activity

- Compromise / Ransomware / Suspicious SMB File Extension

- Unusual Activity / Anomalous SMB Read & Write

- Unusual Activity / Anomalous SMB Read & Write from New Device

- SaaS / Resource / SaaS Resources with Additional Extensions

- Compromise / Ransomware / Possible Ransom Note Read

- [If RESPOND is enabled] Antigena / Network / External Threat / Antigena Ransomware Block

Tactic 2: Wipers

One of the largest groups of executables seen during the conflict were wipers. On the eve of the invasion, Ukrainian organizations were targeted by a new wiper malware given the name “HermeticWiper”. Hermetic refers to the name of the Cyprian company “Hermetica Digital Ltd.” which was used by attackers to request a code signing certificate [6]. Such a digital certificate is used to verify the ownership of the code and that it has not been altered. The 24-year-old owner of Hermetica Digital says he had no idea that his company was abused to retrieve a code signing certificate [7]. 

HermeticWiper consists of three components: a worm, decoy ransomware and the wiper malware. The custom worm designed for HermeticWiper was used to spread the malware across the network of its infected machines. ESET researchers discovered that the decoy ransomware and the wiper were released at the same time [8]. The decoy ransomware was used to make it look like the machine was hit by ransomware, when in reality the wiper was already permanently wiping data from the machines. In the attack’s initial stage, it bypasses Windows security features designed to prevent overwriting boot records by installing a separate driver. After wiping data from the machine, HermeticWiper prevents that data from being re-fragmented and overwrites the files to fragment it further. This is done to make it more challenging to reconstruct data for post-compromise forensics [9]. Overall, the function and purpose of HermeticWiper seems similar to that of NotPetya ransomware. 

HermeticWiper is not the only conflict-associated wiper malware which has been observed. In January 2022, Microsoft warned Ukrainian customers that they detected wiper intrusion activity against several European organizations. One example of this was the MBR (Master Boot Record) wiper. This type of wiper overwrites the MBR, the disk sector that instructs a computer on how to load its operating system, with a ransomware note. In reality, the note is a misdirection and the malware destroys the MBR and targeted files [10].  

One of the most notable groups that used wiper malware was Sandworm. Sandworm is an APT attributed to Russia’s foreign military intelligence agency, GRU. The group has been active since 2009 and has used a variety of TTPs within their attacks. They have a history of targeting Ukraine including attacks in 2015 on Ukraine’s energy distribution companies and in 2017 when they used the aforementioned NotPetya malware against several Ukrainian organizations [11]. Another Russian (or pro-Russian) group using wiper malware to target Ukraine is DEV-0586. This group targeted various Ukrainian organizations in January 2022 with Whispergate wiper malware. This type of wiper malware presents itself as ransomware by displaying a file instructing the victim to pay Bitcoin to have their files decrypted [12].  

Darktrace did not observe any confirmed cases of HermeticWiper nor other conflict-associated wipers (e.g IsaacWiper and CaddyWiper) within the customer base over this period. Despite this, Darktrace DETECT has a variety of models related to wipers and data destruction:

Darktrace Detections for T1485 (Data Destruction)- this is the main technique exploited during wiper attacks

- Unusual Activity / Anomalous SMB Delete Volume

- IaaS / Unusual Activity / Anomalous AWS Resources Deleted

- IaaS / Storage / S3 Bucket Delete

- SaaS / Resource / Mass Email Deletes from Rare Location

- SaaS / Resource / Anomalous SaaS Resources Deleted

- SaaS / Resource / Resource Permanent Delete

- [If RESPOND is enabled] Antigena / Network / Manual / Enforce Pattern of Life

- [If RESPOND is enabled] Antigena / SaaS / Antigena Unusual Activity Block

Tactic 3: Spear-Phishing

Another strategy that some threat actors employ is spear-phishing. Targeting can be done using email, social media, messaging, or other platforms.

The hacking group Armageddon (also known as Gamaredon) has been responsible for several spear-phishing attacks during the crisis, primarily targeting individuals involved in the Ukrainian Government [13]. Since the beginning of the war, the group has been sending out a large volume of emails containing an HTML file which, if opened, downloads and launches a RAR payload. Those who click the attached link download an HTA with a PowerShell script which obtains the final Armageddon payload. Using the same strategy, the group is also targeting governmental agencies in the European Union [14]. With high-value targets, the need to improve teaching around phishing identification to minimize the chance of being caught in an attacker's net is higher than ever. 

In comparison to the wider trends, Darktrace analysts again saw little-to-no evidence of conflict-associated phishing campaigns affecting customers. Those phishing attempts which did target customers were largely not conflict-related. In some cases, the conflict was used opportunistically, such as when one customer was targeted with a phishing email referencing Russian bank exclusions from the SWIFT payment system (Figures 1 and 2). The email was identified by Darktrace/Email as a probable attempt at financial extortion and inducement - in this case the company received a spoofed email from a major bank’s remittance department.  

Figure 1- Screencap of targeted phishing email sent to Darktrace customer
Figure 2- Attached file contains soliciting reference to SWIFT, a money payment system which select Russian banks were removed from because of the conflict [15]

 Although the conflict was used as a reference in some examples, in most of Darktrace’s observed phishing cases during the conflict period there was little-to-no evidence to suggest that the company being targeted nor the threat actor behind the phishing attempt was associated with or attributable to the Russia-Ukraine conflict.

However, Darktrace/Email has several model categories which pick up phishing related threats:

Sample of Darktrace for Email Detections for T1566 (Phishing)- this is the overarching technique exploited during spear-phishing events

Model Categories:

- Inducement

- Internal / External User Spoofing

- Internal / External Domain Spoofing

- Fake Support

- Link to Rare Domains

- Link to File Storage

- Redirect Links

- Anomalous / Malicious Attachments

- Compromised Known Sender

Specific models can be located on the Email Console

 

Tactic 4: Distributed-Denial-of-Service (DDoS)

Another tactic employed by both pro-Russian and pro-Ukrainian threat actors was DDoS (Distributed Denial of Service) attacks. Both pro-Russia and pro-Ukraine actors were seen targeting critical infrastructure, information resources, and governmental platforms with mass DDoS attacks. The Ukrainian Minister of Digital Transformation, Mykhailo Fedorov, called on an IT Army of underground Ukrainian hackers and volunteers to protect Ukraine's critical infrastructure and conduct DDoS attacks against Russia [16]. As of 1 August 2022, more than two hundred thousand people are subscribed to the group's official Telegram channel, where potential DDoS targets are announced [17].

Darktrace observed similar pro-Ukraine DDoS behaviors within a variety of customer environments. These DDoS campaigns appeared to involve low-volume individual support combined with crowd-sourced DDoS activity. They were hosted on a range of public-sourced DDoS sites and seemed to share sentiments of groups such as the IT Army of Ukraine (Figure 3).

Figure 3- Example DDoS outsource domain with unusual TLD 

From the Russian side, one of the prominent newly emerged groups, Killnet, is striking back, launching several massive DDoS attacks against the critical infrastructure of countries that provide weaponry to Ukraine [18 & 19]. Today, the number of supporters of Killnet has grown to eighty-four thousand on their Telegram channel. The group has already launched a number of mass attacks on several NATO states, including Germany, Poland, Italy, Lithuania and Norway. This shows the conflict has attracted new and fast-growing groups with large backing and the capacity to undertake widespread attacks. 

DETECT has several models to identify anomalous DoS/DDoS activity:

Darktrace Detection for T1498 (Network Denial of Service)- this is the main technique exploited during DDoS attacks

- Device / Anomaly Indicators / Denial of Service Activity Indicator

- Anomalous Server Activity / Possible Denial of Service Activity

- [If RESPOND is enabled] Antigena / Network / External Threat / Antigena Suspicious Activity Block

What did Darktrace observe?

Darktrace’s cross-fleet detections were largely contrary to expectations. Analysts did not see large-scale complex conflict-linked attacks utilizing either conflict-associated ransomware, malware, or other TTPs. Instead, cyber incidents observed were largely opportunistic, using malware that could be purchased through Malware-as-a-Service models and other widely available toolkits, (rather than APT or conflict-attributable attacks). Overall, this is not to say there have been no repercussions from the conflict or that opportunistic attacks will cease, but evidence suggests that there were fewer wider cyber consequences beyond the initial APT-based attacks seen in the public forum. 

Another trend expected since the beginning of the conflict was targeted responses to sanction announcements focusing on NATO businesses and governments. Analysts, however, saw the limited reactive actions, with little-to-no direct impact from sanction announcements. Although cyber-attacks on some NATO organizations did take place, they were not as widespread or impactful as expected. Lastly, it was thought that exposure to new and sophisticated exploits would increase and be used to weaken NATO nations - especially corporations in critical industries. However, analysts observed relatively common exploits deployed indiscriminately and opportunistically. Overall, with the wider industry expecting chaos, Darktrace analysts did not see the crisis taken advantage of to target wider businesses outside of Ukraine. Based on this comparison between expectations and reality, the conflict has demonstrated the danger of  falling prey to confirmation bias and the need to remain vigilant and expect the unexpected. It may be possible to say that cyberwar is ‘cold’ right now, however the element of surprise is always present, and it is better to be prepared to protect yourself and your organization.    

What to Expect from the Future

As cyberattacks continue to become less monetarily and physically costly, it is to be expected that they will increase in frequency. Even after a political ceasefire is established, hacking groups can harbour resentment and continue their attacks, though possibly on a smaller scale.  

Additionally, the longer this conflict continues, the more sophisticated hacking groups’s attacks may become. In one of their publications, Killnet shared with subscribers that they had created ‘network weaponry’ powerful enough to simultaneously take down five European countries (Figure 4) [20]. Whether or not this claim is true, it is vital to be prepared. The European Union and the United States have supported Ukraine since the start of the invasion, and the EU has also stated that it is considering providing further assistance to help Ukraine in cyberspace [21].

Figure 4- Snapshot of Killnet Telegram announcement

How to Protect Against these Attacks

In the face of wider conflict and cybersecurity tensions, it is crucial that organizations evaluate their security stack and practise the following: 

·       Know what your critical assets are and what software is running on them. 

·       Keep your software up to date. Prioritize patching critical and high vulnerabilities that allow remote code execution. 

·       Enforce Multifactor Authentication (MFA) to the greatest extent possible. 

·       Require the use of a password manager to generate strong and unique passwords for each separate account. 

·       Backup all the essential files on the cloud and external drives and regularly maintain them. 

·       Train your employees to recognize phishing emails, suspicious websites, infected links or other abnormalities to prevent successful compromise of email accounts. 

In order to prevent an organization from suffering damage due to one of the attacks mentioned above, a full-circle approach is needed. This defence starts with a thorough understanding of the attack surface to provide timely mitigation. This can be supported by Darktrace products: 

·       As shown throughout this blog, Darktrace DETECT and Darktrace/Email have several models relating to conflict-associated TTPs and attacks. These help to quickly alert security teams and provide visibility of anomalous behaviors.

·       Darktrace PREVENT/ASM helps to identify vulnerable external-facing assets. By patching and securing these devices, the risk of exploit is drastically reduced.

·       Darktrace RESPOND and RESPOND/Email can make targeted actions to a range of threats such as blocking incoming DDoS connections or locking malicious email links.

Thanks to the Darktrace Threat Intelligence Unit for their contributions to this blog.

Appendices 

Reference List

[1] https://www.atlanticcouncil.org/blogs/ukrainealert/vladimir-putins-ukraine-invasion-is-the-worlds-first-full-scale-cyberwar/ 

[2] https://www.reuters.com/article/us-ukraine-cybersecurity-idUSKCN0VY30K

[3] https://www.reuters.com/article/us-ukraine-cybersecurity-sandworm-idUSKBN0UM00N20160108

[4 & 11] https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/ 

[5] https://www.scmagazine.com/analysis/ransomware/despite-hopes-for-decline-ransomware-attacks-increased-during-russia-ukraine-conflict

[6] https://ransomware.org/blog/has-the-ukraine-conflict-disrupted-ransomware-attacks/

[7] https://www.cfr.org/blog/financial-incentives-may-explain-perceived-lack-ransomware-russias-latest-assault-ukraine

[8] https://www.bleepingcomputer.com/news/security/hackers-use-contis-leaked-ransomware-to-attack-russian-companies/ 

[9] https://voi.id/en/technology/138937/hermetica-owner-from-cyprus-didnt-know-his-server-was-used-in-malicious-malware-attack-in-ukraine 

[10] https://www.reuters.com/article/ukraine-crisis-cyber-cyprus-idCAKBN2KT2QI 

[11] https://www.eset.com/int/about/newsroom/press-releases/research/eset-research-ukraine-hit-by-destructive-attacks-before-and-during-the-russian-invasion-with-hermet/ 

[12] https://blog.malwarebytes.com/threat-intelligence/2022/03/hermeticwiper-a-detailed-analysis-of-the-destructive-malware-that-targeted-ukraine/ 

[13] https://www.microsoft.com/security/blog/2022/01/15/destructive-malware-targeting-ukrainian-organizations/ 

[15] https://www.cisa.gov/uscert/ncas/alerts/aa22-057a 

[16] https://attack.mitre.org/groups/G0047/ 

[17] https://cyware.com/news/ukraine-cert-warns-of-increasing-attacks-by-armageddon-group-850081f8 

[18] https://www.bbc.co.uk/news/business-60521822

[19] https://foreignpolicy.com/2022/04/11/russia-cyberwarfare-us-ukraine-volunteer-hackers-it-army/

[20] https://t.me/itarmyofukraine2022

[21] https://www.csoonline.com/article/3664859/russian-ddos-attack-on-lithuania-was-planned-on-telegram-flashpoint-says.html

[19 & 20] https://flashpoint.io/blog/killnet-kaliningrad-and-lithuanias-transport-standoff-with-russia/ 

[21] https://presidence-francaise.consilium.europa.eu/en/news/member-states-united-in-supporting-ukraine-and-strengthening-the-eu-s-telecommunications-and-cybersecurity-resilience/ 

Like this and want more?

Receive the latest blog in your inbox
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Rosa Jong
OSINT Analyst
Taisiia Garkava
Security Analyst
share this article
PRODUCT SPOTLIGHT
No items found.
COre coverage
No items found.

Blog

Inside the SOC

How Abuse of ‘PerfectData Software’ May Create a Perfect Storm: An Emerging Trend in Account Takeovers

Default blog imageDefault blog image
05
Jun 2023

Amidst the ever-changing threat landscape, new tactics, techniques, and procedures (TTPs) seem to emerge daily, creating extreme challenges for security teams. The broad range of attack methods utilized by attackers seems to present an insurmountable problem: how do you defend against a playbook that does not yet exist?

Faced with the growing number of novel and uncommon attack methods, it is essential for organizations to adopt a security solution able to detect threats based on their anomalies, rather than relying on threat intelligence alone.   

In March 2023, Darktrace observed an emerging trend in the use of an application known as ‘PerfectData Software’ for probable malicious purposes in several Microsoft 365 account takeovers.

Using its anomaly-based detection, Darktrace DETECT™ was able to identify the activity chain surrounding the use of this application, potentially uncovering a novel piece of threat actor tradecraft in the process.

Microsoft 365 Intrusions

In recent years, Microsoft’s Software-as-a-Service (SaaS) suite, Microsoft 365, along with its built-in identity and access management (IAM) service, Azure Active Directory (Azure AD), have been heavily targeted by threat actors due to their near-ubiquitous usage across industries. Four out of every five Fortune 500 companies, for example, use Microsoft 365 services [1].  

Malicious actors typically gain entry to organizations’ Microsoft 365 environments by abusing either stolen account credentials or stolen session cookies [2]. Once inside, actors can access sensitive data within mailboxes or SharePoint repositories, and send out emails or Teams messages. This activity can often result in serious financial harm, especially in cases where the malicious actor’s end-goal is to elicit fraudulent transactions.  

Darktrace regularly observes malicious actors behaving in predictable ways once they gain access to customer Microsoft 365 environment. One typical example is the creation of new inbox rules and sending deceitful emails intended to convince recipients to carry out subsequent actions, such as following a malicious link or providing sensitive information. It is also common for actors to register new applications in Azure AD so that they can be used to conduct follow-up activities, like mass-mailing or data theft. The registration of applications in Azure AD therefore seems to be a relatively predictable threat actor behavior [3][4]. Darktrace DETECT understands that unusual application registrations in Azure AD may constitute a deviation in expected behavior, and therefore a possible indicator of account compromise.

These registrations of applications in Azure AD are evidenced by creations of, as well as assignments of permissions to, Service Principals in Azure AD. Darktrace has detected a growing trend in actors creating and assigning permissions to a Service Principal named ‘PerfectData Software’. Further investigation of this Azure AD activity revealed it to be part of an ongoing account takeover. 

 ‘PerfectData Software’ Activity 

Darktrace observed variations of the following pattern of activity relating to an application named ‘PerfectData Software’ within its customer base:

  1. Actor signs in to a Microsoft 365 account from an endpoint associated with a Virtual Private Server (VPS) or Virtual Private Network (VPN) service
  2. Actor registers an application called 'PerfectData Software' with Azure AD, and then grants permissions to the application
  3. Actor accesses mailbox data and creates inbox rule 

In two separate incidents, malicious actors were observed conducting their activities from endpoints associated with VPN services (HideMyAss (HMA) VPN and Surfshark VPN, respectively) and from endpoints within the Autonomous System AS396073 MAJESTIC-HOSTING-01. 

In March 2023, Darktrace observed a malicious actor signing in to a Microsoft 365 account from a Kuwait-based IP address within the Autonomous System, AS198605 AVAST Software s.r.o. This IP address is associated with the VPN service, HMA VPN. Over the next couple of days, an actor (likely the same malicious actor) signed in to the account several more times from two different Nigeria-based endpoints, as well as a VPS-related endpoint and a HMA VPN endpoint. 

During their login sessions, the actor performed a variety of actions. First, they created and assigned permissions to a Service Principal named ‘PerfectData Software’. This Service Principal creation represents the registration of an application called ‘PerfectData Software’ in Azure AD.  Although the reason for registering this application is unclear, within a few days the actor registered and granted permission to another application, ‘Newsletter Software Supermailer’, and created a new inbox rule names ‘s’ on the mailbox of the hijacked account. This inbox rule moved emails meeting certain conditions to a folder named ‘RSS Subscription. The ‘Newsletter Software Supermailer’ application was likely registered by the actor to facilitate mass-mailing activity.

Immediately after these actions, Darktrace detected the actor sending out thousands of malicious emails from the account. The emails included an attachment named ‘Credit Transfer Copy.html’, which contained a suspicious link. Further investigation revealed that the customer’s network had received several fake invoice emails prior to this initial intrusion activity. Additionally, there was an unusually high volume of failed logins to the compromised account around the time of the initial access. 

Figure 1: Advanced Search logs depicting the steps which the actor took after logging in to a user’s Microsoft 365 account.
Figure 1: Advanced Search logs depicting the steps which the actor took after logging in to a user’s Microsoft 365 account.

In a separate case also observed by Darktrace in March 2023, a malicious actor was observed signing in to a Microsoft 365 account from an endpoint within the Autonomous System, AS397086 LAYER-HOST-HOUSTON. The endpoint appears to be related to the VPN service, Surfshark VPN. This login was followed by several failed and successful logins from a VPS-related within the Autonomous System, AS396073 MAJESTIC-HOSTING-01. The actor was then seen registering and assigning permissions to an application called ‘PerfectData Software’. As with the previous example, the motives for this registration are unclear. The actor proceeded to log in several more times from a Surfshark VPN endpoint, however, they were not observed carrying out any further suspicious activity. 

Advanced Search logs depicting the steps which the actor took after logging in to a user’s Microsoft 365 account.
Figure 2: Advanced Search logs depicting the steps which the actor took after logging in to a user’s Microsoft 365 account.

It was not clear in either of these examples, nor in fact any of cases observed by Darktrace, why actors had registered and assigned permissions to an application called ‘PerfectData Software’, and there do not appear to be any open-source intelligence (OSINT) resources or online literature related to the malicious usage of an application by that name. That said, there are several websites which appear to provide email migration and data recovery/backup tools under the moniker ‘PerfectData Software’. 

It is unclear whether the use of ‘PerfectData Software’ by malicious actors observed on the networks of Darktrace customers was one of these tools. However, given the nature of the tools, it is possible that the actors intended to use them to facilitate the exfiltration of email data from compromises mailboxes.

If the legitimate software ‘PerfectData’ is the application in question in these incidents, it is likely being purchased and misused by attackers for malicious purposes. It is also possible the application referenced in the incidents is a spoof of the legitimate ‘PerfectData’ software designed to masquerade a malicious application as legitimate.

Darktrace Coverage

Cases of ‘PerfectData Software’ activity chains detected by Darktrace typically began with an actor signing into an internal user’s Microsoft 365 account from a VPN or VPS-related endpoint. These login events, along with the suspicious email and/or brute-force activity which preceded them, caused the following DETECT models to breach:

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Access / Suspicious Login Attempt
  • SaaS / Compromise / Login From Rare Following Suspicious Login Attempt(s)
  • SaaS / Email Nexus / Unusual Location for SaaS and Email Activity

Subsequent activities, including inbox rule creations, registration of applications in Azure AD, and mass-mailing activity, resulted in breaches of the following DETECT models.

  • SaaS / Admin / OAuth Permission Grant 
  • SaaS / Compromise / Unusual Logic Following OAuth Grant 
  • SaaS / Admin / New Application Service Principal
  • IaaS / Admin / Azure Application Administration Activities
  • SaaS / Compliance / New Email Rule
  • SaaS / Compromise / Unusual Login and New Email Rule
  • SaaS / Email Nexus / Suspicious Internal Exchange Activity
  • SaaS / Email Nexus / Possible Outbound Email Spam
  • SaaS / Compromise / Unusual Login and Outbound Email Spam
  • SaaS / Compromise / Suspicious Login and Suspicious Outbound Email(s)
DETECT Model Breaches highlighting unusual login and 'PerfectData Software' registration activity from a malicious actor
Figure 3: DETECT Model Breaches highlighting unusual login and 'PerfectData Software' registration activity from a malicious actor.

In cases where Darktrace RESPOND™ was enabled in autonomous response mode, ‘PerfectData Software’ activity chains resulted in breaches of the following RESPOND models:

• Antigena / SaaS / Antigena Suspicious SaaS Activity Block

• Antigena / SaaS / Antigena Significant Compliance Activity Block

In response to these model breaches, Darktrace RESPOND took immediate action, performing aggressive, inhibitive actions, such as forcing the actor to log out of the SaaS platform, and disabling the user entirely. When applied autonomously, these RESPOND actions would seriously impede an attacker’s progress and minimize network disruption.

Figure 4: A RESPOND model breach created in response to a malicious actor's registration of 'PerfectData Software'

In addition, Darktrace Cyber AI Analyst was able to autonomously investigate registrations of the ‘PerfectData Software’ application and summarized its findings into digestible reports. 

A Cyber AI Analyst Incident Event log
Figure 5: A Cyber AI Analyst Incident Event log showing AI Analyst autonomously pivoting off a breach of 'SaaS / Admin / OAuth Permission Grant' to uncover details of an account hijacking.

Conclusion 

Due to the widespread adoption of Microsoft 365 services in the workplace and continued emphasis on a remote workforce, account hijackings now pose a more serious threat to organizations around the world than ever before. The cases discussed here illustrate the tendency of malicious actors to conduct their activities from endpoints associated with VPN services, while also registering new applications, like PerfectData Software, with malicious intent. 

While it was unclear exactly why the malicious actors were using ‘PerfectData Software’ as part of their account hijacking, it is clear that either the legitimate or spoofed version of the application is becoming an very likely emergent piece of threat actor tradecraft.

Darktrace DETECT’s anomaly-based approach to threat detection allowed it to recognize that the use of ‘PerfectData Software’ represented a deviation in the SaaS user’s expected behavior. While Darktrace RESPOND, when enabled in autonomous response mode, was able to quickly take preventative action against threat actors, blocking the potential use of the application for data exfiltration or other nefarious purposes.

Appendices

MITRE ATT&CK Mapping

Reconnaissance:

T1598 ­– Phishing for Information

Credential Access:

T1110 – Brute Force

Initial Access:

T1078.004 – Valid Accounts: Cloud Accounts

Command and Control:

T1105 ­– Ingress Tool Transfer

Persistence:

T1098.003 – Account Manipulation: Additional Cloud Roles 

Collection:

• T1114 – Email Collection 

Defense Evasion:

• T1564.008 ­– Hide Artifacts: Email Hiding Rules­

Lateral Movement:

T1534 – Internal Spearphishing

Unusual Source IPs

• 5.62.60[.]202  (AS198605 AVAST Software s.r.o.) 

• 160.152.10[.]215 (AS37637 Smile-Nigeria-AS)

• 197.244.250[.]155 (AS37705 TOPNET)

• 169.159.92[.]36  (AS37122 SMILE)

• 45.62.170[.]237 (AS396073 MAJESTIC-HOSTING-01)

• 92.38.180[.]49 (AS202422 G-Core Labs S.A)

• 129.56.36[.]26 (AS327952 AS-NATCOM)

• 92.38.180[.]47 (AS202422 G-Core Labs S.A.)

• 107.179.20[.]214 (AS397086 LAYER-HOST-HOUSTON)

• 45.62.170[.]31 (AS396073 MAJESTIC-HOSTING-01)

References

[1] https://www.investing.com/academy/statistics/microsoft-facts/

[2] https://intel471.com/blog/countering-the-problem-of-credential-theft

[3] https://darktrace.com/blog/business-email-compromise-to-mass-phishing-campaign-attack-analysis

[4] https://darktrace.com/blog/breakdown-of-a-multi-account-compromise-within-office-365

Continue reading
About the author
Sam Lister
SOC Analyst

Blog

Cloud

Darktrace Integrates Self-Learning AI with Amazon Security Lake to Support Security Investigations

Default blog imageDefault blog image
31
May 2023

Darktrace has deepened its relationship with AWS by integrating its detection and response capabilities with Amazon Security Lake

This development will allow mutual customers to seamlessly combine Darktrace AI’s bespoke understanding of their organization with the Threat Intelligence offered by other security tools, and investigate all of their alerts in one central location. 

This integration will improve the value security teams get from both products, streamlining analyst workflows and improving their ability to detect and respond to the full spectrum of known and unknown cyber-threats. 

How Darktrace and Amazon Security Lake augment security teams

Amazon Security Lake is a newly-released service that automatically centralizes an organization’s security data from cloud, on-premises, and custom sources into a customer owned purpose-built data lake. Both Darktrace and Amazon Security Lake support the Open Cybersecurity Schema Framework (OCSF), an open standard to simplify, combine, and analyze security logs.  

Customers can store security logs, events, alerts, and other relevant data generated by various AWS services and security tools. By consolidating security data in a central lake, organizations can gain a holistic view of their security posture, perform advanced analytics, detect anomalies and open investigations to improve their security practices.

With Darktrace DETECT and RESPOND AI engines covering all assets across IT, OT, network, endpoint, IoT, email and cloud, organizations can augment the value of their security data lakes by feeding Darktrace’s rich and context-aware datapoints to Amazon Security Lake. 

Amazon Security Lake empowers security teams to improve the protection of your digital estate:

  • Quick and painless data normalization 
  • Fast-tracks ability to investigate, triage and respond to security events
  • Broader visibility aids more effective decision-making
  • Surfaces and prioritizes anomalies for further investigation
  • Single interface for seamless data management

How will Darktrace customers benefit?

Across the Cyber AI Loop, all Darktrace solutions have been architected with AWS best practices in mind. With this integration, Darktrace is bringing together its understanding of ‘self’ for every organization with the centralized data visibility of the Amazon Security Lake. Darktrace’s unique approach to cyber security, powered by groundbreaking AI research, delivers a superior dataset based on a deep and interconnected understanding of the enterprise. 

Where other cyber security solutions are trained to identify threats based on historical attack data and techniques, Darktrace DETECT gains a bespoke understanding of every digital environment, continuously analyzing users, assets, devices and the complex relationships between them. Our AI analyzes thousands of metrics to reveal subtle deviations that may signal an evolving issue – even unknown techniques and novel malware. It distinguishes between malicious and benign behavior, identifying harmful activity that typically goes unnoticed. This rich dataset is fed into RESPOND, which takes precise action to neutralize threats against any and every asset, no matter where data resides.

Both DETECT and RESPOND are supported by Darktrace Self-Learning AI, which provides full, real-time visibility into an organization’s systems and data. This always-on threat analysis already makes humans better at cyber security, improving decisions and outcomes based on total visibility of the digital ecosystem, supporting human performance with AI coverage and empowering security teams to proactively protect critical assets.  

Converting Darktrace alerts to the Amazon Security Lake Open Cybersecurity Schema Framework (OCSF) supplies the Security Operations Center (SOC) and incident response team with contextualized data, empowering them to accelerate their investigation, triage and response to potential cyber threats. 

Darktrace is available for purchase on the AWS Marketplace.

Learn more about how Darktrace provides full-coverage, AI-powered cloud security for AWS, or see how our customers use Darktrace in their AWS cloud environments.

Continue reading
About the author
Nabil Zoldjalali
VP, Technology Innovation

Good news for your business.
Bad news for the bad guys.

Start your free trial

Start your free trial

Flexible delivery
You can either install it virtually or with hardware.
Fast install
Just 1 hour to set up – and even less for an email security trial.
Choose your journey
Try out Self-Learning AI wherever you most need it — including cloud, network or email.
No commitment
Full access to the Darktrace Threat Visualizer and three bespoke Threat Reports, with no obligation to purchase.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
Oops! Something went wrong while submitting the form.

Get a demo

Flexible delivery
You can either install it virtually or with hardware.
Fast install
Just 1 hour to set up – and even less for an email security trial.
Choose your journey
Try out Self-Learning AI wherever you most need it — including cloud, network or email.
No commitment
Full access to the Darktrace Threat Visualizer and three bespoke Threat Reports, with no obligation to purchase.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.