Detection of an Evasive Credential Harvester | IPFS Phishing
07
Aug 2023
Discover the emerging trend of malicious actors abusing the Interplanetary File System (IPFS) file storage protocol in phishing campaigns. Learn more here!
IPFS Phishing Attacks
Phishing attacks continue to be one of the most common methods of infiltration utilized by threat actors and they represent a significant threat to an organization’s digital estate. As phishing campaigns typically leverage social engineering methods to evade security tools and manipulate users into following links, downloading files, or divulging confidential information. It is a relatively low effort but high-yield type of cyber-attack.
That said, in recent years security teams have become increasingly savvy to these efforts. Attackers are having to adapt and come up with novel ways to carry out their phishing campaigns. Recently, Darktrace has observed a rise in phishing attacks attempting to abuse the InterPlanetary File System (IPFS) in campaigns that are able to dynamically adapt depending on the target, making it extremely difficult for security vendors to detect and investigate.
What is a IPFS?
IPFS is a file storage protocol a peer-to-peer (P2P) network used for storing and sharing resources in a distributed file system [1]. It is also a file storage system similar in nature to other centralized file storage services like Dropbox and Google Drive.
File storage systems, like IPFS, are often abused by malicious actors, as they allow attackers to easily host their own content without maintaining infrastructure themselves. However, as these file storage systems often have legitimate usages, blocking everything related to file storages may cause unwanted problems and affect normal business operations. Thus, the challenge lies in differentiating between legitimate and malicious usage.
While centralized, web-based file storage services use a Client-Server model and typically deliver files over HTTP, IPFS uses a Peer-to-Peer model for storing and sharing files, as shown in Figure 1.
Figure 1: (a) shows the Client-Server model that centralized, web-based file storage services use. The resource is available on the server, and the clients access the resource from the server.(b) shows the Peer-to-Peer model that IPFS use. The resources are available on the peers.
To verify the authenticity and integrity of files, IPFS utilizes cryptographic hashes.
A cryptographic hash value is generated using a file’s content upon upload to IPFS. This is used to generate the Content Identifier (CID). IPFS uses Content Addressing as opposed to Location Addressing, and this CID is used to point to a resource in IPFS [4].
When a computer running IPFS requires a particular file, it asks the connected peers if they have the file with a specific hash. If a peer has the file with the matching hash, it will provide it to the requesting computer [1][6].
Taking down content on IPFS is much more difficult compared to centralized file storage hosts, as content is stored on several nodes without a centralized entity, as shown in Figure 2. To take down content from IPFS, it must be removed from all the nodes. Thus, IPFS is prone to being abused for malicious purposes.
Figure 2: When the resource is unavailable on the server for (a), all the clients are unable to access the resource. When the resource is unavailable on one of the peers for (b), the resources are still available on the other peers.
The domains used in these IPFS phishing links are gateways that enable an HTTPS URL to access resources within the distributed IPFS file system.
There are two types of IPFS links, the Path Gateway and Subdomain Gateway [1].
Path Gateways have a fixed domain/host and identifies the IPFS resource through a resource-identifying string in the path. The Path Gateway has the following structure:
One gateway domain serves the same role as any other, which means attackers can easily change the gateways that are used.
Thus, these link domains involved in these attacks can be much more variable than the ones in traditional file storage attacks, where a centralized service with a single domain is used (e.g., Dropbox, Google Docs), making detecting the malicious use of IPFS extremely challenging for traditional security vendors. Through its anomaly-based approach to threat detection, Darktrace/Email™ is consistently able to identify such tactics and respond to them, preventing malicious actors from abusing file storage systems life IPFS.
IPFS Campaign Details
In several recent examples of IPFS abuse that Darktrace detected on a customer’s network, the apparent end goal was to harvest user credentials. Stolen credentials can be exploited by threat actors to further their attacks on organizations by escalating their privileges within the network, or even sold on the dark web.
Darktrace detected multiple IPFS links sent in malicious emails that contained the victim’s email address. Based on the domain in this email address, users would then be redirected to a fake login page that uses their organizations’ webpage visuals and branding to convince targets to enter their login details, unknowingly compromising their accounts in the process.
Figure 3: The credential harvester changes visuals depending on the victim’s email address specified in the URL.
These IPFS credential harvesting sites use various techniques to evade detection the detection of traditional security tools and prevent further analysis, such as obfuscation by Percent Encoding and Base64 Encoding the code.
There are also other mechanisms put into place to hinder investigation by security teams. For example, some IPFS credential harvester sites investigated by Darktrace did not allow right clicking and certain keystrokes, as a means to make post-attack analysis more difficult.
Figure 4: The code shows that it attempts to prevent certain keystrokes.
In the campaign highlighted in this blog, the following IPFS link was observed:
This uses a Path Gateway, as it identifies the IPFS resource through a resource-identifying string in the path. The CID is QmfDDxLWoLiqFURX6dUZcsHxVBP1ZnM21H5jXGs1ffNxtP in this case.
It makes a GET request to image[.]thum[.]io and logo[.]clearbit[.]com as shown in Figure 5. The image[.]thum[.]io is a Free Website Screenshot Generator, that provides real-time screenshot of websites [2]. The logo[.]clearbit[.]com is used to lookup company logos using the domain [3]. These visuals are integrated into the credential harvester site. Figure 6 shows the domain name being extracted from the victim’s email address and used to obtain the visuals.
Figure 5: The GET requests to image[.]thum[.]io and logo[.]clearbit[.].
Figure 6: The code shows that it utilizes the domain name from the victim’s email address to obtain the visuals from logo.clearbit[.]com and image[.]thum.io.
The code reveals the credential POST endpoint as shown in Figure 16. When credentials are submitted, it makes a POST request to this endpoint as shown in Figure 7.
Figure 7: The credential POST endpoint can be seen inside the code.
Figure 8: The Outlook credential harvester will redirect to the real Outlook page when wrong credentials are submitted multiple times.
From the IPFS link alone, it is difficult to determine whether it leads to a malicious endpoint, however Darktrace has consistently identified emails containing these IPFS credential harvesting links as phishing attempts.
Darktrace Coverage
During one case of IPFS abuse detected by Darktrace in March 2023, a threat actor sent malicious emails with the subject “Renew Your E-mail Password” to 55 different recipients at. The sender appeared to be the organization’s administrator and used their internal domain.
Figure 9: Darktrace/Email’s detection of the “Renew Your E-mail Password” emails from “administrator”. These were all sent at 2023.03.21 02:39 UTC.
However, Darktrace recognized that the email did not pass Sender Policy Framework (SPF), and therefore it could not be validated as being sent from the organization’s domain. Darktrace also detected that the email contained a link to “ipfs.io, the official IPFS gateway. This was identified as a spoofing and phishing attempt by Darktrace/Email.
Figure 10: The Darktrace/Email overview tab shows the Anomaly Indicators, History, Association, and Validation information of this sender. It contained a link to “ipfs.io”, and did not pass SPF.
Following the successful identification of the malicious emails, Darktrace RESPOND™ took immediate autonomous action to prevent them from leading to potentially damaging network compromise. For email-based threats, Darktrace RESPOND is able to carry out numerous actions to stop malicious emails and reduce the risk of compromise. In response to this specific incident, RESPOND took multiple preventative actions (as seen in Figure 11), including include lock link, an action that prevents access to URLs deemed as suspicious, send to junk, an action that automatically places emails in the recipient’s junk folder, and hold message, the most severe RESPOND action that prevents malicious emails from reaching the recipients inbox at all.
Figure 11: The Darktrace/Email model tab shows all the models that triggered on the email and the associated RESPOND actions.
Figure 12: The ipfs.io link used in this email contains the recipient’s email address, and has a CID of QmfDDxLWoLiqFURX6dUZcsHxVBP1ZnM21H5jXGs1ffNxtP. It has a Darktrace Domain Rarity Score of 100
Figure 13: The IPFS credential harvester that uses the organization’s website’s visuals.
Further investigation revealed that the IPFS link contained the recipients’ email address, and when clicked led to a credential harvester that utilized the same visuals and branding as the customer’s website.
Concluding Thoughts
Ultimately, despite the various tactics employed threat actors to evade the detection of traditional security tools, Darktrace was able to successfully detect and mitigate these often very fruitful phishing attacks that attempted to abuse the IPFS file storage system.
As file storage platforms like IPFS do have legitimate business uses, blocking traffic related to file storage is likely to negatively impact the day-to-day operations of an organization. The challenge security teams face is to differentiate between malicious and legitimate uses of such services, and only act on malicious cases. As such, it is more important than ever for organizations to have an effective anomaly detection tool in place that is able to identify emerging threats without relying on rules, signatures or previously observed indicators of compromise (IoC).
By leveraging its Self-Learning AI, Darktrace understands what represents expected activity on customer networks and can recognize subtle deviations from expected behavior, that may be indicative of compromise. Then, using its autonomous response capabilities, Darktrace RESPOND is able to instantly and autonomously take action against emerging threats to stop them at the earliest possible stage.
Credit to Ben Atkins, Senior Model Developer for their contribution to this blog.
Oops! Something went wrong while submitting the form.
Newsletter
Enjoying the blog?
Sign up to receive the latest news and insights from the Darktrace newsletter – delivered directly to your inbox
Thanks for signing up!
Look out for your first newsletter, coming soon.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
An Advanced Persistent Threat (APT) describes an adversary with sophisticated levels of expertise and significant resources, with the ability to carry out targeted cyber campaigns. These campaigns may penetrate an organization and remain undetected for long periods, allowing attackers to gather intelligence or cause damage over time.
Over the last few decades, the term APT has evolved from being almost exclusively associated with nation-state actors to a broader definition that includes highly skilled, well-resourced threat groups. While still distinct from mass, opportunistic cybercrime or "spray and pray" attacks, APT now refers to the elite tier of adversaries, whether state-sponsored or not, who demonstrate advanced capabilities, persistence, and a clear strategic focus. This shift reflects the growing sophistication of cyber threats, where non-state actors can now rival nation-states in executing covert, methodical intrusions to achieve long-term objectives.
These attacks are resource-intensive for threat actors to execute, but the potential rewards—ranging from financial gain to sensitive data theft—can be significant. In 2020, Business Email Compromise (BEC) attacks netted cybercriminals over $1.8 billion.1
And recently, the advent of AI has helped to automate launching these attacks, lowering the barriers to entry and making it more efficient to orchestrate the kind of attack that might previously have taken weeks to create. Research shows that AI can do 90% of a threat actor’s work2 – reducing time-to-target by automating tasks rapidly and avoiding errors in phishing communications. Email remains the most popular vector for initiating these sophisticated attacks, making it a critical battleground for cyber defense.
What makes APTs so successful?
The success of Advanced Persistent Threats (APTs) lies in their precision, persistence, and ability to exploit human and technical vulnerabilities. These attacks are carefully tailored to specific targets, using techniques like social engineering and spear phishing to gain initial access.
Once inside, attackers move laterally through networks, often remaining undetected for months or even years, silently gathering intelligence or preparing for a decisive strike. Alternatively, they might linger inside an account within the M365 environment, which could be even more valuable in terms of gathering information – in 2023 the average time to identify a breach in 2023 was 204 days.3
The subtle and long-term outlook nature of APTs makes them highly effective, as traditional security measures often fail to identify the subtle signs of compromise.
How Darktrace’s approach is designed to catch the most advanced threats
Luckily for our customers, Darktrace’s AI approach is uniquely equipped to detect and neutralize APTs. Unlike the majority of email security solutions that rely on static rules and signatures, or that train their AI on previous known-bad attack patterns, Darktrace leverages Self-Learning AI that baselines normal patterns of behavior within an organization, to immediately detect unusual activity that may signal an APT in progress.
But in the modern era of email threats, no email security solution can guarantee 100% effectiveness. Because attackers operate with great sophistication, carefully adapting their tactics to evade detection – whether by altering attachments, leveraging compromised accounts, or moving laterally across an organization – a siloed security approach risks missing these subtle, multi-domain threats. That’s why a robust defense-in-depth strategy is essential to mitigate APTs.
Real-world threat finds: Darktrace / EMAIL in action
Let’s take a look at some real-world scenarios where Darktrace / EMAIL stopped tactics associated with APT campaigns in their tracks – from adversary-in-the-middle attacks to suspicious lateral movement.
1: How Darktrace disrupted an adversary-in-the-middle attack by identifying abnormal login redirects and blocking credential exfiltration
In October 2024, Darktrace detected an adversary-in-the-middle (AiTM) attack targeting a Darktrace customer. The attack began with a phishing email from a seemingly legitimate Dropbox address, which contained multiple link payloads inviting the recipient to access a file. Other solutions would have struggled to catch this attack, as the initial AitM attack was launched through delivering a malicious URL through a trusted vendor or service. Once compromised, the threat actor could have laid low on the target account, gathering reconnaissance, without detection from the email security solution.
Darktrace / EMAIL identified the abnormal login redirects and flagged the suspicious activity. Darktrace / IDENTITY then detected unusual login patterns and blocked credential exfiltration attempts, effectively disrupting the attack and preventing the adversary from gaining unauthorized access. Read more.
Figure 1: Overview of the malicious email in the Darktrace / EMAIL console, highlighting Dropbox associated content/link payloads
2: How Darktrace stopped lateral movement to block NTLM hash theft
In early 2024, Darktrace detected an attack by the TA577 threat group, which aimed to steal NTLM hashes to gain unauthorized access to systems. The attack began with phishing emails containing ZIP files that connected to malicious infrastructure.
A traditional email security solution would have likely missed this attack by focusing too heavily on analyzing the zip file payloads or relying on reputation analysis to understand whether the infrastructure was registered as bad before this activity was a recognized IoC.
Because it correlates activity across domains, Darktrace identified unusual lateral movement within the network and promptly blocked the attempts to steal NTLM hashes, effectively preventing the attackers from accessing sensitive credentials and securing the network. Read more.
Figure 2: A summary of anomaly indicators seen for a campaign email sent by TA577, as detected by Darktrace / EMAIL
3: How Darktrace prevented the WarmCookie backdoor deployment embedded in phishing emails
In mid-2024, Darktrace identified a phishing campaign targeting organizations with emails impersonating recruitment firms. These emails contained malicious links that, when clicked, deployed the WarmCookie backdoor.
These emails are difficult to detect, as they use social engineering tactics to manipulate users into engaging with emails and following the embedded malicious links – but if a security solution is not analysing content and context, these could be allowed through.
In several observed cases across customer environments, Darktrace detected and blocked the suspicious behavior associated with WarmCookie that had already managed to evade customers’ native email security. By using behavioral analysis to correlate anomalous activity across the digital estate, Darktrace was able to identify the backdoor malware strain and notify customers. Read more.
Conclusion
These threat examples highlight a key principle of the Darktrace approach – that a backwards-facing approach grounded in threat intelligence will always be one step behind.
Most threat actors operate in campaigns, carefully crafting attacks and testing them across multiple targets. Once a campaign is identified, good defenders and traditional security solutions quickly update their defenses with new threat intelligence, rules, and signatures. However, APTs have the resources to rapidly adapt – spinning up new infrastructure, modifying payloads and altering their attack footprint to evade detection.
This is where Darktrace / EMAIL excels. Only by analyzing each user, message and interaction can an email security solution hope to catch the types of highly-sophisticated attacks that have the potential to cause major reputational and financial damage. Darktrace / EMAIL ensures that even the most subtle threats are detected and blocked with autonomous response, before causing impact – helping organizations remain one step ahead of increasingly adaptive threat actors.
Discover the most advanced cloud-native AI email security solution to protect your domain and brand while preventing phishing, novel social engineering, business email compromise, account takeover, and data loss.
Gain up to 13 days of earlier threat detection and maximize ROI on your current email security
Experience 20-25% more threat blocking power with Darktrace / EMAIL
Stop the 58% of threats bypassing traditional email security
NIS2 Compliance: Interpreting 'State-of-the-Art' for Organisations
NIS2 Background
17 October 2024 marked the deadline for European Union (EU) Member States to implement the NIS2 Directive into national law. The Directive aims to enhance the EU’s cybersecurity posture by establishing a high common level of cybersecurity for critical infrastructure and services. It builds on its predecessor, the 2018 NIS Directive, by expanding the number of sectors in scope, enforcing greater reporting requirements and encouraging Member States to ensure regulated organisations adopt ‘state-of-the-art' security measures to protect their networks, OT and IT systems.
Figure 1: Timeline of NIS2
The challenge of NIS2 & 'state-of-the-art'
Preamble (51) - "Member States should encourage the use of any innovative technology, including artificial intelligence, the use of which could improve the detection and prevention of cyberattacks, enabling resources to be diverted towards cyberattacks more effectively."
Article 21 - calls on Member States to ensure that essential and important entities “take appropriate and proportionate” cyber security measures, and that they do so by “taking into account the state-of-the-art and, where applicable, relevant European and international standards, as well as the cost of implementation.”
Regulartory expectations and ambiguity of NIS2
While organisations in scope can rely on technical guidance provided by ENISA1 , the EU’s agency for cybersecurity, or individual guidelines provided by Member States or Public-Private Partnerships where they have been published,2 the mention of ‘state-of-the-art' remains up to interpretation in most Member States. The use of the phrase implies that cybersecurity measures must evolve continuously to keep pace with emerging threats and technological advancements without specifying what ‘state-of-the-art’ actually means for a given context and risk.3
This ambiguity makes it difficult for organisations to determine what constitutes compliance at any given time and could lead to potential inconsistencies in implementation and enforcement. Moreover, the rapid pace of technological change means that what is considered "state-of-the-art" today will become outdated, further complicating compliance efforts.
However, this is not unique to NIS regulation. As EU scholars have noted, while “state-of-the-art" is widely referred to in legal text relating to technology, there is no standardised legal definition of what it actually constitutes.4
Defining state-of-the-art cybersecurity
In this blog, we outline technical considerations for state-of-the-art cybersecurity. We draw from expertise within our own business and in academia as well as guidelines and security standards set by national agencies, such as Germany’s Federal Office for Information Security (BSI) or Spain’s National Security Framework (ENS), to put forward five criteria to define state-of-the-art cybersecurity.
The five core criteria include:
Continuous monitoring
Incident correlation
Detection of anomalous activity
Autonomous response
Proactive cyber resilience
These principles build on long-standing security considerations, such as business continuity, vulnerability management and basic security hygiene practices.
Although these considerations are written in the context of the NIS2 Directive, they are likely to also be relevant for other jurisdictions. We hope these criteria help organisations understand how to best meet their responsibilities under the NIS2 Directive and assist Competent Authorities in defining compliance expectations for the organisations they regulate.
Ultimately, adopting state-of-the-art cyber defences is crucial for ensuring that organisations are equipped with the best tools to combat new and fast-growing threats. Leading technical authorities, such as the UK National Cyber Security Centre (NCSC), recognise that adoption of AI-powered cyber defences will offset the increased volume and impact of AI on cyber threats.5
State of the art cybersecurity in the context of NIS2
1. Continuous monitoring
Continuous monitoring is required to protect an increasingly complex attack surface from attackers.
First, organisations' attack surfaces have expanded following the widespread adoption of hybrid or cloud infrastructures and the increased adoption of connected Internet of Things (IoT) devices.6 This exponential growth creates a complex digital environment for organisations, making it difficult for security teams to track all internet-facing assets and identify potential vulnerabilities.
Second, with the significant increase in the speed and sophistication of cyber-attacks, organisations face a greater need to detect security threats and non-compliance issues in real-time.
Continuous monitoring, defined by the U.S. National Institute of Standards and Technology (NIST) as the ability to maintain “ongoing awareness of information security, vulnerabilities, and threats to support organizational risk management decisions,”7 has therefore become a cornerstone of an effective cybersecurity strategy. By implementing continuous monitoring, organisations can ensure a real-time understanding of their attack surface and that new external assets are promptly accounted for. For instance, Spain’s technical guidelines for regulation, as set forth by the National Security Framework (Royal Decree 311/2022), highlight the importance of adopting continuous monitoring to detect anomalous activities or behaviours and to ensure timely responses to potential threats (article 10).8
This can be achieved through the following means:
All assets that form part of an organisation's estate, both known and unknown, must be identified and continuously monitored for current and emerging risks. Germany’s BSI mandates the continuous monitoring of all protocol and logging data in real-time (requirement #110).9 This should be conducted alongside any regular scans to detect unknown devices or cases of shadow IT, or the use of unauthorised or unmanaged applications and devices within an organisation, which can expose internet-facing assets to unmonitored risks. Continuous monitoring can therefore help identify potential risks and high-impact vulnerabilities within an organisation's digital estate and eliminate potential gaps and blind spots.
Organisations looking to implement more efficient continuous monitoring strategies may turn to automation, but, as the BSI notes, it is important for responsible parties to be immediately warned if an alert is raised (reference 110).10 Following the BSI’s recommendations, the alert must be examined and, if necessary, contained within a short period of time corresponding with the analysis of the risk at hand.
Finally, risk scoring and vulnerability mapping are also essential parts of this process. Looking across the Atlantic, the US’ National Institute of Standards and Technology (NIST) defines continuous monitoring as “maintaining ongoing awareness of information security, vulnerabilities, and threats to support organizational risk management decisions”.11 Continuous monitoring helps identify potential risks and significant vulnerabilities within an organisation's digital assets, fostering a dynamic understanding of risk. By doing so, risk scoring and vulnerability mapping allows organisations to prioritise the risks associated with their most critically exposed assets.
2. Correlation of incidents across your entire environment
Viewing and correlating incident alerts when working with different platforms and tools poses significant challenges to SecOps teams. Security professionals often struggle to cross-reference alerts efficiently, which can lead to potential delays in identifying and responding to threats. The complexity of managing multiple sources of information can overwhelm teams, making it difficult to maintain a cohesive understanding of the security landscape.
This fragmentation underscores the need for a centralised approach that provides a "single pane of glass" view of all cybersecurity alerts. These systems streamline the process of monitoring and responding to incidents, enabling security teams to act more swiftly and effectively. By consolidating alerts into a unified interface, organisations can enhance their ability to detect and mitigate threats, ultimately improving their overall security posture.
To achieve consolidation, organisations should consider the role automation can play when reviewing and correlating incidents. This is reflected in Spain’s technical guidelines for national security regulations regarding the requirements for the “recording of activity” (reinforcement R5).12 Specifically, the guidelines state that:
"The system shall implement tools to analyses and review system activity and audit information, in search of possible or actual security compromises. An automatic system for collection of records, correlation of events and automatic response to them shall be available”.13
Similarly, the German guidelines stress that automated central analysis is essential not only for recording all protocol and logging data generated within the system environment but also to ensure that the data is correlated to ensure that security-relevant processes are visible (article 115).14
Correlating disparate incidents and alerts is especially important when considering the increased connectivity between IT and OT environments driven by business and functional requirements. Indeed, organisations that believe they have air-gapped systems are now becoming aware of points of IT/OT convergence within their systems. It is therefore crucial for organisations managing both IT and OT environments to be able to visualise and secure devices across all IT and OT protocols in real-time to identify potential spillovers.
By consolidating data into a centralised system, organisations can achieve a more resilient posture. This approach exposes and eliminates gaps between people, processes, and technology before they can be exploited by malicious actors. As seen in the German and Spanish guidelines, a unified view of security alerts not only enhances the efficacy of threat detection and response but also ensures comprehensive visibility and control over the organisation's cybersecurity posture.
3. Detection of anomalous activity
Recent research highlights the emergence of a "new normal" in cybersecurity, marked by an increase in zero-day vulnerabilities. Indeed, for the first time since sharing their annual list, the Five Eyes intelligence alliance reported that in 2023, the majority of the most routinely exploited vulnerabilities were initially exploited as zero-days.15
To effectively combat these advanced threats, policymakers, industry and academic stakeholders alike recognise the importance of anomaly-based techniques to detect both known and unknown attacks.
As AI-enabled threats become more prevalent,16 traditional cybersecurity methods that depend on lists of "known bads" are proving inadequate against rapidly evolving and sophisticated attacks. These legacy approaches are limited because they can only identify threats that have been previously encountered and cataloged. However, cybercriminals are constantly developing new, never-before-seen threats, such as signatureless ransomware or living off the land techniques, which can easily bypass these outdated defences.
The importance of anomaly detection in cybersecurity can be found in Spain’s technical guidelines, which states that “tools shall be available to automate the prevention and response process by detecting and identifying anomalies17” (reinforcement R4 prevention and automatic response to "incident management”).
Similarly, the UK NCSC’s Cyber Assessment Framework (CAF) highlights how anomaly-based detection systems are capable of detecting threats that “evade standard signature-based security solutions” (Principle C2 - Proactive Security Event Discovery18). The CAF’s C2 principle further outlines:
“The science of anomaly detection, which goes beyond using pre-defined or prescriptive pattern matching, is a challenging area. Capabilities like machine learning are increasingly being shown to have applicability and potential in the field of intrusion detection.”19
By leveraging machine learning and multi-layered AI techniques, organisations can move away from static rules and signatures, adopting a more behavioural approach to identifying and containing risks. This shift not only enhances the detection of emerging threats but also provides a more robust defence mechanism.
A key component of this strategy is behavioral zero trust, which focuses on identifying unauthorized and out-of-character attempts by users, devices, or systems. Implementing a robust procedure to verify each user and issuing the minimum required access rights based on their role and established patterns of activity is essential. Organisations should therefore be encouraged to follow a robust procedure to verify each user and issue the minimum required access rights based on their role and expected or established patterns of activity. By doing so, organisations can stay ahead of emerging threats and embrace a more dynamic and resilient cybersecurity strategy.
4. Autonomous response
The speed at which cyber-attacks occur means that defenders must be equipped with tools that match the sophistication and agility of those used by attackers. Autonomous response tools are thus essential for modern cyber defence, as they enable organisations to respond to both known and novel threats in real time.
These tools leverage a deep contextual and behavioral understanding of the organisation to take precise actions, effectively containing threats without disrupting business operations.
To avoid unnecessary business disruptions and maintain robust security, especially in more sensitive networks such as OT environments, it is crucial for organisations to determine the appropriate response depending on their environment. This can range from taking autonomous and native actions, such as isolating or blocking devices, or integrating their autonomous response tool with firewalls or other security tools to taking customized actions.
Autonomous response solutions should also use a contextual understanding of the business environment to make informed decisions, allowing them to contain threats swiftly and accurately. This means that even as cyber-attacks evolve and become more sophisticated, organisations can maintain continuous protection without compromising operational efficiency.
Indeed, research into the adoption of autonomous cyber defences points to the importance of implementing “organisation-specific" and “context-informed” approaches.20 To decide the appropriate level of autonomy for each network action, it is argued, it is essential to use evidence-based risk prioritisation that is customised to the specific operations, assets, and data of individual enterprises.21
By adopting autonomous response solutions, organisations can ensure their defences are as dynamic and effective as the threats they face, significantly enhancing their overall security posture.
5. Proactive cyber resilience
Adopting a proactive approach to cybersecurity is crucial for organisations aiming to safeguard their operations and reputation. By hardening their defences enough so attackers are unable to target them effectively, organisations can save significant time and money. This proactive stance helps reduce business disruption, reputational damage, and the need for lengthy, resource-intensive incident responses.
Proactive cybersecurity incorporates many of the strategies outlined above. This can be seen in a recent survey of information technology practitioners, which outlines four components of a proactive cybersecurity culture: (1) visibility of corporate assets, (2) leveraging intelligent and modern technology, (3) adopting consistent and comprehensive training methods and (4) implementing risk response procedures.22 To this, we may also add continuous monitoring which allows organisations to understand the most vulnerable and high-value paths across their architectures, allowing them to secure their critical assets more effectively.
Alongside these components, a proactive cyber strategy should be based on a combined business context and knowledge, ensuring that security measures are aligned with the organisation's specific needs and priorities.
This proactive approach to cyber resilience is reflected in Spain’s technical guidance (article 8.2): “Prevention measures, which may incorporate components geared towards deterrence or reduction of the exposure surface, should eliminate or reduce the likelihood of threats materializing.”23 It can also be found in the NCSC’s CAF, which outlines how organisations can achieve “proactive attack discovery” (see Principle C2).24 Likewise, Belgium’s NIS2 transposition guidelines mandate the use of preventive measures to ensure the continued availability of services in the event of exceptional network failures (article 30).25
Ultimately, a proactive approach to cybersecurity not only enhances protection but also lowers regulatory risk and supports the overall resilience and stability of the organisation.
Looking forward
The NIS2 Directive marked a significant regulatory milestone in strengthening cybersecurity across the EU.26 Given the impact of emerging technologies, such as AI, on cybersecurity, it is to see that Member States are encouraged to promote the adoption of ‘state-of-the-art' cybersecurity across regulated entities.
In this blog, we have sought to translate what state-of-the-art cybersecurity may look like for organisations looking to enhance their cybersecurity posture. To do so, we have built on existing cybersecurity guidance, research and our own experience as an AI-cybersecurity company to outline five criteria: continuous monitoring, incident correlation, detection of anomalous activity, autonomous response, and proactive cyber resilience.
By embracing these principles and evolving cybersecurity practices in line with the state-of-the-art, organisations can comply with the NIS2 Directive while building a resilient cybersecurity posture capable of withstanding evolutions in the cyber threat landscape. Looking forward, it will be interesting to see how other jurisdictions embrace new technologies, such as AI, in solving the cybersecurity problem.
Get ahead with the NIS2 White Paper
Get a clear roadmap for meeting NIS2 requirements and strengthening your cybersecurity posture. Learn how to ensure compliance, mitigate risks, and protect your organization from evolving threats.