Blog
/
Network
/
November 8, 2022

How Raccoon Stealer v2 Infects Systems

Learn about Raccoon Stealer v2's infection process and its implications for cybersecurity. Discover effective strategies to protect your systems.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Nov 2022

Raccoon Stealer Malware

Since the release of version 2 of Raccoon Stealer in May 2022, Darktrace has observed huge volumes of Raccoon Stealer v2 infections across its client base. The info-stealer, which seeks to obtain and then exfiltrate sensitive data saved on users’ devices, displays a predictable pattern of network activity once it is executed. In this blog post, we will provide details of this pattern of activity, with the goal of helping security teams to recognize network-based signs of Raccoon Stealer v2 infection within their own networks. 

What is Raccoon Stealer?

Raccoon Stealer is a classic example of information-stealing malware, which cybercriminals typically use to gain possession of sensitive data saved in users’ browsers and cryptocurrency wallets. In the case of browsers, targeted data typically includes cookies, saved login details, and saved credit card details. In the case of cryptocurrency wallets (henceforth, ‘crypto-wallets’), targeted data typically includes public keys, private keys, and seed phrases [1]. Once sensitive browser and crypto-wallet data is in the hands of cybercriminals, it will likely be used to conduct harmful activities, such as identity theft, cryptocurrency theft, and credit card fraud.

How do you obtain Raccoon Stealer?

Like most info-stealers, Raccoon Stealer is purchasable. The operators of Raccoon Stealer sell Raccoon Stealer samples to their customers (called ‘affiliates’), who then use the info-stealer to gain possession of sensitive data saved on users’ devices. Raccoon Stealer affiliates typically distribute their samples via SEO-promoted websites providing free or cracked software. 

Is Raccoon Stealer Still Active?

On the 25th of March 2022, the operators of Raccoon Stealer announced that they would be suspending their operations because one of their core developers had been killed during the Russia-Ukraine conflict [2]. The presence of the hardcoded RC4 key ‘edinayarossiya’ (Russian for ‘United Russia’) within observed Raccoon Stealer v2 samples [3] provides potential evidence of the Raccoon Stealer operators’ allegiances.

Recent details shared by the US Department of Justice [4]/[5] indicate that it was in fact the arrest, rather than the death, of an operator which led the Raccoon Stealer team to suspend their operations [6]. As a result of the FBI, along with law enforcement partners in Italy and the Netherlands, dismantling Raccoon Stealer infrastructure in March 2022 [4], the Raccoon Stealer team was forced to build a new version of the info-stealer.  

On the 17th May 2022, the completion of v2 of the info-stealer was announced on the Raccoon Stealer Telegram channel [7].  Since its release in May 2022, Raccoon Stealer v2 has become extremely popular amongst cybercriminals. The prevalence of Raccoon Stealer v2 in the wider landscape has been reflected in Darktrace’s client base, with hundreds of infections being observed within client networks on a monthly basis.   

Since Darktrace’s SOC first saw a Raccoon Stealer v2 infection on the 22nd May 2022, the info-stealer has undergone several subtle changes. However, the info-stealer’s general pattern of network activity has remained essentially unchanged.  

How Does Raccoon Stealer v2 Infection Work?

A Raccoon Stealer v2 infection typically starts with a user attempting to download cracked or free software from an SEO-promoted website. Attempting to download software from one of these cracked/free software websites redirects the user’s browser (typically via several .xyz or .cfd endpoints) to a page providing download instructions. In May, June, and July, many of the patterns of download behavior observed by Darktrace’s SOC matched the pattern of behavior observed in a cracked software campaign reported by Avast in June [8].   

webpage whose download instructions led to a Raccoon Stealer v2
Figure 1: Above is a webpage whose download instructions led to a Raccoon Stealer v2 sample hosted on Discord CDN
example of a webpage whose download instructions led to a Raccoon Stealer v2
Figure 2: Above is an example of a webpage whose download instructions led to a Raccoon Stealer v2 sample hosted on Bitbucket
example of a webpage whose download instructions led to a Raccoon Stealer v2
Figure 3: Above is an example of a webpage whose download instructions led to a Raccoon Stealer v2 sample hosted on MediaFire

Following the instructions on the download instruction page causes the user’s device to download a password-protected RAR file from a file storage service such as ‘cdn.discordapp[.]com’, ‘mediafire[.]com’, ‘mega[.]nz’, or ‘bitbucket[.]org’. Opening the downloaded file causes the user’s device to execute Raccoon Stealer v2. 

The Event Log for an infected device,
Figure 4: The Event Log for an infected device, taken from Darktrace’s Threat Visualiser interface, shows a device contacting two cracked software websites (‘crackedkey[.]org’ and ‘crackedpc[.]co’) before contacting a webpage (‘premiumdownload[.]org) providing instructions to download Raccoon Stealer v2 from Bitbucket

Once Raccoon Stealer v2 is running on a device, it will make an HTTP POST request with the target URI ‘/’ and an unusual user-agent string (such as ‘record’, ‘mozzzzzzzzzzz’, or ‘TakeMyPainBack’) to a C2 server. This POST request consists of three strings: a machine GUID, a username, and a 128-bit RC4 key [9]. The posted data has the following form:

machineId=X | Y & configId=Z (where X is a machine GUID, Y is a username and Z is a 128-bit RC4 key) 

PCAP showing a device making an HTTP POST request with the User Agent header ‘record’ 
Figure 5:PCAP showing a device making an HTTP POST request with the User Agent header ‘record’ 
PCAP showing a device making an HTTP POST request with the User Agent header ‘mozzzzzzzzzzz’
Figure 6: PCAP showing a device making an HTTP POST request with the User Agent header ‘mozzzzzzzzzzz’
PCAP showing a device making an HTTP POST request with the User Agent header ‘TakeMyPainBack’
Figure 7: PCAP showing a device making an HTTP POST request with the User Agent header ‘TakeMyPainBack’

The C2 server responds to the info-stealer’s HTTP POST request with custom-formatted configuration details. These configuration details consist of fields which tell the info-stealer what files to download, what data to steal, and what target URI to use in its subsequent exfiltration POST requests. Below is a list of the fields Darktrace has observed in the configuration details retrieved by Raccoon Stealer v2 samples:

  • a ‘libs_mozglue’ field, which specifies a download address for a Firefox library named ‘mozglue.dll’
  • a ‘libs_nss3’ field, which specifies a download address for a Network System Services (NSS) library named ‘nss3.dll’ 
  • a ‘libs_freebl3’ field, which specifies a download address for a Network System Services (NSS) library named ‘freebl3.dll’
  • a ‘libs_softokn3’ field, which specifies a download address for a Network System Services (NSS) library named ‘softokn3.dll’
  • a ‘libs_nssdbm3’ field, which specifies a download address for a Network System Services (NSS) library named ‘nssdbm3.dll’
  • a ‘libs_sqlite3’ field, which specifies a download address for a SQLite command-line program named ‘sqlite3.dll’
  • a ‘libs_ msvcp140’ field, which specifies a download address for a Visual C++ runtime library named ‘msvcp140.dll’
  • a ‘libs_vcruntime140’ field, which specifies a download address for a Visual C++ runtime library named ‘vcruntime140.dll’
  • a ‘ldr_1’ field, which specifies the download address for a follow-up payload for the sample to download 
  • ‘wlts_X’ fields (where X is the name of a crypto-wallet application), which specify data for the sample to obtain from the specified crypto-wallet application
  • ‘ews_X’ fields (where X is the name of a crypto-wallet browser extension), which specify data for the sample to obtain from the specified browser extension
  • ‘xtntns_X’ fields (where X is the name of a password manager browser extension), which specify data for the sample to obtain from the specified browser extension
  • a ‘tlgrm_Telegram’ field, which specifies data for the sample to obtain from the Telegram Desktop application 
  • a ‘grbr_Desktop’ field, which specifies data within a local ‘Desktop’ folder for the sample to obtain 
  • a ‘grbr_Documents’ field, which specifies data within a local ‘Documents’ folder for the sample to obtain
  • a ‘grbr_Recent’ field, which specifies data within a local ‘Recent’ folder for the sample to obtain
  • a ‘grbr_Downloads’ field, which specifies data within a local ‘Downloads’ folder for the sample to obtain
  • a ‘sstmnfo_System Info.txt’ field, which specifies whether the sample should gather and exfiltrate a profile of the infected host 
  • a ‘scrnsht_Screenshot.jpeg’ field, which specifies whether the sample should take and exfiltrate screenshots of the infected host
  • a ‘token’ field, which specifies a 32-length string of hexadecimal digits for the sample to use as the target URI of its HTTP POST requests containing stolen data 

After retrieving its configuration data, Raccoon Stealer v2 downloads the library files specified in the ‘libs_’ fields. Unusual user-agent strings (such as ‘record’, ‘qwrqrwrqwrqwr’, and ‘TakeMyPainBack’) are used in the HTTP GET requests for these library files. In all Raccoon Stealer v2 infections seen by Darktrace, the paths of the URLs specified in the ‘libs_’ fields have the following form:

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/X (where X is the name of the targeted DLL file) 

Advanced Search logs for an infected host
Figure 8: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device making an HTTP POST request to retrieve configuration details, and then making HTTP GET requests with the User Agent header ‘record’ for DLL files
Advanced Search logs for an infected host
Figure 9: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device making an HTTP POST request to retrieve configuration details, and then making HTTP GET requests with the User Agent header ‘qwrqrwrqwrqwr’ for DLL files
Advanced Search logs for an infected host
Figure 10: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device making an HTTP POST request to retrieve configuration details, and then making HTTP GET requests with the User Agent header ‘TakeMyPainBack’ for DLL files

Raccoon Stealer v2 uses the DLLs which it downloads to gain access to sensitive data (such as cookies, credit card details, and login details) saved in browsers running on the infected host.  

Depending on the data provided in the configuration details, Raccoon Stealer v2 will typically seek to obtain, in addition to sensitive data saved in browsers, the following information:

  • Information about the Operating System and applications installed on the infected host
  • Data from specified crypto-wallet software
  • Data from specified crypto-wallet browser extensions
  • Data from specified local folders
  • Data from Telegram Desktop
  • Data from specified password manager browser extensions
  • Screenshots of the infected host 

Raccoon Stealer v2 exfiltrates the data which it obtains to its C2 server by making HTTP POST requests with unusual user-agent strings (such as ‘record’, ‘rc2.0/client’, ‘rqwrwqrqwrqw’, and ‘TakeMyPainBack’) and target URIs matching the 32-length string of hexadecimal digits specified in the ‘token’ field of the configuration details. The stolen data exfiltrated by Raccoon Stealer typically includes files named ‘System Info.txt’, ‘---Screenshot.jpeg’, ‘\cookies.txt’, and ‘\passwords.txt’. 

Advanced Search logs for an infected host
Figure 11: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating files named ‘System Info.txt’ and ‘---Screenshot.jpeg’
Advanced Search logs for an infected host
Figure 12: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating a file named ‘System Info.txt’ 
Advanced Search logs for an infected host
Figure 13: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating files named ‘System Info.txt’, ‘\cookies.txt’ and ‘\passwords.txt’
Advanced Search logs for an infected host
Figure 14: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating a file named ‘System Info.txt’

If a ‘ldr_1’ field is present in the retrieved configuration details, then Raccoon Stealer will complete its operation by downloading the binary file specified in the ‘ldr_1’ field. In all observed cases, the paths of the URLs specified in the ‘ldr_1’ field end in a sequence of digits, followed by ‘.bin’. The follow-up payload seems to vary between infections, likely due to this additional-payload feature being customizable by Raccoon Stealer affiliates. In many cases, the info-stealer, CryptBot, was delivered as the follow-up payload. 

Darktrace Coverage of Raccoon Stealer

Once a user’s device becomes infected with Raccoon Stealer v2, it will immediately start to communicate over HTTP with a C2 server. The HTTP requests made by the info-stealer have an empty Host header (although Host headers were used by early v2 samples) and highly unusual User Agent headers. When Raccoon Stealer v2 was first observed in May 2022, the user-agent string ‘record’ was used in its HTTP requests. Since then, it appears that the operators of Raccoon Stealer have made several changes to the user-agent strings used by the info-stealer,  likely in an attempt to evade signature-based detections. Below is a timeline of the changes to the info-stealer’s user-agent strings, as observed by Darktrace’s SOC:

  • 22nd May 2022: Samples seen using the user-agent string ‘record’
  • 2nd July 2022: Samples seen using the user-agent string ‘mozzzzzzzzzzz’
  • 29th July 2022: Samples seen using the user-agent string ‘rc2.0/client’
  • 10th August 2022: Samples seen using the user-agent strings ‘qwrqrwrqwrqwr’ and ‘rqwrwqrqwrqw’
  • 16th Sep 2022: Samples seen using the user-agent string ‘TakeMyPainBack’

The presence of these highly unusual user-agent strings within infected devices’ HTTP requests causes the following Darktrace DETECT/Network models to breach:

  • Device / New User Agent
  • Device / New User Agent and New IP
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / Three or More New User Agents

These DETECT models look for devices making HTTP requests with unusual user-agent strings, rather than specific user-agent strings which are known to be malicious. This method of detection enables the models to continually identify Raccoon Stealer v2 HTTP traffic, despite the changes made to the info-stealer’s user-agent strings.   

After retrieving configuration details from a C2 server, Raccoon Stealer v2 samples make HTTP GET requests for several DLL libraries. Since these GET requests are directed towards highly unusual IP addresses, the downloads of the DLLs cause the following DETECT models to breach:

  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Script from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations

Raccoon Stealer v2 samples send data to their C2 server via HTTP POST requests with an absent Host header. Since these POST requests lack a Host header and have a highly unusual destination IP, their occurrence causes the following DETECT model to breach:

  • Anomalous Connection / Posting HTTP to IP Without Hostname

Certain Raccoon Stealer v2 samples download (over HTTP) a follow-up payload once they have exfiltrated data. Since the target URIs of the HTTP GET requests made by v2 samples end in a sequence of digits followed by ‘.bin’, the samples’ downloads of follow-up payloads cause the following DETECT model to breach:

  • Anomalous File / Numeric File Download

If Darktrace RESPOND/Network is configured within a customer’s environment, then Raccoon Stealer v2 activity should cause the following inhibitive actions to be autonomously taken on infected systems: 

  • Enforce pattern of life — This action results in a device only being able to make connections which are normal for it to make
  • Enforce group pattern of life — This action results in a device only being able to make connections which are normal for it or any of its peers to make
  • Block matching connections — This action results in a device being unable to make connections to particular IP/Port pairs
  • Block all outgoing traffic — This action results in a device being unable to make any connections 
The Event Log for an infected device
Figure 15: The Event Log for an infected device, taken from Darktrace’s Threat Visualiser interface, shows Darktrace RESPOND taking inhibitive actions in response to the HTTP activities of a Raccoon Stealer v2 sample downloaded from MediaFire

Given that Raccoon Stealer v2 infections move extremely fast, with the time between initial infection and data exfiltration sometimes less than a minute, the availability of Autonomous Response technology such as Darktrace RESPOND is vital for the containment of Raccoon Stealer v2 infections.  

Timeline of Darktrace stopping raccoon stealer.
Figure 16: Figure displaying the steps of a Raccoon Stealer v2 infection, along with the corresponding Darktrace detections

Conclusion

Since the release of Raccoon Stealer v2 back in 2022, the info-stealer has relentlessly infected the devices of unsuspecting users. Once the info-stealer infects a user’s device, it retrieves and then exfiltrates sensitive information within a matter of minutes. The distinctive pattern of network behavior displayed by Raccoon Stealer v2 makes the info-stealer easy to spot. However, the changes which the Raccoon Stealer operators make to the User Agent headers of the info-stealer’s HTTP requests make anomaly-based methods key for the detection of the info-stealer’s HTTP traffic. The operators of Raccoon Stealer can easily change the superficial features of their malware’s C2 traffic, however, they cannot easily change the fact that their malware causes highly unusual network behavior. Spotting this behavior, and then autonomously responding to it, is likely the best bet which organizations have at stopping a Raccoon once it gets inside their networks.  

Thanks to the Threat Research Team for its contributions to this blog.

References

[1] https://www.microsoft.com/security/blog/2022/05/17/in-hot-pursuit-of-cryware-defending-hot-wallets-from-attacks/

[2] https://twitter.com/3xp0rtblog/status/1507312171914461188

[3] https://www.esentire.com/blog/esentire-threat-intelligence-malware-analysis-raccoon-stealer-v2-0

[4] https://www.justice.gov/usao-wdtx/pr/newly-unsealed-indictment-charges-ukrainian-national-international-cybercrime-operation

[5] https://www.youtube.com/watch?v=Fsz6acw-ZJ

[6] https://riskybiznews.substack.com/p/raccoon-stealer-dev-didnt-die-in

[7] https://medium.com/s2wblog/raccoon-stealer-is-back-with-a-new-version-5f436e04b20d

[8] https://blog.avast.com/fakecrack-campaign

[9] https://blog.sekoia.io/raccoon-stealer-v2-part-2-in-depth-analysis/

Appendices

MITRE ATT&CK Mapping

Resource Development

• T1588.001 — Obtain Capabilities: Malware

• T1608.001 — Stage Capabilities: Upload Malware

• T1608.005 — Stage Capabilities: Link Target

• T1608.006 — Stage Capabilities: SEO Poisoning

Execution

•  T1204.002 — User Execution: Malicious File

Credential Access

• T1555.003 — Credentials from Password Stores:  Credentials from Web Browsers

• T1555.005 — Credentials from Password Stores:  Password Managers

• T1552.001 — Unsecured Credentials: Credentials  In Files

Command and Control

•  T1071.001 — Application Layer Protocol: Web Protocols

•  T1105 — Ingress Tool Transfer

IOCS

Type

IOC

Description

User-Agent String

record

String used in User Agent header of  Raccoon Stealer v2’s HTTP requests

User-Agent  String

mozzzzzzzzzzz

String used inUser Agent header of Raccoon Stealer v2’s HTTP requests

User-Agent String

rc2.0/client

String used in User Agent header of  Raccoon Stealer v2’s HTTP requests

User-Agent  String

qwrqrwrqwrqwr

String used in  User Agent header of Raccoon Stealer v2’s HTTP requests

User-Agent String

rqwrwqrqwrqw

String used in User Agent header of  Raccoon Stealer v2’s HTTP requests

User-Agent  String

TakeMyPainBack

String used in  User Agent header of Raccoon Stealer v2’s HTTP requests

Domain Name

brain-lover[.]xyz  

Raccoon Stealer v2 C2 infrastructure

Domain  Name

polar-gift[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

cool-story[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

fall2sleep[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

broke-bridge[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

use-freedom[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

just-trust[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

soft-viper[.]site

Raccoon Stealer  v2 C2 infrastructure

Domain Name

tech-lover[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

heal-brain[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

love-light[.]xyz

Raccoon Stealer v2 C2 infrastructure

IP  Address

104.21.80[.]14

Raccoon Stealer  v2 C2 infrastructure

IP Address

107.152.46[.]84

Raccoon Stealer v2 C2 infrastructure

IP  Address

135.181.147[.]255

Raccoon Stealer  v2 C2 infrastructure

IP Address

135.181.168[.]157

Raccoon Stealer v2 C2 infrastructure

IP  Address

138.197.179[.]146

Raccoon Stealer  v2 C2 infrastructure

IP Address

141.98.169[.]33

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.170[.]100

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.19.170[.]175

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.170[.]98

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.19.173[.]33

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.173[.]72

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.19.247[.]175

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.247[.]177

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.70.125[.]95

Raccoon Stealer v2 C2 infrastructure

IP  Address

152.89.196[.]234

Raccoon Stealer  v2 C2 infrastructure

IP Address

165.225.120[.]25

Raccoon Stealer v2 C2 infrastructure

IP  Address

168.100.10[.]238

Raccoon Stealer  v2 C2 infrastructure

IP Address

168.100.11[.]23

Raccoon Stealer v2 C2 infrastructure

IP  Address

168.100.9[.]234

Raccoon Stealer  v2 C2 infrastructure

IP Address

170.75.168[.]118

Raccoon Stealer v2 C2 infrastructure

IP  Address

172.67.173[.]14

Raccoon Stealer  v2 C2 infrastructure

IP Address

172.86.75[.]189

Raccoon Stealer v2 C2 infrastructure

IP  Address

172.86.75[.]33

Raccoon Stealer  v2 C2 infrastructure

IP Address

174.138.15[.]216

Raccoon Stealer v2 C2 infrastructure

IP  Address

176.124.216[.]15

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.106.92[.]14

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.173.34[.]161

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.173.34[.]161  

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.225.17[.]198

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.225.19[.]190

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.225.19[.]229

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.53.46[.]103

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.53.46[.]76

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.53.46[.]77

Raccoon Stealer v2 C2 infrastructure

IP  Address

188.119.112[.]230

Raccoon Stealer  v2 C2 infrastructure

IP Address

190.117.75[.]91

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.106.191[.]182

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.149.129[.]135

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.149.129[.]144

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.149.180[.]210

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.149.185[.]192

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.233.193[.]50

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]138

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]17

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]192

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]213

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]214

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]215

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]26

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]45

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.56.146[.]177

Raccoon Stealer  v2 C2 infrastructure

IP Address

194.180.174[.]180

Raccoon Stealer v2 C2 infrastructure

IP  Address

195.201.148[.]250

Raccoon Stealer  v2 C2 infrastructure

IP Address

206.166.251[.]156

Raccoon Stealer v2 C2 infrastructure

IP  Address

206.188.196[.]200

Raccoon Stealer  v2 C2 infrastructure

IP Address

206.53.53[.]18

Raccoon Stealer v2 C2 infrastructure

IP  Address

207.154.195[.]173

Raccoon Stealer  v2 C2 infrastructure

IP Address

213.252.244[.]2

Raccoon Stealer v2 C2 infrastructure

IP  Address

38.135.122[.]210

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.10.20[.]248

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.11.19[.]99

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.133.216[.]110

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.133.216[.]145

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.133.216[.]148

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.133.216[.]249

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.133.216[.]71

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.140.146[.]169

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.140.147[.]245

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.142.212[.]100

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.142.213[.]24

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.142.215[.]91

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.142.215[.]91  

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.142.215[.]92

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.144.29[.]18

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.144.29[.]243

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.15.156[.]11

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.15.156[.]2

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.15.156[.]31

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.15.156[.]31

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.150.67[.]156

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.153.230[.]183

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.153.230[.]228

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.159.251[.]163

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.159.251[.]164

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.61.136[.]67

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.61.138[.]162

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.67.228[.]8

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.67.231[.]202

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.67.34[.]152

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.67.34[.]234

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.144[.]187

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.8.144[.]54

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.144[.]55

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.8.145[.]174

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.145[.]83

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.8.147[.]39

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.147[.]79

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.84.0.152

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.86.86[.]78

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.54[.]110

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.54[.]110

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.54[.]95

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.55[.]115

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.55[.]117

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.55[.]193

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.55[.]198

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.55[.]20

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.55[.]84

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.92.156[.]150

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.36[.]154

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.36[.]230

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.36[.]231

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.36[.]232

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.36[.]233

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.39[.]34

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.39[.]74

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.39[.]75

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.39[.]77

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.118[.]33

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.176[.]62

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.177[.]217

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.177[.]234

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.177[.]43

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.177[.]47

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.177[.]92

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.177[.]98

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.22[.]142

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.23[.]100

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.23[.]25

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.23[.]76

Raccoon Stealer v2 C2 infrastructure

IP  Address

51.195.166[.]175

Raccoon Stealer  v2 C2 infrastructure

IP Address

51.195.166[.]176

Raccoon Stealer v2 C2 infrastructure

IP  Address

51.195.166[.]194

Raccoon Stealer  v2 C2 infrastructure

IP Address

51.81.143[.]169

Raccoon Stealer v2 C2 infrastructure

IP  Address

62.113.255[.]110

Raccoon Stealer  v2 C2 infrastructure

IP Address

65.109.3[.]107

Raccoon Stealer v2 C2 infrastructure

IP  Address

74.119.192[.]56

Raccoon Stealer  v2 C2 infrastructure

IP Address

74.119.192[.]73

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.232.39[.]101

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.73.133[.]0

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.73.133[.]4

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.73.134[.]45

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.75.230[.]25

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.75.230[.]39

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.75.230[.]70

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.75.230[.]93

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.100[.]101

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.102[.]12

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.102[.]230

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.102[.]44

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.102[.]57

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.102[.]84

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.103[.]31

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.73[.]154

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.73[.]213

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.73[.]32

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.74[.]67

Raccoon Stealer  v2 C2 infrastructure

IP Address

78.159.103[.]195

Raccoon Stealer v2 C2 infrastructure

IP  Address

78.159.103[.]196

Raccoon Stealer  v2 C2 infrastructure

IP Address

80.66.87[.]23

Raccoon Stealer v2 C2 infrastructure

IP  Address

80.66.87[.]28

Raccoon Stealer  v2 C2 infrastructure

IP Address

80.71.157[.]112

Raccoon Stealer v2 C2 infrastructure

IP  Address

80.71.157[.]138

Raccoon Stealer  v2 C2 infrastructure

IP Address

80.92.204[.]202

Raccoon Stealer v2 C2 infrastructure

IP  Address

87.121.52[.]10

Raccoon Stealer  v2 C2 infrastructure

IP Address

88.119.175[.]187

Raccoon Stealer v2 C2 infrastructure

IP  Address

89.185.85[.]53

Raccoon Stealer  v2 C2 infrastructure

IP Address

89.208.107[.]42

Raccoon Stealer v2 C2 infrastructure

IP  Address

89.39.106[.]78

Raccoon Stealer  v2 C2 infrastructure

IP Address

91.234.254[.]126

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.104[.]16

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.104[.]17

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.104[.]18

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.106[.]116

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.106[.]224

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.107[.]132

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.107[.]138

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.96[.]109

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.97[.]129

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.97[.]53

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.97[.]56

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.97[.]57

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.98[.]5

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.244[.]114

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.158.244[.]119

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.244[.]21

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.158.247[.]24

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.247[.]26

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.158.247[.]30

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.247[.]44

Raccoon Stealer v2 C2 infrastructure

IP  Address

95.216.109[.]16

Raccoon Stealer  v2 C2 infrastructure

IP Address

95.217.124[.]179

Raccoon Stealer v2 C2 infrastructure

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/mozglue.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/nss3.dll

URI used in download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/freebl3.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/softokn3.dll

URI used in download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/nssdbm3.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/sqlite3.dll

URI used in download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/msvcp140.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/vcruntime140.dll

URI used in download of library file

URI

/C9S2G1K6I3G8T3X7/56296373798691245143.bin

URI used in  download of follow-up payload

URI

/O6K3E4G6N9S8S1/91787438215733789009.bin

URI used in download of follow-up  payload

URI

/Z2J8J3N2S2Z6X2V3S0B5/45637662345462341.bin

URI used in  download of follow-up payload

URI

/rgd4rgrtrje62iuty/19658963328526236.bin

URI used in download of follow-up  payload

URI

/sd325dt25ddgd523/81852849956384.bin

URI used in  download of follow-up payload

URI

/B0L1N2H4R1N5I5S6/40055385413647326168.bin

URI used in download of follow-up  payload

URI

/F5Q8W3O3O8I2A4A4B8S8/31427748106757922101.bin

URI used in  download of follow-up payload

URI

/36141266339446703039.bin

URI used in download of follow-up  payload

URI

/wH0nP0qH9eJ6aA9zH1mN/1.bin

URI used in  download of follow-up payload

URI

/K2X2R1K4C6Z3G8L0R1H0/68515718711529966786.bin

URI used in download of follow-up  payload

URI

/C3J7N6F6X3P8I0I0M/17819203282122080878.bin

URI used in  download of follow-up payload

URI

/W9H1B8P3F2J2H2K7U1Y7G5N4C0Z4B/18027641.bin

URI used in download of follow-up  payload

URI

/P2T9T1Q6P7Y5J3D2T0N0O8V/73239348388512240560937.bin

URI used in  download of follow-up payload

URI

/W5H6O5P0E4Y6P8O1B9D9G0P9Y9G4/671837571800893555497.bin

URI used in download of follow-up  payload

URI

/U8P2N0T5R0F7G2J0/898040207002934180145349.bin

URI used in  download of follow-up payload

URI

/AXEXNKPSBCKSLMPNOMNRLUEPR/3145102300913020.bin

URI used in download of follow-up  payload

URI

/wK6nO2iM9lE7pN7e/7788926473349244.bin

URI used in  download of follow-up payload

URI

/U4N9B5X5F5K2A0L4L4T5/84897964387342609301.bin

URI used in download of follow-up  payload

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
SOC Analyst

More in this series

No items found.

Blog

/

AI

/

July 17, 2025

Introducing the AI Maturity Model for Cybersecurity

AI maturity model for cybersecurityDefault blog imageDefault blog image

AI adoption in cybersecurity: Beyond the hype

Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.

To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.

Overview of AI maturity levels in cybersecurity

Why a maturity model? And why now?

In our conversations and research with security leaders, a recurring theme has emerged:

There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.

In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.

That’s why we created the AI Security Maturity Model, a strategic framework that:

  • Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
  • Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
  • Applies across core functions such as risk management, threat detection, alert triage, and incident response
  • Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations

[related-resource]

How is maturity assessed in this model?

The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.

This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.

Why Darktrace?

AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it. This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools

Security teams today are asking big, important questions:

  • What should we actually use AI for?
  • How are other teams using it — and what’s working?
  • What are vendors offering, and what’s just hype?
  • Will AI ever replace people in the SOC?

These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.

The structure: From experimentation to autonomy

The model outlines five levels of maturity :

L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.

L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.

L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.

L3 – AI Collaboration: Specialized cybersecurity AI agent systems  with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.

L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.

Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.

Strategic benefits for security leaders

The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:

SOC fatigue is real, and AI can help

Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective

GenAI is error prone, requiring strong human oversight

While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.

AI’s real value lies in progression

The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.

Trust and oversight are key initially but evolves in later levels

Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.

People’s roles shift meaningfully

As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.

Outcome, not hype, defines maturity

AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.

[related-resource]

Outcomes across the AI Security Maturity Model

The Security Organization experiences an evolution of cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.

L0 – Manual Operations

At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.

L1 – Automation Rules

At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.

L2 – AI Assistance

At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.

L3 – AI Collaboration

At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.

L4 – AI Delegation

At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks

Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.

Join the webinar

Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.

Continue reading
About the author
Ashanka Iddya
Senior Director, Product Marketing

Blog

/

Cloud

/

July 17, 2025

Forensics or Fauxrensics: Five Core Capabilities for Cloud Forensics and Incident Response

people working and walking in officeDefault blog imageDefault blog image

The speed and scale at which new cloud resources can be spun up has resulted in uncontrolled deployments, misconfigurations, and security risks. It has had security teams racing to secure their business’ rapid migration from traditional on-premises environments to the cloud.

While many organizations have successfully extended their prevention and detection capabilities to the cloud, they are now experiencing another major gap: forensics and incident response.

Once something bad has been identified, understanding its true scope and impact is nearly impossible at times. The proliferation of cloud resources across a multitude of cloud providers, and the addition of container and serverless capabilities all add to the complexities. It’s clear that organizations need a better way to manage cloud incident response.

Security teams are looking to move past their homegrown solutions and open-source tools to incorporate real cloud forensics capabilities. However, with the increased buzz around cloud forensics, it can be challenging to decipher what is real cloud forensics, and what is “fauxrensics.”

This blog covers the five core capabilities that security teams should consider when evaluating a cloud forensics and incident response solution.

[related-resource]

1. Depth of data

There have been many conversations among the security community about whether cloud forensics is just log analysis. The reality, however, is that cloud forensics necessitates access to a robust dataset that extends far beyond traditional log data sources.

While logs provide valuable insights, a forensics investigation demands a deeper understanding derived from multiple data sources, including disk, network, and memory, within the cloud infrastructure. Full disk analysis complements log analysis, offering crucial context for identifying the root cause and scope of an incident.

For instance, when investigating an incident involving a Kubernetes cluster running on an EC2 instance, access to bash history can provide insights into the commands executed by attackers on the affected instance, which would not be available through cloud logs alone.

Having all of the evidence in one place is also a capability that can significantly streamline investigations, unifying your evidence be it disk images, memory captures or cloud logs, into a single timeline allowing security teams to reconstruct an attacks origin, path and impact far more easily. Multi–cloud environments also require platforms that can support aggregating data from many providers and services into one place. Doing this enables more holistic investigations and reduces security blind spots.

There is also the importance of collecting data from ephemeral resources in modern cloud and containerized environments. Critical evidence can be lost in seconds as resources are constantly spinning up and down, so having the ability to capture this data before its gone can be a huge advantage to security teams, rather than having to figure out what happened after the affected service is long gone.

darktrace / cloud, cado, cloud logs, ost, and memory information. value of cloud combined analysis

2. Chain of custody

Chain of custody is extremely critical in the context of legal proceedings and is an essential component of forensics and incident response. However, chain of custody in the cloud can be extremely complex with the number of people who have access and the rise of multi-cloud environments.

In the cloud, maintaining a reliable chain of custody becomes even more complex than it already is, due to having to account for multiple access points, service providers and third parties. Having automated evidence tracking is a must. It means that all actions are logged, from collection to storage to access. Automation also minimizes the chance of human error, reducing the risk of mistakes or gaps in evidence handling, especially in high pressure fast moving investigations.

The ability to preserve unaltered copies of forensic evidence in a secure manner is required to ensure integrity throughout an investigation. It is not just a technical concern, its a legal one, ensuring that your evidence handling is documented and time stamped allows it to stand up to court or regulatory review.

Real cloud forensics platforms should autonomously handle chain of custody in the background, recording and safeguarding evidence without human intervention.

3. Automated collection and isolation

When malicious activity is detected, the speed at which security teams can determine root cause and scope is essential to reducing Mean Time to Response (MTTR).

Automated forensic data collection and system isolation ensures that evidence is collected and compromised resources are isolated at the first sign of malicious activity. This can often be before an attacker has had the change to move latterly or cover their tracks. This enables security teams to prevent potential damage and spread while a deeper-dive forensics investigation takes place. This method also ensures critical incident evidence residing in ephemeral environments is preserved in the event it is needed for an investigation. This evidence may only exist for minutes, leaving no time for a human analyst to capture it.

Cloud forensics and incident response platforms should offer the ability to natively integrate with incident detection and alerting systems and/or built-in product automation rules to trigger evidence capture and resource isolation.

4. Ease of use

Security teams shouldn’t require deep cloud or incident response knowledge to perform forensic investigations of cloud resources. They already have enough on their plates.

While traditional forensics tools and approaches have made investigation and response extremely tedious and complex, modern forensics platforms prioritize usability at their core, and leverage automation to drastically simplify the end-to-end incident response process, even when an incident spans multiple Cloud Service Providers (CSPs).

Useability is a core requirement for any modern forensics platform. Security teams should not need to have indepth knowledge of every system and resource in a given estate. Workflows, automation and guidance should make it possible for an analyst to investigate whatever resource they need to.

Unifying the workflow across multiple clouds can also save security teams a huge amount of time and resources. Investigations can often span multiple CSP’s. A good security platform should provide a single place to search, correlate and analyze evidence across all environments.

Offering features such as cross cloud support, data enrichment, a single timeline view, saved search, and faceted search can help advanced analysts achieve greater efficiency, and novice analysts are able to participate in more complex investigations.

5. Incident preparedness

Incident response shouldn't just be reactive. Modern security teams need to regularly test their ability to acquire new evidence, triage assets and respond to threats across both new and existing resources, ensuring readiness even in the rapidly changing environments of the cloud.  Having the ability to continuously assess your incident response and forensics workflows enables you to rapidly improve your processes and identify and mitigate any gaps identified that could prevent the organization from being able to effectively respond to potential threats.

Real forensics platforms deliver features that enable security teams to prepare extensively and understand their shortcomings before they are in the heat of an incident. For example, cloud forensics platforms can provide the ability to:

  • Run readiness checks and see readiness trends over time
  • Identify and mitigate issues that could prevent rapid investigation and response
  • Ensure the correct logging, management agents, and other cloud-native tools are appropriately configured and operational
  • Ensure that data gathered during an investigation can be decrypted
  • Verify that permissions are aligned with best practices and are capable of supporting incident response efforts

Cloud forensics with Darktrace

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage. Darktrace / CLOUD is a real time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

[related-resource]

Continue reading
About the author
Calum Hall
Technical Content Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI