Blog
/
/
August 7, 2023

Detection of an Evasive Credential Harvester | IPFS Phishing

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Aug 2023
Discover the emerging trend of malicious actors abusing the Interplanetary File System (IPFS) file storage protocol in phishing campaigns. Learn more here!

IPFS Phishing Attacks

Phishing attacks continue to be one of the most common methods of infiltration utilized by threat actors and they represent a significant threat to an organization’s digital estate. As phishing campaigns typically leverage social engineering methods to evade security tools and manipulate users into following links, downloading files, or divulging confidential information. It is a relatively low effort but high-yield type of cyber-attack.

That said, in recent years security teams have become increasingly savvy to these efforts. Attackers are having to adapt and come up with novel ways to carry out their phishing campaigns. Recently, Darktrace has observed a rise in phishing attacks attempting to abuse the InterPlanetary File System (IPFS) in campaigns that are able to dynamically adapt depending on the target, making it extremely difficult for security vendors to detect and investigate.

What is a IPFS?

IPFS is a file storage protocol a peer-to-peer (P2P) network used for storing and sharing resources in a distributed file system [1]. It is also a file storage system similar in nature to other centralized file storage services like Dropbox and Google Drive.

File storage systems, like IPFS, are often abused by malicious actors, as they allow attackers to easily host their own content without maintaining infrastructure themselves. However, as these file storage systems often have legitimate usages, blocking everything related to file storages may cause unwanted problems and affect normal business operations. Thus, the challenge lies in differentiating between legitimate and malicious usage.

While centralized, web-based file storage services use a Client-Server model and typically deliver files over HTTP, IPFS uses a Peer-to-Peer model for storing and sharing files, as shown in Figure 1.

Figure 1: (a) shows the Client-Server model that centralized, web-based file storage services use. The resource is available on the server, and the clients access the resource from the server. (b) shows the Peer-to-Peer model that IPFS use. The resources are available on the peers.

To verify the authenticity and integrity of files, IPFS utilizes cryptographic hashes.

A cryptographic hash value is generated using a file’s content upon upload to IPFS. This is used to generate the Content Identifier (CID). IPFS uses Content Addressing as opposed to Location Addressing, and this CID is used to point to a resource in IPFS [4].

When a computer running IPFS requires a particular file, it asks the connected peers if they have the file with a specific hash. If a peer has the file with the matching hash, it will provide it to the requesting computer [1][6].

Taking down content on IPFS is much more difficult compared to centralized file storage hosts, as content is stored on several nodes without a centralized entity, as shown in Figure 2. To take down content from IPFS, it must be removed from all the nodes. Thus, IPFS is prone to being abused for malicious purposes.

Figure 2: When the resource is unavailable on the server for (a), all the clients are unable to access the resource. When the resource is unavailable on one of the peers for (b), the resources are still available on the other peers.

The domains used in these IPFS phishing links are gateways that enable an HTTPS URL to access resources within the distributed IPFS file system.

There are two types of IPFS links, the Path Gateway and Subdomain Gateway [1].

Path Gateways have a fixed domain/host and identifies the IPFS resource through a resource-identifying string in the path. The Path Gateway has the following structure:

•       https://<gateway-host>.tld/ipfs/<CID>/path/to/resource

•       https://<gateway-host>.tld/ipns/<dnslink/ipnsid>/path/to/resource

On the other hand, Subdomain Gateways have a resource-identifying string in the subdomain. Subdomain Gateways have the following structure:

•       https://<cidv1b32>.ipfs.<gateway-host>.tld/path/to/resource

One gateway domain serves the same role as any other, which means attackers can easily change the gateways that are used.

Thus, these link domains involved in these attacks can be much more variable than the ones in traditional file storage attacks, where a centralized service with a single domain is used (e.g., Dropbox, Google Docs), making detecting the malicious use of IPFS extremely challenging for traditional security vendors. Through its anomaly-based approach to threat detection, Darktrace/Email™ is consistently able to identify such tactics and respond to them, preventing malicious actors from abusing file storage systems life IPFS.

IPFS Campaign Details

In several recent examples of IPFS abuse that Darktrace detected on a customer’s network, the apparent end goal was to harvest user credentials. Stolen credentials can be exploited by threat actors to further their attacks on organizations by escalating their privileges within the network, or even sold on the dark web.

Darktrace detected multiple IPFS links sent in malicious emails that contained the victim’s email address. Based on the domain in this email address, users would then be redirected to a fake login page that uses their organizations’ webpage visuals and branding to convince targets to enter their login details, unknowingly compromising their accounts in the process.

Figure 3: The credential harvester changes visuals depending on the victim’s email address specified in the URL.

These IPFS credential harvesting sites use various techniques to evade detection the detection of traditional security tools and prevent further analysis, such as obfuscation by Percent Encoding and Base64 Encoding the code.

There are also other mechanisms put into place to hinder investigation by security teams. For example, some IPFS credential harvester sites investigated by Darktrace did not allow right clicking and certain keystrokes, as a means to make post-attack analysis more difficult.

Figure 4: The code shows that it attempts to prevent certain keystrokes.

In the campaign highlighted in this blog, the following IPFS link was observed:

hxxps://ipfs[.]io/ipfs/QmfDDxLWoLiqFURX6dUZcsHxVBP1ZnM21H5jXGs1ffNxtP?filename=at ob.html#<EmailAddress>

This uses a Path Gateway, as it identifies the IPFS resource through a resource-identifying string in the path. The CID is QmfDDxLWoLiqFURX6dUZcsHxVBP1ZnM21H5jXGs1ffNxtP in this case.

It makes a GET request to image[.]thum[.]io and logo[.]clearbit[.]com as shown in Figure 5. The image[.]thum[.]io is a Free Website Screenshot Generator, that provides real-time screenshot of websites [2]. The logo[.]clearbit[.]com is used to lookup company logos using the domain [3]. These visuals are integrated into the credential harvester site. Figure 6 shows the domain name being extracted from the victim’s email address and used to obtain the visuals.

Figure 5: The GET requests to image[.]thum[.]io and logo[.]clearbit[.].
Figure 6: The code shows that it utilizes the domain name from the victim’s email address to obtain the visuals from logo.clearbit[.]com and image[.]thum.io.

The code reveals the credential POST endpoint as shown in Figure 16. When credentials are submitted, it makes a POST request to this endpoint as shown in Figure 7.

Figure 7: The credential POST endpoint can be seen inside the code.
Figure 8: The Outlook credential harvester will redirect to the real Outlook page when wrong credentials are submitted multiple times.

From the IPFS link alone, it is difficult to determine whether it leads to a malicious endpoint, however Darktrace has consistently identified emails containing these IPFS credential harvesting links as phishing attempts.

Darktrace Coverage

During one case of IPFS abuse detected by Darktrace in March 2023, a threat actor sent malicious emails with the subject “Renew Your E-mail Password” to 55 different recipients at. The sender appeared to be the organization’s administrator and used their internal domain.

Figure 9: Darktrace/Email’s detection of the “Renew Your E-mail Password” emails from “administrator”. These were all sent at 2023.03.21 02:39 UTC.

However, Darktrace recognized that the email did not pass Sender Policy Framework (SPF), and therefore it could not be validated as being sent from the organization’s domain. Darktrace also detected that the email contained a link to “ipfs.io, the official IPFS gateway. This was identified as a spoofing and phishing attempt by Darktrace/Email.

Figure 10: The Darktrace/Email overview tab shows the Anomaly Indicators, History, Association, and Validation information of this sender. It contained a link to “ipfs.io”, and did not pass SPF.

Following the successful identification of the malicious emails, Darktrace RESPOND™ took immediate autonomous action to prevent them from leading to potentially damaging network compromise. For email-based threats, Darktrace RESPOND is able to carry out numerous actions to stop malicious emails and reduce the risk of compromise. In response to this specific incident, RESPOND took multiple preventative actions (as seen in Figure 11), including include lock link, an action that prevents access to URLs deemed as suspicious, send to junk, an action that automatically places emails in the recipient’s junk folder, and hold message, the most severe RESPOND action that prevents malicious emails from reaching the recipients inbox at all.

Figure 11: The Darktrace/Email model tab shows all the models that triggered on the email and the associated RESPOND actions.
Figure 12: The ipfs.io link used in this email contains the recipient’s email address, and has a CID of QmfDDxLWoLiqFURX6dUZcsHxVBP1ZnM21H5jXGs1ffNxtP. It has a Darktrace Domain Rarity Score of 100
Figure 13: The IPFS credential harvester that uses the organization’s website’s visuals.

Further investigation revealed that the IPFS link contained the recipients’ email address, and when clicked led to a credential harvester that utilized the same visuals and branding as the customer’s website.

Concluding Thoughts

Ultimately, despite the various tactics employed threat actors to evade the detection of traditional security tools, Darktrace was able to successfully detect and mitigate these often very fruitful phishing attacks that attempted to abuse the IPFS file storage system.

As file storage platforms like IPFS do have legitimate business uses, blocking traffic related to file storage is likely to negatively impact the day-to-day operations of an organization. The challenge security teams face is to differentiate between malicious and legitimate uses of such services, and only act on malicious cases. As such, it is more important than ever for organizations to have an effective anomaly detection tool in place that is able to identify emerging threats without relying on rules, signatures or previously observed indicators of compromise (IoC).

By leveraging its Self-Learning AI, Darktrace understands what represents expected activity on customer networks and can recognize subtle deviations from expected behavior, that may be indicative of compromise. Then, using its autonomous response capabilities, Darktrace RESPOND is able to instantly and autonomously take action against emerging threats to stop them at the earliest possible stage.

Credit to Ben Atkins, Senior Model Developer for their contribution to this blog.

Appendices

Example IOCs

Type: URL

IOC: hxxps://ipfs[.]io/ipfs/QmfDDxLWoLi qFURX6dUZcsHxVBP1ZnM21H5jXGs

1ffNxtP?filename=atob.html#<Email Address>

Description: Path Gateway link

Type: URL

IOC: hxxps://bafybeibisyerwlu46re6rxrfw doo2ubvucw7yu6zjcfjmn7rqbwcix2 mku.ipfs[.]dweb.link/webn cpmk.htm?bafybeigh77sqswniy74nzyklybstfpkxhsqhpf3qt26nwnh4wf2vv gbdaybafybeigh77sqswniy74nzyklybstfpkxhsqhpf3qt26nwnh4wf2vvgbda y#<EmailAddress>

Description: Subdomain Gateway link

Relevant Darktrace DETECT Models

•       Spoof / Internal Domain from Unexpected Source + New Unknown Link

•       Link / High Risk Link + Low Sender Association

•       Link / New Correspondent Classified Link

•       Link / Watched Link Type

•       Proximity / Phishing + New activity

•       Proximity / Phishing + New Address Known Domain

•       Spoof / Internal Domain from Unexpected Source + High Risk Link

References

[1]    https://docs.ipfs.tech/

[2]    https://www.thum.io/

[3]    https://clearbit.com/logo

[4]    https://filebase.com/blog/ipfs-content-addressing-explained/

[5]    https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/the-attack-of-the-chameleon-phishing-page/

[6]    https://wiki.ipfsblox.com/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Lena Yu
Cyber Security Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Cloud

/

April 2, 2025

Fusing Vulnerability and Threat Data: Enhancing the Depth of Attack Analysis

Default blog imageDefault blog image

Cado Security, recently acquired by Darktrace, is excited to announce a significant enhancement to its data collection capabilities, with the addition of a vulnerability discovery feature for Linux-based cloud resources. According to Darktrace’s Annual Threat Report 2024, the most significant campaigns observed in 2024 involved the ongoing exploitation of significant vulnerabilities in internet-facing systems. Cado’s new vulnerability discovery capability further deepens its ability to provide extensive context to security teams, enabling them to make informed decisions about threats, faster than ever.

Deep context to accelerate understanding and remediation

Context is critical when understanding the circumstances surrounding a threat. It can also take many forms – alert data, telemetry, file content, business context (for example asset criticality, core function of the resource), and risk context, such as open vulnerabilities.

When performing an investigation, it is common practice to understand the risk profile of the resource impacted, specifically determining open vulnerabilities and how they may relate to the threat. For example, if an analyst is triaging an alert related to an internet-facing Webserver running Apache, it would greatly benefit the analyst to understand open vulnerabilities in the Apache version that is running, if any of them are exploitable, whether a fix is available, etc. This dataset also serves as an invaluable source when developing a remediation plan, identifying specific vulnerabilities to be prioritised for patching.

Data acquisition in Cado

Cado is the only platform with the ability to perform full forensic captures as well as utilize instant triage collection methods, which is why fusing host-based artifact data with vulnerability data is such an exciting and compelling development.

The vulnerability discovery feature can be run as part of an acquisition – full or triage – as well as independently using a fast ‘Scan only’ mode.

Figure 1: A fast vulnerability scan being performed on the acquired evidence

Once the acquisition has completed, the user will have access to a ‘Vulnerabilities’ table within their investigation, where they are able to view and filter open vulnerabilities (by Severity, CVE ID, Resource, and other properties), as well as pivot to the full Event Timeline. In the Event Timeline, the user will be able to identify whether there is any malicious, suspicious or other interesting activity surrounding the vulnerable package, given the unified timeline presents a complete chronological dataset of all evidence and context collected.

Figure 2: Vulnerabilities discovered on the acquired evidence
Figure 3: Pivot from the Vulnerabilities table to the Event Timeline provides an in-depth view of file and process data associated with the vulnerable package selected. In this example, Apache2.

Future work

In the coming months, we’ll be releasing initial versions of highly anticipated integrations between Cado and Darktrace, including the ability to ingest Darktrace / CLOUD alerts which will automatically trigger a forensic capture (as well as a vulnerability discovery) of the impacted assets.

To learn more about how Cado and Darktrace will combine forces, request a demo today.

Continue reading
About the author
Paul Bottomley
Director of Product Management, Cado

Blog

/

OT

/

March 28, 2025

Darktrace Recognized as the Only Visionary in the 2025 Gartner® Magic Quadrant™ for CPS Protection Platforms

Default blog imageDefault blog image

We are thrilled to announce that Darktrace has been named the only Visionary in the inaugural Gartner® Magic Quadrant™ for Cyber-Physical Systems (CPS) Protection Platforms. We feel This recognition highlights Darktrace’s AI-driven approach to securing industrial environments, where conventional security solutions struggle to keep pace with increasing cyber threats.

A milestone for CPS security

It's our opinion that the first-ever Gartner Magic Quadrant for CPS Protection Platforms reflects a growing industry shift toward purpose-built security solutions for critical infrastructure. As organizations integrate IT, OT, and cloud-connected systems, the cyber risk landscape continues to expand. Gartner evaluated 17 vendors based on their Ability to Execute and Completeness of Vision, establishing a benchmark for security leaders looking to enhance cyber resilience in industrial environments.

We believe the Gartner recognition of Darktrace as the only Visionary reaffirms the platform’s ability to proactively defend against cyber risks through AI-driven anomaly detection, autonomous response, and risk-based security strategies. With increasingly sophisticated attacks targeting industrial control systems, organizations need a solution that continuously evolves to defend against both known and unknown threats.

AI-driven security for CPS environments

Securing CPS environments requires an approach that adapts to the dynamic nature of industrial operations. Traditional security tools rely on static signatures and predefined rules, leaving gaps in protection against novel and sophisticated threats. Darktrace / OT takes a different approach, leveraging Self-Learning AI to detect and neutralize threats in real time, even in air-gapped or highly regulated environments.

Darktrace / OT continuously analyzes network behaviors to establish a deep understanding of what is “normal” for each industrial environment. This enables it to autonomously identify deviations that signal potential cyber threats, providing early warning and proactive defense before attacks can disrupt operations. Unlike rule-based security models that require constant manual updates, Darktrace / OT improves with the environment, ensuring long-term resilience against emerging cyber risks.

Bridging the IT-OT security gap

A major challenge for organizations protecting CPS environments is the disconnect between IT and OT security. While IT security has traditionally focused on data

protection and compliance, OT security is driven by operational uptime and safety, leading to siloed security programs that leave critical gaps in visibility and response.

Darktrace / OT eliminates these silos by providing unified visibility across IT, OT, and IoT assets, ensuring that security teams have a complete picture of their attack surface. Its AI-driven approach enables cross-domain threat detection, recognizing risks that move laterally between IT and OT environments. By seamlessly integrating with existing security architectures, Darktrace / OT helps organizations close security gaps without disrupting industrial processes.

Proactive OT risk management and resilience

Beyond detection and response, Darktrace / OT strengthens organizations’ ability to manage cyber risk proactively. By mapping vulnerabilities to real-world attack paths, it prioritizes remediation actions based on actual exploitability and business impact, rather than relying on isolated CVE scores. This risk-based approach enables security teams to focus resources where they matter most, reducing overall exposure to cyber threats.

With autonomous threat response capabilities, Darktrace / OT not only identifies risks but also contains them in real time, preventing attackers from escalating intrusions. Whether mitigating ransomware, insider threats, or sophisticated nation-state attacks, Darktrace / OT ensures that industrial environments remain secure, operational, and resilient, no matter how threats evolve.

AI-powered incident response and SOC automation

Security teams are facing an overwhelming volume of alerts, making it difficult to prioritize threats and respond effectively. Darktrace / OT’s Cyber AI Analyst acts as a force multiplier for security teams by automating threat investigation, alert triage, and response actions. By mimicking the workflow of a human SOC analyst, Cyber AI Analyst provides contextual insights that accelerate incident response and reduce the manual workload on security teams.

With 24/7 autonomous monitoring, Darktrace / OT ensures that threats are continuously detected and investigated in real time. Whether facing ransomware, insider threats, or sophisticated nation-state attacks, organizations can rely on AI-driven security to contain threats before they disrupt operations.

Trusted by customers: Darktrace / OT recognized in Gartner Peer Insights

Source: Gartner Peer Insights (Oct 28th)

Beyond our recognition in the Gartner Magic Quadrant, we feel Darktrace / OT is one of the highest-rated CPS security solutions on Gartner Peer Insights, reflecting strong customer trust and validation. With a 4.9/5 overall rating and the highest "Willingness to Recommend" score among CPS vendors, organizations across critical infrastructure and industrial sectors recognize the impact of our AI-driven security approach. Source: Gartner Peer Insights (Oct 28th)

This strong customer endorsement underscores why leading enterprises trust Darktrace / OT to secure their CPS environments today and in the future.

Redefining the future of CPS security

It's our view that Darktrace’s recognition as the only Visionary in the Gartner Magic Quadrant for CPS Protection Platforms validates its leadership in next-generation industrial security. As cyber threats targeting critical infrastructure continue to rise, organizations must adopt AI-driven security solutions that can adapt, respond, and mitigate risks in real time.

We believe this recognition reinforces our commitment to innovation and our mission to secure the world’s most essential systems. This recognition reinforces our commitment to innovation and our mission to secure the world’s most essential systems.

® Download the full Gartner Magic Quadrant for CPS Protection Platforms

® Request a demo to see Darktrace OT in action.

Gartner, Magic Quadrant for CPS Protection Platforms , Katell Thielemann, Wam Voster, Ruggero Contu 12 February 2025

Gartner does not endorse any vendor, product or service depicted in its research publications and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner and Magic Quadrant and Peer Insights are a registered trademark, of Gartner, Inc. and/or its affiliates in the U.S. and internationally and are used herein with permission. All rights reserved. Gartner Peer Insights content consists of the opinions of individual end users based on their own experiences with the vendors listed on the platform, should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI