Blog
/
Email
/
August 7, 2023

Detection of an Evasive Credential Harvester | IPFS Phishing

Discover the emerging trend of malicious actors abusing the Interplanetary File System (IPFS) file storage protocol in phishing campaigns. Learn more here!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Lena Yu
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Aug 2023

IPFS Phishing Attacks

Phishing attacks continue to be one of the most common methods of infiltration utilized by threat actors and they represent a significant threat to an organization’s digital estate. As phishing campaigns typically leverage social engineering methods to evade security tools and manipulate users into following links, downloading files, or divulging confidential information. It is a relatively low effort but high-yield type of cyber-attack.

That said, in recent years security teams have become increasingly savvy to these efforts. Attackers are having to adapt and come up with novel ways to carry out their phishing campaigns. Recently, Darktrace has observed a rise in phishing attacks attempting to abuse the InterPlanetary File System (IPFS) in campaigns that are able to dynamically adapt depending on the target, making it extremely difficult for security vendors to detect and investigate.

What is a IPFS?

IPFS is a file storage protocol a peer-to-peer (P2P) network used for storing and sharing resources in a distributed file system [1]. It is also a file storage system similar in nature to other centralized file storage services like Dropbox and Google Drive.

File storage systems, like IPFS, are often abused by malicious actors, as they allow attackers to easily host their own content without maintaining infrastructure themselves. However, as these file storage systems often have legitimate usages, blocking everything related to file storages may cause unwanted problems and affect normal business operations. Thus, the challenge lies in differentiating between legitimate and malicious usage.

While centralized, web-based file storage services use a Client-Server model and typically deliver files over HTTP, IPFS uses a Peer-to-Peer model for storing and sharing files, as shown in Figure 1.

Figure 1: (a) shows the Client-Server model that centralized, web-based file storage services use. The resource is available on the server, and the clients access the resource from the server. (b) shows the Peer-to-Peer model that IPFS use. The resources are available on the peers.

To verify the authenticity and integrity of files, IPFS utilizes cryptographic hashes.

A cryptographic hash value is generated using a file’s content upon upload to IPFS. This is used to generate the Content Identifier (CID). IPFS uses Content Addressing as opposed to Location Addressing, and this CID is used to point to a resource in IPFS [4].

When a computer running IPFS requires a particular file, it asks the connected peers if they have the file with a specific hash. If a peer has the file with the matching hash, it will provide it to the requesting computer [1][6].

Taking down content on IPFS is much more difficult compared to centralized file storage hosts, as content is stored on several nodes without a centralized entity, as shown in Figure 2. To take down content from IPFS, it must be removed from all the nodes. Thus, IPFS is prone to being abused for malicious purposes.

Figure 2: When the resource is unavailable on the server for (a), all the clients are unable to access the resource. When the resource is unavailable on one of the peers for (b), the resources are still available on the other peers.

The domains used in these IPFS phishing links are gateways that enable an HTTPS URL to access resources within the distributed IPFS file system.

There are two types of IPFS links, the Path Gateway and Subdomain Gateway [1].

Path Gateways have a fixed domain/host and identifies the IPFS resource through a resource-identifying string in the path. The Path Gateway has the following structure:

•       https://<gateway-host>.tld/ipfs/<CID>/path/to/resource

•       https://<gateway-host>.tld/ipns/<dnslink/ipnsid>/path/to/resource

On the other hand, Subdomain Gateways have a resource-identifying string in the subdomain. Subdomain Gateways have the following structure:

•       https://<cidv1b32>.ipfs.<gateway-host>.tld/path/to/resource

One gateway domain serves the same role as any other, which means attackers can easily change the gateways that are used.

Thus, these link domains involved in these attacks can be much more variable than the ones in traditional file storage attacks, where a centralized service with a single domain is used (e.g., Dropbox, Google Docs), making detecting the malicious use of IPFS extremely challenging for traditional security vendors. Through its anomaly-based approach to threat detection, Darktrace/Email™ is consistently able to identify such tactics and respond to them, preventing malicious actors from abusing file storage systems life IPFS.

IPFS Campaign Details

In several recent examples of IPFS abuse that Darktrace detected on a customer’s network, the apparent end goal was to harvest user credentials. Stolen credentials can be exploited by threat actors to further their attacks on organizations by escalating their privileges within the network, or even sold on the dark web.

Darktrace detected multiple IPFS links sent in malicious emails that contained the victim’s email address. Based on the domain in this email address, users would then be redirected to a fake login page that uses their organizations’ webpage visuals and branding to convince targets to enter their login details, unknowingly compromising their accounts in the process.

Figure 3: The credential harvester changes visuals depending on the victim’s email address specified in the URL.

These IPFS credential harvesting sites use various techniques to evade detection the detection of traditional security tools and prevent further analysis, such as obfuscation by Percent Encoding and Base64 Encoding the code.

There are also other mechanisms put into place to hinder investigation by security teams. For example, some IPFS credential harvester sites investigated by Darktrace did not allow right clicking and certain keystrokes, as a means to make post-attack analysis more difficult.

Figure 4: The code shows that it attempts to prevent certain keystrokes.

In the campaign highlighted in this blog, the following IPFS link was observed:

hxxps://ipfs[.]io/ipfs/QmfDDxLWoLiqFURX6dUZcsHxVBP1ZnM21H5jXGs1ffNxtP?filename=at ob.html#<EmailAddress>

This uses a Path Gateway, as it identifies the IPFS resource through a resource-identifying string in the path. The CID is QmfDDxLWoLiqFURX6dUZcsHxVBP1ZnM21H5jXGs1ffNxtP in this case.

It makes a GET request to image[.]thum[.]io and logo[.]clearbit[.]com as shown in Figure 5. The image[.]thum[.]io is a Free Website Screenshot Generator, that provides real-time screenshot of websites [2]. The logo[.]clearbit[.]com is used to lookup company logos using the domain [3]. These visuals are integrated into the credential harvester site. Figure 6 shows the domain name being extracted from the victim’s email address and used to obtain the visuals.

Figure 5: The GET requests to image[.]thum[.]io and logo[.]clearbit[.].
Figure 6: The code shows that it utilizes the domain name from the victim’s email address to obtain the visuals from logo.clearbit[.]com and image[.]thum.io.

The code reveals the credential POST endpoint as shown in Figure 16. When credentials are submitted, it makes a POST request to this endpoint as shown in Figure 7.

Figure 7: The credential POST endpoint can be seen inside the code.
Figure 8: The Outlook credential harvester will redirect to the real Outlook page when wrong credentials are submitted multiple times.

From the IPFS link alone, it is difficult to determine whether it leads to a malicious endpoint, however Darktrace has consistently identified emails containing these IPFS credential harvesting links as phishing attempts.

Darktrace Coverage

During one case of IPFS abuse detected by Darktrace in March 2023, a threat actor sent malicious emails with the subject “Renew Your E-mail Password” to 55 different recipients at. The sender appeared to be the organization’s administrator and used their internal domain.

Figure 9: Darktrace/Email’s detection of the “Renew Your E-mail Password” emails from “administrator”. These were all sent at 2023.03.21 02:39 UTC.

However, Darktrace recognized that the email did not pass Sender Policy Framework (SPF), and therefore it could not be validated as being sent from the organization’s domain. Darktrace also detected that the email contained a link to “ipfs.io, the official IPFS gateway. This was identified as a spoofing and phishing attempt by Darktrace/Email.

Figure 10: The Darktrace/Email overview tab shows the Anomaly Indicators, History, Association, and Validation information of this sender. It contained a link to “ipfs.io”, and did not pass SPF.

Following the successful identification of the malicious emails, Darktrace RESPOND™ took immediate autonomous action to prevent them from leading to potentially damaging network compromise. For email-based threats, Darktrace RESPOND is able to carry out numerous actions to stop malicious emails and reduce the risk of compromise. In response to this specific incident, RESPOND took multiple preventative actions (as seen in Figure 11), including include lock link, an action that prevents access to URLs deemed as suspicious, send to junk, an action that automatically places emails in the recipient’s junk folder, and hold message, the most severe RESPOND action that prevents malicious emails from reaching the recipients inbox at all.

Figure 11: The Darktrace/Email model tab shows all the models that triggered on the email and the associated RESPOND actions.
Figure 12: The ipfs.io link used in this email contains the recipient’s email address, and has a CID of QmfDDxLWoLiqFURX6dUZcsHxVBP1ZnM21H5jXGs1ffNxtP. It has a Darktrace Domain Rarity Score of 100
Figure 13: The IPFS credential harvester that uses the organization’s website’s visuals.

Further investigation revealed that the IPFS link contained the recipients’ email address, and when clicked led to a credential harvester that utilized the same visuals and branding as the customer’s website.

Concluding Thoughts

Ultimately, despite the various tactics employed threat actors to evade the detection of traditional security tools, Darktrace was able to successfully detect and mitigate these often very fruitful phishing attacks that attempted to abuse the IPFS file storage system.

As file storage platforms like IPFS do have legitimate business uses, blocking traffic related to file storage is likely to negatively impact the day-to-day operations of an organization. The challenge security teams face is to differentiate between malicious and legitimate uses of such services, and only act on malicious cases. As such, it is more important than ever for organizations to have an effective anomaly detection tool in place that is able to identify emerging threats without relying on rules, signatures or previously observed indicators of compromise (IoC).

By leveraging its Self-Learning AI, Darktrace understands what represents expected activity on customer networks and can recognize subtle deviations from expected behavior, that may be indicative of compromise. Then, using its autonomous response capabilities, Darktrace RESPOND is able to instantly and autonomously take action against emerging threats to stop them at the earliest possible stage.

Credit to Ben Atkins, Senior Model Developer for their contribution to this blog.

Appendices

Example IOCs

Type: URL

IOC: hxxps://ipfs[.]io/ipfs/QmfDDxLWoLi qFURX6dUZcsHxVBP1ZnM21H5jXGs

1ffNxtP?filename=atob.html#<Email Address>

Description: Path Gateway link

Type: URL

IOC: hxxps://bafybeibisyerwlu46re6rxrfw doo2ubvucw7yu6zjcfjmn7rqbwcix2 mku.ipfs[.]dweb.link/webn cpmk.htm?bafybeigh77sqswniy74nzyklybstfpkxhsqhpf3qt26nwnh4wf2vv gbdaybafybeigh77sqswniy74nzyklybstfpkxhsqhpf3qt26nwnh4wf2vvgbda y#<EmailAddress>

Description: Subdomain Gateway link

Relevant Darktrace DETECT Models

•       Spoof / Internal Domain from Unexpected Source + New Unknown Link

•       Link / High Risk Link + Low Sender Association

•       Link / New Correspondent Classified Link

•       Link / Watched Link Type

•       Proximity / Phishing + New activity

•       Proximity / Phishing + New Address Known Domain

•       Spoof / Internal Domain from Unexpected Source + High Risk Link

References

[1]    https://docs.ipfs.tech/

[2]    https://www.thum.io/

[3]    https://clearbit.com/logo

[4]    https://filebase.com/blog/ipfs-content-addressing-explained/

[5]    https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/the-attack-of-the-chameleon-phishing-page/

[6]    https://wiki.ipfsblox.com/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Lena Yu
Cyber Security Analyst

More in this series

No items found.

Blog

/

Network

/

June 18, 2025

Customer Case Study: Leading Petrochemical Manufacturer

Default blog imageDefault blog image

Headquartered in Saudi Arabia, this industry leading petrochemical manufacturer serves customers in more than 80 countries across diverse markets throughout Europe, Africa, Latin America, the Middle East, China, and Southeast Asia.

Cyber resiliency critical to growth strategy

This leading petrochemical manufacturer’s vision is to be one of the major global players in the production and marketing of designated petrochemicals and downstream products. The company aims to significantly increase its capacity to up to a million metric tons within the next few years.

With cyber-attacks on critical infrastructure increasing 30% globally last year, cyber resiliency is essential to supporting the company’s strategic business goals of:

  • Maximizing production through efficient asset utilization
  • Maximizing sales by conducting 90% of its business outside Saudi Arabia
  • Optimizing resources and processes by integrating with UN Global Compact principles for sustainability and efficiency
  • Growing its business portfolio by engaging in joint ventures to diversify production and add value to the economy

However, the industry leader faced several challenges in its drive to fortify its cybersecurity defenses.

Visibility gaps delay response time

The company’s existing security setup provided limited visibility to the in-house security team, hindering its ability to detect anomalous network and user activity in real time. This resulted in delayed responses to potential incidents, making proactive issue resolution difficult and any remediation in the event of a successful attack costly and time-consuming.

Manual detection drains resources

Without automated detection and response capabilities, the organization’s security team had to manually monitor for suspicious activity – a time-consuming and inefficient approach that strained resources and left the organization vulnerable. This made it difficult for the team to stay current with training or acquire new skills and certifications, which are core to the ethos of both the company’s owners and the team itself.

Cyber-attacks on critical infrastructure increasing

The petrochemical manufacturer is part of a broader ecosystem of companies, making the protection of its supply chain – both upstream and downstream – critical. With several manufacturing entities and multiple locations, the customer’s internal structure is complex and challenging to secure. As cyber-attacks on critical infrastructure escalate, it needed a more comprehensive approach to safeguard its business and the wider ecosystem.

Keeping and growing skills and focus in-house

To strengthen its cybersecurity strategy, the company considered two options:

  1. Make a significant initial and ongoing investment in a Security Operations Center (SOC), which would involve skills development outside the company and substantial management overhead.
  2. Use a combination of new, automated tools and an outsourced Managed Detection and Response (MDR) service to reduce the burden on internal security specialists and allow the company to invest in upskilling its staff so they can focus on more strategic tasks.

Faced with this choice between entirely outsourcing security and augmenting the security team with new capabilities, the customer chose the second option, selecting Darktrace to automate the company’s monitoring, detection, and response. Today, the petrochemical manufacturer is using:

Extending the SOC with 24/7 expert support

To alleviate the burden on its lean security team, the company augmented its in-house capabilities with Darktrace’s Managed Detection & Response service. This support acts as an extension of its SOC, providing 24/7 monitoring, investigation, and escalation of high-priority threats. With Darktrace’s global SOC managing alert triage and autonomously containing threats, the organization’s internal team can focus on strategic initiatives. The result is a stronger security posture and increased capacity to proactively address evolving cyber risks – without expanding headcount or sacrificing visibility.

A unique approach to AI

In its search for a new security platform, the company’s Director of Information Technology said Darktrace’s autonomous response capability, coupled with Self-Learning AI-driven threat reduction, were two big reasons for selecting Darktrace over competing products and services.

AI was a huge factor – no one else was doing what Darktrace was doing with [AI].”

Demonstrated visibility

Before Darktrace, the customer had no visibility into the network activity to and from remote worker devices. Some employees need the ability to connect to its networks at any time and from any location, including the Director of Information Technology. The trial deployment of Darktrace / ENDPOINT was a success and gave the team peace of mind that, no matter the location or device, high-value remote workers were protected by Darktrace.

Modular architecture  

Darktrace's modular architecture allowed the company to deploy security controls across its complex, multi-entity environment. The company’s different locations run on segregated networks but are still interconnected and need to be protected. Darktrace / NETWORK provides a unified view and coordinated security response across the organization’s entire network infrastructure, including endpoint devices.

Results

The petrochemical manufacturer is using Darktrace across all of its locations and has achieved total visibility across network and user activity. “Darktrace is increasing in value every day,” said the Director of Information Technology.

I don’t have a big team, and Darktrace makes our lives very, very easy, not least the automation of some of the tasks that require constant manual review.”

Time savings frees analysts to focus on proactive security

Darktrace / NETWORK provides continuous, AI-driven monitoring and analysis of the company’s network activity, user behavior, and threat patterns, establishing a baseline of what normal activity looks like, and then alerting analysts to any deviations from normal traffic, activity, and behaviors. Darktrace’s autonomous response capabilities speed up response to detected threats, meaning intervention from the security team is required for fewer incidents and alerts.

In October 2024 alone, Darktrace Cyber AI Analyst saved the team 810 investigation hours, and autonomously responded to 180 anomalous behaviors that were uncovered during the investigations. With Darktrace managing the majority of threat detection and response efforts, the security team has been able to change its day-to-day activity from manual review of traffic and alerts and belated response to activity, to proactively fortifying its detection and response posture and upskilling to meet evolving requirements.  

Layered email protection reduces phishing threats

The company’s email infrastructure posed a challenge due to petrochemical industry regulations requiring on-premises email servers, with some security delivered via Microsoft Azure. By integrating Darktrace / EMAIL into the Azure stack, the organization has reduced the volume of phishing emails its users receive by 5%.

“Now we have one more layer of security related to email – every email goes through two filters. If something is not being caught or traced by Azure, it is being detected by Darktrace,” said the Director of Information Technology. “As a result, we’re now seeing only about 15% to 20% of the phishing emails we used to receive before implementing Darktrace.”

Preparing for a secure future

The time saved using Darktrace has helped the security team take proactive steps, including preparing for new cyber resilience regulations for Saudi Arabia’s Critical National Infrastructure, as mandated by the National Cybersecurity Authority (NCA).

“The team now has ample time to prepare policies and procedures that meet the new NCA regulations and, in some cases, enhance the requirements of the new law,” said the Director of Information Technology. “All of this is possible because they don’t need to keep watch; Darktrace takes on so much of that task for them.”

Continue reading
About the author
The Darktrace Community

Blog

/

Network

/

June 18, 2025

Tracking CVE-2025-31324: Darktrace’s detection of SAP Netweaver exploitation before and after disclosure 

person working on laptopDefault blog imageDefault blog image

Introduction: Exploiting SAP platforms

Global enterprises depend extensively on SAP platforms, such as SAP NetWeaver and Visual Composer, to run critical business processes worldwide. These systems; however, are increasingly appealing targets for well-resourced adversaries:

What is CVE-2025-31324?

CVE-2025-31324 affects SAP’s NetWeaver Visual Composer, a web-based software modeling tool. SAP NetWeaver is an application server and development platform that runs and connects SAP and non-SAP applications across different technologies [2]. It is commonly used by process specialists to develop application components without coding in government agencies, large enterprises, and by critical infrastructure operators [4].

CVE-2025-31324 affects SAP’s Netweaver Visual Composer Framework 7.1x (all SPS) and above [4]. The vulnerability in a Java Servlet (/irj/servlet_jsp) would enable an unauthorized actor to upload arbitrary files to the /developmentserver/metadatauploader endpoint, potentially resulting in remote code execution (RCE) and full system compromise [3]. The issue stems from an improper authentication and authorization check in the SAP NetWeaver Application Server Java systems [4].

What is the severity rating of CVE-2025-31324?

The vulnerability, first disclosed on April 24, 2025, carries the highest severity rating (CVSS v3 score: 10.0) and could allow remote attackers to upload malicious files without requiring authentication [1][5]. Although SAP released a workaround on April 8, many organizations are hesitant to take their business-critical SAP NetWeaver systems offline, leaving them exposed to potential exploitation [2].

How is CVE-2025-31324 exploited?

The vulnerability is exploitable by sending specifically crafted GET, POST, or HEAD HTTP requests to the /developmentserver/metadatauploader URL using either HTTP or HTTPS. Attackers have been seen uploading malicious files (.jsp, .java, or .class files to paths containing “\irj\servlet_jsp\irj\”), most of them being web shells, to publicly accessible SAP NetWeaver systems.

External researchers observed reconnaissance activity targeting this vulnerability in late January 2025, followed by a surge in exploitation attempts in February. The first confirmed compromise was reported in March [4].

Multiple threat actors have reportedly targeted the vulnerability, including Chinese Advanced Persistent Threats (APTs) groups Chaya_004 [7], UNC5221, UNC5174, and CL-STA-0048 [8], as well as ransomware groups like RansomEXX, also known as Storm-2460, BianLian [4] or Qilin [6] (the latter two share the same indicators of  compromise (IoCs)).

Following the initial workaround published on April 8, SAP released a security update addressing CVE-2025-31324 and subsequently issued a patch on May 13 (Security Note 3604119) to resolve the root cause of the vulnerability [4].

Darktrace’s coverage of CVE-2025-31324 exploitation

Darktrace has observed activity indicative of threat actors exploiting CVE-2025-31324, including one instance detected before the vulnerability was publicly disclosed.

In April 2025, the Darktrace Threat Research team investigated activity related to the CVE-2025-31324 on SAP devices and identified two cases suggesting active exploitation of the vulnerability. One case was detected prior to the public disclosure of the vulnerability, and the other just two days after it was published.

Early detection of CVE 2025-31324 by Darktrace

Figure 1: Timeline of events for an internet-facing system, believed to be a SAP device, exhibiting activity indicative of CVE-2025-31324 exploitation.
Figure 1: Timeline of events for an internet-facing system, believed to be a SAP device, exhibiting activity indicative of CVE-2025-31324 exploitation.

On April 18, six days prior to the public disclosure of CVE-2025-31324, Darktrace began to detect unusual activity on a device belonging to a logistics organization in the Europe, the Middle East and Africa (EMEA) region. Multiple IoCs observed during this incident have since been linked via OSINT to the exploitation of CVE-2025-31324. Notably, however, this reporting was not available at the time of detection, highlighting Darktrace’s ability to detect threats agnostically, without relying on threat intelligence.

The device was observed making  domain name resolution request for the Out-of-Band Application Security Testing (OAST) domain cvvr9gl9namk9u955tsgaxy3upyezhnm6.oast[.]online. OAST is often used by security teams to test if exploitable vulnerabilities exist in a web application but can similarly be used by threat actors for the same purpose [9].

Four days later, on April 22, Darktrace observed the same device, an internet-facing system believed to be a SAP device, downloading multiple executable (.exe) files from several Amazon Simple Storage Service (S3). Darktrace’s Threat Research team later found these files to be associated with the KrustyLoader  malware [23][24][25].

KrustyLoader is known to be associated with the Chinese threat actor UNC5221, also known as UTA0178, which has been reported to aggressively target devices exposed to the internet [10] [14] [15]. It is an initial-stage malware which downloads and launches a second-stage payload – Sliver C2. Sliver is a similar tool to Cobalt Strike (an open-source post-exploitation toolkit). It is used for command-and-control (C2) connections [11][12]13]. After its successful download, KrustyLoader deletes itself to evade detection.  It has been reported that multiple Chinese APT groups have deployed KrustyLoader on SAP Netweaver systems post-compromise [8].

The actors behind KrustyLoader have also been associated with the exploitation of zero-day vulnerabilities in other enterprise systems, including Ivanti devices [12]. Notably, in this case, one of the Amazon S3 domains observed (abode-dashboard-media.s3.ap-south-1.amazonaws[.]com ) had previously been investigated by Darktrace’s Threat Research team as part of their investigation into Ivanti Connect Secure (CS) and Policy Secure (PS) appliances.

In addition to the download of known malicious files, Darktrace also detected new IoCs, including several executable files that could not be attributed to any known malware families or previous attacks, and for which no corresponding OSINT reporting was available.

Post-CVE publication detection

Exploit Validation

Between April 27 and 29, Darktrace observed unusual activity from an SAP device on the network of a manufacturing customer in EMEA.

Darktrace / NETWORK’s detection of an SAP device performing a large volume of suspicious activity between April 27 and April 29.
Figure 2: Darktrace / NETWORK’s detection of an SAP device performing a large volume of suspicious activity between April 27 and April 29.

The device was observed making DNS requests for OAST domains (e.g. aaaaaaaa.d06qqn7pu5a6u25tv9q08p5xhbjzw33ge.oast[.]online and aaaaaaaaaaa.d07j2htekalm3139uk2gowmxuhapkijtp.oast[.]pro), suggesting that a threat actor was testing for exploit validation [9].

Darktrace / NETWORK’s detection of a SAP device making suspicious domain name resolution requests for multiple OAST domains.
Figure 3: Darktrace / NETWORK’s detection of a SAP device making suspicious domain name resolution requests for multiple OAST domains.

Privilege escalation tool download attempt

One day later, Darktrace observed the same device attempting to download an executable file from hxxp://23.95.123[.]5:666/xmrigCCall/s.exe (SHA-1 file hash: e007edd4688c5f94a714fee036590a11684d6a3a).

Darktrace / NETWORK identified the user agents Microsoft-CryptoAPI/10.0 and CertUtil URL Agent during the connections to 23.95.123[.]5. The connections were made over port 666, which is not typically used for HTTP connections.

Multiple open-source intelligence (OSINT) vendors have identified the executable file as either JuicyPotato or SweetPotato, both Windows privilege escalation tools[16][17][18][19]. The file hash and the unusual external endpoint have been associated with the Chinese APT group Gelsemium in the past, however, many threat actors are known to leverage this tool in their attacks [20] [21].

Figure 4: Darktrace’s Cyber AI Analyst’s detection of a SAP device downloading a suspicious executable file from hxxp://23.95.123[.]5:666/xmrigCCall/s.exe on April 28, 2025.

Darktrace deemed this activity highly suspicious and triggered an Enhanced Monitoring model alert, a high-priority security model designed to detect activity likely indicative of compromise. As the customer was subscribed to the Managed Threat Detection service, Darktrace’s Security Operations Centre (SOC) promptly investigated the alert and notified the customer for swift remediation. Additionally, Darktrace’s Autonomous Response capability automatically blocked connections to the suspicious IP, 23.95.123[.]5, effectively containing the compromise in its early stages.

Actions taken by Darktrace’s Autonomous Response to block connections to the suspicious external endpoint 23.95.123[.]5. This event log shows that the connections to 23.95.123[.]5 were made over a rare destination port for the HTTP protocol and that new user agents were used during the connections.
Figure 5: Actions taken by Darktrace’s Autonomous Response to block connections to the suspicious external endpoint 23.95.123[.]5. This event log shows that the connections to 23.95.123[.]5 were made over a rare destination port for the HTTP protocol and that new user agents were used during the connections.

Conclusion

The exploitation of CVE-2025-31324 to compromise SAP NetWeaver systems highlights the persistent threat posed by vulnerabilities in public-facing assets. In this case, threat actors leveraged the flaw to gain an initial foothold, followed by attempts to deploy malware linked to groups affiliated with China [8][20].

Crucially, Darktrace demonstrated its ability to detect and respond to emerging threats even before they are publicly disclosed. Six days prior to the public disclosure of CVE-2025-31324, Darktrace detected unusual activity on a device believed to be a SAP system, which ultimately represented an early detection of the CVE. This detection was made possible through Darktrace’s behavioral analysis and anomaly detection, allowing it to recognize unexpected deviations in device behavior without relying on signatures, rules or known IoCs. Combined with its Autonomous Response capability, this allowed for immediate containment of suspicious activity, giving security teams valuable time to investigate and mitigate the threat.

Credit to Signe Zaharka (Principal Cyber Analyst), Emily Megan Lim, (Senior Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

List of IoCs

23.95.123[.]5:666/xmrigCCall/s.exe - URL- JuicyPotato/SweetPotato - high confidence

29274ca90e6dcf5ae4762739fcbadf01- MD5 file hash - JuicyPotato/SweetPotato - high confidence

e007edd4688c5f94a714fee036590a11684d6a3a - SHA-1 file hash - JuicyPotato/SweetPotato -high confidence

3268f269371a81dbdce8c4eedffd8817c1ec2eadec9ba4ab043cb779c2f8a5d2 - SHA-256 file hash - JuicyPotato/SweetPotato -high confidence

abode-dashboard-media.s3.ap-south-1.amazonaws[.]com/nVW2lsYsYnv58 - URL- high confidence

applr-malbbal.s3.ap-northeast-2.amazonaws[.]com/7p3ow2ZH - URL- high confidence

applr-malbbal.s3.ap-northeast-2.amazonaws[.]com/UUTICMm - URL- KrustyLoader - high confidence

beansdeals-static.s3.amazonaws[.]com/UsjKy - URL- high confidence

brandnav-cms-storage.s3.amazonaws[.]com/3S1kc - URL- KrustyLoader - high confidence

bringthenoiseappnew.s3.amazonaws[.]com/pp79zE - URL- KrustyLoader - high confidence

f662135bdd8bf792a941ea222e8a1330 - MD5 file hash- KrustyLoader - high confidence

fa645f33c0e3a98436a0161b19342f78683dbd9d - SHA-1 file hash- KrustyLoader - high confidence

1d26fff4232bc64f9ab3c2b09281d932dd6afb84a24f32d772d3f7bc23d99c60 - SHA-256 file hash- KrustyLoader - high confidence

6900e844f887321f22dd606a6f2925ef - MD5 file hash- KrustyLoader - high confidence

da23dab4851df3ef7f6e5952a2fc9a6a57ab6983 - SHA-1 file hash- KrustyLoader - high confidence

1544d9392eedf7ae4205dd45ad54ec67e5ce831d2c61875806ce4c86412a4344 - SHA-256 file hash- KrustyLoader - high confidence

83a797e5b47ce6e89440c47f6e33fa08 - MD5 file hash - high confidence

a29e8f030db8990c432020441c91e4b74d4a4e16 - SHA-1 file hash - high confidence

72afde58a1bed7697c0aa7fa8b4e3b03 - MD5 file hash- high confidence

fe931adc0531fd1cb600af0c01f307da3314c5c9 - SHA-1 file hash- high confidence

b8e56de3792dbd0f4239b54cfaad7ece3bd42affa4fbbdd7668492de548b5df8 - SHA-256 file hash- KrustyLoader - high confidence

17d65a9d8d40375b5b939b60f21eb06eb17054fc - SHA-1 file hash- KrustyLoader - high confidence

8c8681e805e0ae7a7d1a609efc000c84 - MD5 file hash- KrustyLoader - high confidence

29274ca90e6dcf5ae4762739fcbadf01 - MD5 file hash- KrustyLoader - high confidence

Darktrace Model Detections

Anomalous Connection / CertUtil Requesting Non Certificate

Anomalous Connection / CertUtil to Rare Destination

Anomalous Connection / Powershell to Rare External

Anomalous File / EXE from Rare External Location

Anomalous File / Multiple EXE from Rare External Locations

Anomalous File / Internet Facing System File Download

Anomalous File / Masqueraded File Transfer (Enhanced Monitoring)

Anomalous Server Activity / New User Agent from Internet Facing System

Compliance / CertUtil External Connection

Compromise / High Priority Tunnelling to Bin Services (Enhanced Monitoring)

Compromise / Possible Tunnelling to Bin Services

Device / Initial Attack Chain Activity (Enhanced Monitoring)

Device / Suspicious Domain

Device / Internet Facing Device with High Priority Alert

Device / Large Number of Model Alerts

Device / Large Number of Model Alerts from Critical Network Device (Enhanced Monitoring)

Device / New PowerShell User Agent

Device / New User Agent

Autonomous Response Model Alerts

Antigena / Network / External Threat / Antigena Suspicious File Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena/ Network / External Threat / Antigena Suspicious File Block

Antigena/ Network / External Threat / Antigena Suspicious File Pattern of Life Block

Antigena/ Network / Significant Anomaly / Antigena Alerts Over Time Block

Antigena/ Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena/ Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena/ Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Cyber AI Analyst Incidents

Possible HTTP Command and Control

Suspicious File Download

MITRE ATT&CK Mapping

Malware - RESOURCE DEVELOPMENT - T1588.001

PowerShell - EXECUTION - T1059.001

Drive-by Compromise - INITIAL ACCESS - T1189

Ingress Tool Transfer - COMMAND AND CONTROL - T1105

Application Layer Protocol - COMMAND AND CONTROL - T1071

Exploitation of Remote Services - LATERAL MOVEMENT - T1210

Exfiltration Over Unencrypted/Obfuscated Non-C2 Protocol - EXFILTRATION - T1048.003

References

1. https://nvd.nist.gov/vuln/detail/CVE-2025-31324

2. https://www.bleepingcomputer.com/news/security/over-1-200-sap-netweaver-servers-vulnerable-to-actively-exploited-flaw/

3. https://reliaquest.com/blog/threat-spotlight-reliaquest-uncovers-vulnerability-behind-sap-netweaver-compromise/

4. https://onapsis.com/blog/active-exploitation-of-sap-vulnerability-cve-2025-31324/

5. https://www.bleepingcomputer.com/news/security/sap-fixes-suspected-netweaver-zero-day-exploited-in-attacks/

6. https://op-c.net/blog/sap-cve-2025-31324-qilin-breach/

7. https://www.forescout.com/blog/threat-analysis-sap-vulnerability-exploited-in-the-wild-by-chinese-threat-actor/

8. https://blog.eclecticiq.com/china-nexus-nation-state-actors-exploit-sap-netweaver-cve-2025-31324-to-target-critical-infrastructures

9. https://portswigger.net/burp/application-security-testing/oast

10. https://www.picussecurity.com/resource/blog/unc5221-cve-2025-22457-ivanti-connect-secure  

11. https://malpedia.caad.fkie.fraunhofer.de/details/elf.krustyloader

12. https://www.broadcom.com/support/security-center/protection-bulletin/krustyloader-backdoor

13. https://labs.withsecure.com/publications/new-krustyloader-variant-dropped-via-screenconnect-exploit

14. https://blog.eclecticiq.com/china-nexus-threat-actor-actively-exploiting-ivanti-endpoint-manager-mobile-cve-2025-4428-vulnerability

15. https://thehackernews.com/2024/01/chinese-hackers-exploiting-critical-vpn.html

16. https://www.virustotal.com/gui/file/3268f269371a81dbdce8c4eedffd8817c1ec2eadec9ba4ab043cb779c2f8a5d2

17. https://bazaar.abuse.ch/sample/3268f269371a81dbdce8c4eedffd8817c1ec2eadec9ba4ab043cb779c2f8a5d2/

18. https://www.fortinet.com/content/dam/fortinet/assets/analyst-reports/report-juicypotato-hacking-tool-discovered.pdf

19. https://www.manageengine.com/log-management/correlation-rules/detecting-sweetpotato.html

20. https://unit42.paloaltonetworks.com/rare-possible-gelsemium-attack-targets-se-asia/

21. https://assets.kpmg.com/content/dam/kpmg/in/pdf/2023/10/kpmg-ctip-gelsemium-apt-31-oct-2023.pdf

22. https://securityaffairs.com/177522/hacking/experts-warn-of-a-second-wave-of-attacks-targeting-sap-netweaver-bug-cve-2025-31324.html

23. https://www.virustotal.com/gui/file/b8e56de3792dbd0f4239b54cfaad7ece3bd42affa4fbbdd7668492de548b5df8

24. https://www.virustotal.com/gui/file/1d26fff4232bc64f9ab3c2b09281d932dd6afb84a24f32d772d3f7bc23d99c60/detection

25. https://www.virustotal.com/gui/file/1544d9392eedf7ae4205dd45ad54ec67e5ce831d2c61875806ce4c86412a4344/detection

Continue reading
About the author
Signe Zaharka
Senior Cyber Security Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI