Blog

Inside the SOC

Cyber Tactics in the Russo-Ukrainian Conflict

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Aug 2022
09
Aug 2022
The conflict between Russia and Ukraine has led to fears of a full-scale cyberwar. Learn the cyber attack tactics used, hacking groups involved, and more!

Introduction

Since the beginning of the Russian invasion of Ukraine in February 2022, cyber communities around the world have been witnessing what can be called a ‘renaissance of cyberwarfare' [1]. Rather than being financially motivated, threat actors are being guided by political convictions to defend allies or attack their enemies. This blog reviews some of the main threat actors involved in this conflict and their ongoing tactics, and advises on how organizations can best protect themselves. Darktrace’s preliminary assessments predicted that attacks would be observed globally with a focus on pro-Ukrainian nations such as North Atlantic Treaty Organization (NATO) members and that identified Advanced Persistent Threat (APT) groups would develop new and complex malware deployed through increasingly sophisticated attack vectors. This blog will show that many of these assessments had unexpected outcomes.

Context for Conflict 

Cyber confrontation between Russia and Ukraine dates back to 2013, when Viktor Yanukovych, (former President of Ukraine) rejected an EU trade pact in favour of an agreement with Russia. This sparked mass protests leading to his overthrow, and shortly after, Russian troops annexed Crimea and initiated the beginning of Russian-Ukrainian ground and cyber warfare. Since then, Russian threat actors have been periodically targeting Ukrainian infrastructure. One of the most notable examples of this, an attack against their national power grid in December 2015, resulted in power outages for approximately 255,000 people in Ukraine and was later attributed to the Russian hacking group Sandworm [2 & 3]. 

Another well-known attack in June 2017 overwhelmed the websites of hundreds of Ukrainian organizations using the infamous NotPetya malware. This attack is still considered the most damaging cyberattack in history, with more than €10 billion euros in financial damage [4]. In February 2022, countries witnessed the next stage of cyberwar against Ukraine with both new and familiar actors deploying various techniques to target their rival’s critical infrastructure. 

Tactic 1: Ransomware

Although some sources suggest US ransomware incidents and expectations of ransom may have declined during the conflict, ransomware still remained a significant tactic deployed globally across this period [5] [6] [7]. A Ukrainian hacking group, Network Battalion 65 (NB65), used ransomware to attack the Russian state-owned television and radio broadcasting network VGTRK. NB65 managed to steal 900,000 emails and 4000 files, and later demanded a ransom which they promised to donate to the Ukrainian army. This attack was unique because the group used the previously leaked source code of Conti, another infamous hacker group that had pledged its support to the Russian government earlier in the conflict. NB65 modified the leaked code to make unique ransomware for each of its targets [5]. 

Against expectations, Darktrace’s customer base appeared to deviate from these ransom trends. Analysts have seen relatively unsophisticated ransomware attacks during the conflict period, with limited evidence to suggest they were connected to any APT activity. Between November 2021 and June 2022, there were 51 confirmed ransomware compromises across the Darktrace customer base. This represents an increase of 43.16% compared to the same period the year before, accounting for relative customer growth. Whilst this suggests an overall growth in ransom cases, many of these confirmed incidents were unattributed and did not appear to be targeting any particular verticals or regions. While there was an increase in the energy sector, this could not be explicitly linked to the conflict. 

The Darktrace DETECT family has a variety of models related to ransomware visibility:

Darktrace Detections for T1486 (Data Encrypted for Impact):

- Compromise / Ransomware / Ransom or Offensive Words Written to SMB

- Compromise / Ransomware / Suspicious SMB Activity

- Anomalous Connection / Sustained MIME Type Conversion

- Unusual Activity / Sustained Anomalous SMB Activity

- Compromise / Ransomware / Suspicious SMB File Extension

- Unusual Activity / Anomalous SMB Read & Write

- Unusual Activity / Anomalous SMB Read & Write from New Device

- SaaS / Resource / SaaS Resources with Additional Extensions

- Compromise / Ransomware / Possible Ransom Note Read

- [If RESPOND is enabled] Antigena / Network / External Threat / Antigena Ransomware Block

Tactic 2: Wipers

One of the largest groups of executables seen during the conflict were wipers. On the eve of the invasion, Ukrainian organizations were targeted by a new wiper malware given the name “HermeticWiper”. Hermetic refers to the name of the Cyprian company “Hermetica Digital Ltd.” which was used by attackers to request a code signing certificate [6]. Such a digital certificate is used to verify the ownership of the code and that it has not been altered. The 24-year-old owner of Hermetica Digital says he had no idea that his company was abused to retrieve a code signing certificate [7]. 

HermeticWiper consists of three components: a worm, decoy ransomware and the wiper malware. The custom worm designed for HermeticWiper was used to spread the malware across the network of its infected machines. ESET researchers discovered that the decoy ransomware and the wiper were released at the same time [8]. The decoy ransomware was used to make it look like the machine was hit by ransomware, when in reality the wiper was already permanently wiping data from the machines. In the attack’s initial stage, it bypasses Windows security features designed to prevent overwriting boot records by installing a separate driver. After wiping data from the machine, HermeticWiper prevents that data from being re-fragmented and overwrites the files to fragment it further. This is done to make it more challenging to reconstruct data for post-compromise forensics [9]. Overall, the function and purpose of HermeticWiper seems similar to that of NotPetya ransomware. 

HermeticWiper is not the only conflict-associated wiper malware which has been observed. In January 2022, Microsoft warned Ukrainian customers that they detected wiper intrusion activity against several European organizations. One example of this was the MBR (Master Boot Record) wiper. This type of wiper overwrites the MBR, the disk sector that instructs a computer on how to load its operating system, with a ransomware note. In reality, the note is a misdirection and the malware destroys the MBR and targeted files [10].  

One of the most notable groups that used wiper malware was Sandworm. Sandworm is an APT attributed to Russia’s foreign military intelligence agency, GRU. The group has been active since 2009 and has used a variety of TTPs within their attacks. They have a history of targeting Ukraine including attacks in 2015 on Ukraine’s energy distribution companies and in 2017 when they used the aforementioned NotPetya malware against several Ukrainian organizations [11]. Another Russian (or pro-Russian) group using wiper malware to target Ukraine is DEV-0586. This group targeted various Ukrainian organizations in January 2022 with Whispergate wiper malware. This type of wiper malware presents itself as ransomware by displaying a file instructing the victim to pay Bitcoin to have their files decrypted [12].  

Darktrace did not observe any confirmed cases of HermeticWiper nor other conflict-associated wipers (e.g IsaacWiper and CaddyWiper) within the customer base over this period. Despite this, Darktrace DETECT has a variety of models related to wipers and data destruction:

Darktrace Detections for T1485 (Data Destruction)- this is the main technique exploited during wiper attacks

- Unusual Activity / Anomalous SMB Delete Volume

- IaaS / Unusual Activity / Anomalous AWS Resources Deleted

- IaaS / Storage / S3 Bucket Delete

- SaaS / Resource / Mass Email Deletes from Rare Location

- SaaS / Resource / Anomalous SaaS Resources Deleted

- SaaS / Resource / Resource Permanent Delete

- [If RESPOND is enabled] Antigena / Network / Manual / Enforce Pattern of Life

- [If RESPOND is enabled] Antigena / SaaS / Antigena Unusual Activity Block

Tactic 3: Spear-Phishing

Another strategy that some threat actors employ is spear-phishing. Targeting can be done using email, social media, messaging, or other platforms.

The hacking group Armageddon (also known as Gamaredon) has been responsible for several spear-phishing attacks during the crisis, primarily targeting individuals involved in the Ukrainian Government [13]. Since the beginning of the war, the group has been sending out a large volume of emails containing an HTML file which, if opened, downloads and launches a RAR payload. Those who click the attached link download an HTA with a PowerShell script which obtains the final Armageddon payload. Using the same strategy, the group is also targeting governmental agencies in the European Union [14]. With high-value targets, the need to improve teaching around phishing identification to minimize the chance of being caught in an attacker's net is higher than ever. 

In comparison to the wider trends, Darktrace analysts again saw little-to-no evidence of conflict-associated phishing campaigns affecting customers. Those phishing attempts which did target customers were largely not conflict-related. In some cases, the conflict was used opportunistically, such as when one customer was targeted with a phishing email referencing Russian bank exclusions from the SWIFT payment system (Figures 1 and 2). The email was identified by Darktrace/Email as a probable attempt at financial extortion and inducement - in this case the company received a spoofed email from a major bank’s remittance department.  

Figure 1- Screencap of targeted phishing email sent to Darktrace customer
Figure 2- Attached file contains soliciting reference to SWIFT, a money payment system which select Russian banks were removed from because of the conflict [15]

 Although the conflict was used as a reference in some examples, in most of Darktrace’s observed phishing cases during the conflict period there was little-to-no evidence to suggest that the company being targeted nor the threat actor behind the phishing attempt was associated with or attributable to the Russia-Ukraine conflict.

However, Darktrace/Email has several model categories which pick up phishing related threats:

Sample of Darktrace for Email Detections for T1566 (Phishing)- this is the overarching technique exploited during spear-phishing events

Model Categories:

- Inducement

- Internal / External User Spoofing

- Internal / External Domain Spoofing

- Fake Support

- Link to Rare Domains

- Link to File Storage

- Redirect Links

- Anomalous / Malicious Attachments

- Compromised Known Sender

Specific models can be located on the Email Console

 

Tactic 4: Distributed-Denial-of-Service (DDoS)

Another tactic employed by both pro-Russian and pro-Ukrainian threat actors was DDoS (Distributed Denial of Service) attacks. Both pro-Russia and pro-Ukraine actors were seen targeting critical infrastructure, information resources, and governmental platforms with mass DDoS attacks. The Ukrainian Minister of Digital Transformation, Mykhailo Fedorov, called on an IT Army of underground Ukrainian hackers and volunteers to protect Ukraine's critical infrastructure and conduct DDoS attacks against Russia [16]. As of 1 August 2022, more than two hundred thousand people are subscribed to the group's official Telegram channel, where potential DDoS targets are announced [17].

Darktrace observed similar pro-Ukraine DDoS behaviors within a variety of customer environments. These DDoS campaigns appeared to involve low-volume individual support combined with crowd-sourced DDoS activity. They were hosted on a range of public-sourced DDoS sites and seemed to share sentiments of groups such as the IT Army of Ukraine (Figure 3).

Figure 3- Example DDoS outsource domain with unusual TLD 

From the Russian side, one of the prominent newly emerged groups, Killnet, is striking back, launching several massive DDoS attacks against the critical infrastructure of countries that provide weaponry to Ukraine [18 & 19]. Today, the number of supporters of Killnet has grown to eighty-four thousand on their Telegram channel. The group has already launched a number of mass attacks on several NATO states, including Germany, Poland, Italy, Lithuania and Norway. This shows the conflict has attracted new and fast-growing groups with large backing and the capacity to undertake widespread attacks. 

DETECT has several models to identify anomalous DoS/DDoS activity:

Darktrace Detection for T1498 (Network Denial of Service)- this is the main technique exploited during DDoS attacks

- Device / Anomaly Indicators / Denial of Service Activity Indicator

- Anomalous Server Activity / Possible Denial of Service Activity

- [If RESPOND is enabled] Antigena / Network / External Threat / Antigena Suspicious Activity Block

What did Darktrace observe?

Darktrace’s cross-fleet detections were largely contrary to expectations. Analysts did not see large-scale complex conflict-linked attacks utilizing either conflict-associated ransomware, malware, or other TTPs. Instead, cyber incidents observed were largely opportunistic, using malware that could be purchased through Malware-as-a-Service models and other widely available toolkits, (rather than APT or conflict-attributable attacks). Overall, this is not to say there have been no repercussions from the conflict or that opportunistic attacks will cease, but evidence suggests that there were fewer wider cyber consequences beyond the initial APT-based attacks seen in the public forum. 

Another trend expected since the beginning of the conflict was targeted responses to sanction announcements focusing on NATO businesses and governments. Analysts, however, saw the limited reactive actions, with little-to-no direct impact from sanction announcements. Although cyber-attacks on some NATO organizations did take place, they were not as widespread or impactful as expected. Lastly, it was thought that exposure to new and sophisticated exploits would increase and be used to weaken NATO nations - especially corporations in critical industries. However, analysts observed relatively common exploits deployed indiscriminately and opportunistically. Overall, with the wider industry expecting chaos, Darktrace analysts did not see the crisis taken advantage of to target wider businesses outside of Ukraine. Based on this comparison between expectations and reality, the conflict has demonstrated the danger of  falling prey to confirmation bias and the need to remain vigilant and expect the unexpected. It may be possible to say that cyberwar is ‘cold’ right now, however the element of surprise is always present, and it is better to be prepared to protect yourself and your organization.    

What to Expect from the Future

As cyberattacks continue to become less monetarily and physically costly, it is to be expected that they will increase in frequency. Even after a political ceasefire is established, hacking groups can harbour resentment and continue their attacks, though possibly on a smaller scale.  

Additionally, the longer this conflict continues, the more sophisticated hacking groups’s attacks may become. In one of their publications, Killnet shared with subscribers that they had created ‘network weaponry’ powerful enough to simultaneously take down five European countries (Figure 4) [20]. Whether or not this claim is true, it is vital to be prepared. The European Union and the United States have supported Ukraine since the start of the invasion, and the EU has also stated that it is considering providing further assistance to help Ukraine in cyberspace [21].

Figure 4- Snapshot of Killnet Telegram announcement

How to Protect Against these Attacks

In the face of wider conflict and cybersecurity tensions, it is crucial that organizations evaluate their security stack and practise the following: 

·       Know what your critical assets are and what software is running on them. 

·       Keep your software up to date. Prioritize patching critical and high vulnerabilities that allow remote code execution. 

·       Enforce Multifactor Authentication (MFA) to the greatest extent possible. 

·       Require the use of a password manager to generate strong and unique passwords for each separate account. 

·       Backup all the essential files on the cloud and external drives and regularly maintain them. 

·       Train your employees to recognize phishing emails, suspicious websites, infected links or other abnormalities to prevent successful compromise of email accounts. 

In order to prevent an organization from suffering damage due to one of the attacks mentioned above, a full-circle approach is needed. This defence starts with a thorough understanding of the attack surface to provide timely mitigation. This can be supported by Darktrace products: 

·       As shown throughout this blog, Darktrace DETECT and Darktrace/Email have several models relating to conflict-associated TTPs and attacks. These help to quickly alert security teams and provide visibility of anomalous behaviors.

·       Darktrace PREVENT/ASM helps to identify vulnerable external-facing assets. By patching and securing these devices, the risk of exploit is drastically reduced.

·       Darktrace RESPOND and RESPOND/Email can make targeted actions to a range of threats such as blocking incoming DDoS connections or locking malicious email links.

Thanks to the Darktrace Threat Intelligence Unit for their contributions to this blog.

Appendices 

Reference List

[1] https://www.atlanticcouncil.org/blogs/ukrainealert/vladimir-putins-ukraine-invasion-is-the-worlds-first-full-scale-cyberwar/ 

[2] https://www.reuters.com/article/us-ukraine-cybersecurity-idUSKCN0VY30K

[3] https://www.reuters.com/article/us-ukraine-cybersecurity-sandworm-idUSKBN0UM00N20160108

[4 & 11] https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/ 

[5] https://www.scmagazine.com/analysis/ransomware/despite-hopes-for-decline-ransomware-attacks-increased-during-russia-ukraine-conflict

[6] https://ransomware.org/blog/has-the-ukraine-conflict-disrupted-ransomware-attacks/

[7] https://www.cfr.org/blog/financial-incentives-may-explain-perceived-lack-ransomware-russias-latest-assault-ukraine

[8] https://www.bleepingcomputer.com/news/security/hackers-use-contis-leaked-ransomware-to-attack-russian-companies/ 

[9] https://voi.id/en/technology/138937/hermetica-owner-from-cyprus-didnt-know-his-server-was-used-in-malicious-malware-attack-in-ukraine 

[10] https://www.reuters.com/article/ukraine-crisis-cyber-cyprus-idCAKBN2KT2QI 

[11] https://www.eset.com/int/about/newsroom/press-releases/research/eset-research-ukraine-hit-by-destructive-attacks-before-and-during-the-russian-invasion-with-hermet/ 

[12] https://blog.malwarebytes.com/threat-intelligence/2022/03/hermeticwiper-a-detailed-analysis-of-the-destructive-malware-that-targeted-ukraine/ 

[13] https://www.microsoft.com/security/blog/2022/01/15/destructive-malware-targeting-ukrainian-organizations/ 

[15] https://www.cisa.gov/uscert/ncas/alerts/aa22-057a 

[16] https://attack.mitre.org/groups/G0047/ 

[17] https://cyware.com/news/ukraine-cert-warns-of-increasing-attacks-by-armageddon-group-850081f8 

[18] https://www.bbc.co.uk/news/business-60521822

[19] https://foreignpolicy.com/2022/04/11/russia-cyberwarfare-us-ukraine-volunteer-hackers-it-army/

[20] https://t.me/itarmyofukraine2022

[21] https://www.csoonline.com/article/3664859/russian-ddos-attack-on-lithuania-was-planned-on-telegram-flashpoint-says.html

[19 & 20] https://flashpoint.io/blog/killnet-kaliningrad-and-lithuanias-transport-standoff-with-russia/ 

[21] https://presidence-francaise.consilium.europa.eu/en/news/member-states-united-in-supporting-ukraine-and-strengthening-the-eu-s-telecommunications-and-cybersecurity-resilience/ 

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Rosa Jong
OSINT Analyst
Taisiia Garkava
Security Analyst
Book a 1-1 meeting with one of our experts
share this article
PRODUCT SPOTLIGHT
No items found.
COre coverage
No items found.

More in this series

No items found.

Blog

Inside the SOC

The Price of Admission: Countering Stolen Credentials with Darktrace

Default blog imageDefault blog image
03
Jun 2024

Using leaked credentials to gain unauthorized access

Dark web marketplaces selling sensitive data have increased accessibility for malicious actors, similar to Ransomware-as-a-Service (RaaS), lowering the barrier to entry usually associated with malicious activity. By utilizing leaked credentials, malicious actors can easily gain unauthorized access to accounts and systems which they can leverage to carry out malicious activities like data exfiltration or malware deployment.

Usage of leaked credentials by malicious actors is a persistent concern for both organizations and security providers. Google Cloud’s ‘H1 2024 Threat Horizons Report’ details that initial access seen in 2.9% of cloud compromises observed on Google Cloud resulted from leaked credential usage [1], with the ‘IBM X-Force Threat Intelligence Index 2024’ reporting 71% year-on-year increase in cyber-attacks which utilize stolen or compromised credentials [2].

Darktrace coverage of leaked credentials

In early 2024, one Darktrace customer was compromised by a malicious actor after their internal credentials had been leaked on the dark web. Subsequent attack phases were detected by Darktrace/Network and the customer was alerted to the suspicious activity via the Proactive Threat Notification (PTN) service, following an investigation by Darktrace’s Security Operation Center (SOC).

Darktrace detected a device on the network of a customer in the US carrying out a string of anomalous activity indicative of network compromise. The device was observed using a new service account to authenticate to a Virtual Private Network (VPN) server, before proceeding to perform a range of suspicious activity including internal reconnaissance and lateral movement.

Malicious actors seemingly gained access to a previously unused service account for which they were able to set up multi-factor authentication (MFA) to access the VPN. As this MFA setup was made possible by the configuration of the customer’s managed service provider (MSP), the initial access phase of the attack fell outside of Darktrace’s purview.

Unfortunately for the customer in this case, Darktrace RESPOND™ was not enabled on the network at the time of the attack. Had RESPOND been active, it would have been able to autonomously act against the malicious activity by disabling users, strategically blocking suspicious connections and limiting devices to their expected patterns of activity.

Attack timeline of leaked credentials spotted by darktrace

Network Scanning Activity

On February 22, 2024, Darktrace detected the affected device performing activity indicative of network scanning, namely initiating connections on multiple ports, including ports 80, 161 389 and 445, to other internal devices. While many of these internal connection attempts were unsuccessful, some successful connections were observed.

Devices on a network can gather information about other internal devices by performing network scanning activity. Defensive scanning can be used to support network security, allowing internal security teams to discover vulnerabilities and potential entry points that require their attention, however attackers are also able to take advantage of such information, such as open ports and services available on internal devices, with offensive scanning.

Brute Force Login Attempts

Darktrace proceeded to identify the malicious actor attempting to access a previously unused service account for which they were able to successfully establish MFA to access the organization’s VPN. As the customer’s third-party MSP had been configured to allow all users to login to the organization’s VPN using MFA, this login was successful. Moreover, the service account had never previously been used and MFA and never been established, allowing the attacker to leverage it for their own nefarious means.

Darktrace/Network identified the attacker attempting to authenticate over the Kerberos protocol using a total of 30 different usernames, of which two were observed successfully authenticating. There was a total of 6 successful Kerberos logins identified from two different credentials.  Darktrace also observed over 100 successful NTLM attempts from the same device for multiple usernames including “Administrator” and “mail”. These credentials were later confirmed by the customer to have been stolen and leaked on the dark web.

Advanced Search query results showing the usernames that successfully authenticated via NTLM.
Figure 1: Advanced Search query results showing the usernames that successfully authenticated via NTLM.

Even though MFA requirements had been satisfied when the threat actor accessed the organization’s VPN, Darktrace recognized that this activity represented a deviation from its previously learned behavior.

Malicious actors frequently attempt to gain unauthorized access to accounts and internal systems by performing login attempts using multiple possible usernames and passwords. This type of brute-force activity is typically accomplished using computational power via the use of software or scripts to attempt different username/password combinations until one is successful.

By purchasing stolen credentials from dark web marketplaces, attackers are able to significantly increase the success rate of brute-force attacks and, if they do gain access, they can easily act on their objectives, be that exfiltrating sensitive data or moving through their target networks to further the compromise.

Share Enumeration

Around 30 minutes after the initial network scanning activity, the compromised device was observed performing SMB enumeration using one of the aforementioned accounts. Darktrace understood that this activity was suspicious as the device had never previously been used to perform SMB activity and had not been tagged as a security device.

Darktrace/Network identifying the suspicious SMB enumeration performed by the compromised device.
Figure 2: Darktrace/Network identifying the suspicious SMB enumeration performed by the compromised device.

Such enumeration can be used by malicious actors to gain insights into the structures and configurations of a target device, view permissions associated with shared resources, and also view general identifying information about the system.

Darktrace further identified that the device connected to the named pipe “srvsvc”. By enumerating over srvsvc, a threat actor is able to request a list of all available SMB shares on a destination device, enabling further data gathering as part of network reconnaissance. Srvsvc also provides access to remote procedure call (RPC) for various services on a destination device.

At this stage, a Darktrace/Network Enhanced Monitoring model was triggered for lateral movement activity taking place on the customer’s network. As this particular customer was subscribed to the PTN service, the Enhanced Monitoring model alert was promptly triaged and investigated by the Darktrace SOC. The customer was alerted to the emerging activity and given full details of the incident and the SOC team’s investigation.

Attack and Reconnaissance Tool Usage

A few minutes later, Darktrace observed the device making a connection with a user agent associated with the Nmap network scanning tool, “Mozilla/5.0 (compatible; Nmap Scripting Engine; https://nmap.org/book/nse[.]html)”. While these tools are often used legitimately by an organization’s security team, they can also be used maliciously by attackers to exploit vulnerabilities that attackers may have unearthed during earlier reconnaissance activity.

As such services are often seen as normal network traffic, attackers can often use them to bypass traditional security measures. Darktrace’s Self-Learning AI, however, was able to recognize that the affected device was not a security device and therefore not expected to carry out such activity, even if it was using a legitimate Nmap service.

Darktrace/Network identifying the compromised device using the Nmap scanning tool.
Figure 3: Darktrace/Network identifying the compromised device using the Nmap scanning tool.

Further Lateral Movement

Following this suspicious Nmap usage, Darktrace observed a range of additional anomalous SMB activity from the aforementioned compromised account. The affected device attempted to establish almost 900 SMB sessions, as well as performing 65 unusual file reads from 29 different internal devices and over 300 file deletes for the file “delete.me” from over 100 devices using multiple paths, including ADMIN$, C$, print$.

Darktrace also observed the device making several DCE-RPC connections associated with Active Directory Domain enumeration, including DRSCrackNames and DRSGetNCChanges; a total of more than 1000 successful DCE-RPC connection were observed to a domain controller.

As this customer did not have Darktrace/Network's autonomous response deployed on their network, the above detailed lateral movement and network reconnaissance activity was allowed to progress unfettered, until Darktrace’s SOC alerted the customer’s security team to take urgent action. The customer also received follow-up support through Darktrace’s Ask the Expert (ATE) service, allowing them to contact the analyst team directly for further details and support on the incident.

Thanks to this early detection, the customer was able to quickly identify and disable affected user accounts, effectively halting the attack and preventing further escalation.

Conclusions

Given the increasing trend of ransomware attackers exfiltrating sensitive data for double extortion and the rise of information stealers, stolen credentials are commonplace across dark web marketplaces. Malicious actors can exploit these leaked credentials to drastically lower the barrier to entry associated with brute-forcing access to their target networks.

While implementing well-configured MFA and enforcing regular password changes can help protect organizations, these measures alone may not be enough to fully negate the advantage attackers gain with stolen credentials.

In this instance, an attacker used leaked credentials to compromise an unused service account, allowing them to establish MFA and access the customer’s VPN. While this tactic may have allowed the attacker to evade human security teams and traditional security tools, Darktrace’s AI detected the unusual use of the account, indicating a potential compromise despite the organization’s MFA requirements being met. This underscores the importance of adopting an intelligent decision maker, like Darktrace, that is able to identify and respond to anomalies beyond standard protective measures.

Credit to Charlotte Thompson, Cyber Security Analyst, Ryan Traill, Threat Content Lead

Appendices

Darktrace DETECT Model Coverage

-       Device / Suspicious SMB Scanning Activity (Model Alert)

-       Device / ICMP Address Scan (Model Alert)

-       Device / Network Scan (Model Alert)

-       Device / Suspicious LDAP Search Operation (Model Alert)

-       User / Kerberos Username Brute Force (Model Alert)

-       Device / Large Number of Model Breaches (Model Alert)

-       Anomalous Connection / SMB Enumeration (Model Alert)

-       Device / Multiple Lateral Movement Model Breaches (Enhanced Monitoring Model Alert)

-       Device / Possible SMB/NTLM Reconnaissance (Model Alert)

-       Anomalous Connection / Possible Share Enumeration Activity (Model Alert)

-       Device / Attack and Recon Tools (Model Alert)

MITRE ATT&CK Mapping

Tactic – Technique - Code

INITIAL ACCESS - Hardware Additions     -T1200

DISCOVERY - Network Service Scanning -T1046

DISCOVERY - Remote System Discovery - T1018

DISCOVERY - Domain Trust Discovery      - T1482

DISCOVERY - File and Directory Discovery - T1083

DISCOVERY - Network Share Discovery - T1135

RECONNAISSANCE - Scanning IP Blocks - T1595.001

RECONNAISSANCE - Vulnerability Scanning - T1595.002

RECONNAISSANCE - Client Configurations - T1592.004

RECONNAISSANCE - IP Addresses - T1590.005

CREDENTIAL ACCESS - Brute Force - T1110

LATERAL MOVEMENT - Exploitation of Remote Services -T1210

References

  1. 2024 Google Cloud Threat Horizons Report
    https://services.google.com/fh/files/misc/threat_horizons_report_h12024.pdf
  2. IBM X-Force Threat Intelligence Index 2024
    https://www.ibm.com/reports/threat-intelligence
Continue reading
About the author
Charlotte Thompson
Cyber Analyst

Blog

No items found.

Exploring the Benefits and Risks of Third-Party Data Solutions

Default blog imageDefault blog image
03
Jun 2024

Why do companies allow third parties to handle their data?

Companies seek out third parties to handle their data for operational efficiency.

The scale and cost of maintaining in-house infrastructure can be outsourced to third parties who specialize in data management or in certain business functions.

Third parties who handle an organization’s data can range from large public cloud providers such as Azure or AWS, to boutique companies who handle specific business functions such as telemarketing, payment systems, or webpage hosting.

The operational efficiencies gained through third-party data management can be summarized by three key benefits:

  • Global accessibility: Third-party data storage enables data access across the globe, allowing businesses to access data from anywhere.
  • Enhanced collaboration: Third-party data storage allows for file sharing, real-time editing, and integration with other applications and services enhancing a business’s collaboration efforts.
  • Reliability and uptime: Reputable third-party storage providers offer high reliability and uptime guarantees, ensuring that data is available whenever needed. They typically have robust disaster recovery and backup systems in place to prevent data loss.

Given these benefits, it is no surprise that businesses are using these services to expand their operations and scale efforts with the need of a growing business. This strategic move not only optimizes resource allocation but also enhances operational agility, enabling businesses to adapt swiftly to evolving data demands and maintain a competitive edge in a dynamic market.

Security risks of entrusted data to third-party vendors

Entrusting data to third parties can expose businesses to supply chain risks and increase the risk of data breaches and unauthorized access. A business has less control over its data and becomes dependent on the third party's policies, practices, and uptime. Many third-party vendors are the target of hackers who specialize in monetizing sensitive data and exploiting gray areas around who is responsible for securing the data.

Thus, businesses are vulnerable when they entrust sensitive data to third-party platforms, which often lack transparency about data usage and security. The platforms, chosen mainly for cost, efficiency, and user experience, are frequent targets for cyber criminals, hacktivists, and opportunistic lone hackers looking for sensitive data accidentally exposed due to misconfigurations or poor data management policies.

Consumers are putting pressure on businesses to improve cybersecurity when handling their personal data. Businesses who suffer a data breach face a high level of scrutiny from customers, investors, the media, and governments, even when the data breach is the result of a third party’s being hacked. For example, Uber made headlines in 2022 for a data breach which was the result of a compromised vendor who had access to data regarding Uber’s employees.

Similarly, the UK’s Ministry of Defence was the victim of a data breach earlier this year when hackers targeted a third party payroll system used by the government department.

Why do cyber-criminals target third parties?

Cyber-criminals can potentially gain access to multiple networks when targeting a third-party storage provider. A successful attack could give attackers access to the networks and systems of all its clients, amplifying the impact of a single breach.

For example, when Illuminate Education was the target of a cyber-attack, the data of 23 US School Districts was stolen via its student-tracking software. It included student data from the country's two largest school systems - New York City Public Schools and Los Angeles Unified School District.

Common third-party security risks

When collaborating with third parties, organizations should be aware of the most common types of security risks posed to their cybersecurity.

  • Software supply chain attacks: Software supply chain attacks occur when cyber criminals infiltrate and compromise software products or updates at any point in the development or distribution process. This allows attackers to insert malicious code into legitimate software, which then gets distributed to users through trusted channels.
  • Human error: Human error in cybersecurity refers to mistakes made by individuals that lead to security breaches or vulnerabilities. These errors can result from lack of awareness, insufficient training, negligence, or simple mistakes.
  • Privileged access misuse: Privileged access misuse involves the inappropriate or unauthorized use of elevated access rights by individuals within an organization. This can include intentionally malicious actions or unintentional misuse of administrative privileges.

What to look for in a security solution when using third parties to store or manage data

Understanding the security posture of a third party is important when partnering with it and entrusting it with your organization’s data. Understanding how basic cyber hygiene policies are implemented is a good place to start, such as data retention policies, use of encryption for data in storage, and how identity and access are managed.

In some circumstances, it is important to understand who is responsible for the data’s security. For example, when using public cloud infrastructure, it is generally the responsibility of the data owner to manage how the data is accessed and stored.

In that situation, an organization needs to ensure it has solutions in place which gives it full visibility of that third-party environment, and which can proactively identify misconfigurations and detect and respond to suspicious activity in real time.

Benefits of using AI tools to aid in managing sensitive data

According to research performed by IBM, organizations with extensive use of security AI and automation identified and contained a data breach 108 days faster in 2023 than organizations that did not use AI for cybersecurity. (1) This figure is only likely to improve as companies mature in their adoption of AI for cyber security and can be a key indicator in the security posture of a third-party vendor.

Example of third-party security incidents

Sumo data breach

Sumo, an Australian energy and internet provider, suffered a data breach which they became aware of on May 13th, 2024. Further investigation into the cyber incident has found that “the personal details of approximately 40,000 customers were compromised, including approximately 3,000 Australian passport numbers.” (2)

While none of Sumo’s systems were allegedly accessed or affected and the third-party application also worked as designed (3), the incident was blamed on an unnamed third party. The breach may have been the result of a misconfiguration or human error.

This incident underscores the importance of not only selecting third-party providers with robust security measures but also continuously monitoring and assessing their security practices.

How Darktrace helps monitor third-party data usage

Darktrace/Cloud uses Self-Learning AI to provide complete cyber resilience for multi-cloud environments.

Benefits of Darktrace/Cloud:

Architectural awareness: Gives users an understanding of their cloud footprint, including real-time visibility into cloud assets, architectures, users and permissions. Combines asset enumeration, modeled architectures, and flow log analysis. Cost insights give a better understanding of resource allocation, helping teams contextualize resources.

Cloud-native detection and response: AI understands ‘normal’ for your unique business and stops cyber-threats with autonomous response. Near-real-time response goes beyond simple email alerts or opening a ticket; and includes cloud-native actions like detaching EC2 instances and applying security groups to contain risky assets.

Cloud protection and compliance: Identify compliance issues and potential misconfigurations with attack path modeling and prioritized remediation steps. Darktrace’s attack surface management (ASM) adds a critical external view of your organization, highlighting vulnerabilities most impactful to your specific situation and revealing shadow IT.

Learn more about securing cloud environments by reading: The CISO’s Guide to Cloud Security here.

References

1.    https://www.ibm.com/reports/data-breach

2.    https://www.passports.gov.au/news/sumo-data-breach

3.    https://www.smh.com.au/technology/sumo-slammed-by-data-breach-as-energy-and-internet-customers-have-details-leaked-20240515-p5jdwp.html

Continue reading
About the author
Oakley Cox
Analyst Technical Director, APAC
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.