Blog
/
AI
/
May 28, 2024

Stemming the Citrix Bleed Vulnerability with Darktrace’s ActiveAI Security Platform

This blog delves into Darktrace’s investigation into the exploitation of the Citrix Bleed vulnerability on the network of a customer in late 2023. Darktrace’s Self-Learning AI ensured the customer was well equipped to track the post-compromise activity and identify affected devices.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Vivek Rajan
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
28
May 2024

What is Citrix Bleed?

Since August 2023, cyber threat actors have been actively exploiting one of the most significant critical vulnerabilities disclosed in recent years: Citrix Bleed. Citrix Bleed, also known as CVE-2023-4966, remained undiscovered and even unpatched for several months, resulting in a wide range of security incidents across business and government sectors [1].

How does Citrix Bleed vulnerability work?

The vulnerability, which impacts the Citrix Netscaler Gateway and Netscaler ADC products, allows for outside parties to hijack legitimate user sessions, thereby bypassing password and multifactor authentication (MFA) requirements.

When used as a means of initial network access, the vulnerability has resulted in the exfiltration of sensitive data, as in the case of Xfinity, and even the deployment of ransomware variants including Lockbit [2]. Although Citrix has released a patch to address the vulnerability, slow patching procedures and the widespread use of these products has resulted in the continuing exploitation of Citrix Bleed into 2024 [3].

How Does Darktrace Handle Citrix Bleed?

Darktrace has demonstrated its proficiency in handling the exploitation of Citrix Bleed since it was disclosed back in 2023; its anomaly-based approach allows it to efficiently identify and inhibit post-exploitation activity as soon as it surfaces.  Rather than relying upon traditional rules and signatures, Darktrace’s Self-Learning AI enables it to understand the subtle deviations in a device’s behavior that would indicate an emerging compromise, thus allowing it to detect anomalous activity related to the exploitation of Citrix Bleed.

In late 2023, Darktrace identified an instance of Citrix Bleed exploitation on a customer network. As this customer had subscribed to the Proactive Threat Notification (PTN) service, the suspicious network activity surrounding the compromise was escalated to Darktrace’s Security Operation Center (SOC) for triage and investigation by Darktrace Analysts, who then alerted the customer’s security team to the incident.

Darktrace’s Coverage

Initial Access and Beaconing of Citrix Bleed

Darktrace’s initial detection of indicators of compromise (IoCs) associated with the exploitation of Citrix Bleed actually came a few days prior to the SOC alert, with unusual external connectivity observed from a critical server. The suspicious connection in question, a SSH connection to the rare external IP 168.100.9[.]137, lasted several hours and utilized the Windows PuTTY client. Darktrace also identified an additional suspicious IP, namely 45.134.26[.]2, attempting to contact the server. Both rare endpoints had been linked with the exploitation of the Citrix Bleed vulnerability by multiple open-source intelligence (OSINT) vendors [4] [5].

Darktrace model alert highlighting an affected device making an unusual SSH connection to 168.100.9[.]137 via port 22.
Figure 1: Darktrace model alert highlighting an affected device making an unusual SSH connection to 168.100.9[.]137 via port 22.

As Darktrace is designed to identify network-level anomalies, rather than monitor edge infrastructure, the initial exploitation via the typical HTTP buffer overflow associated with this vulnerability fell outside the scope of Darktrace’s visibility. However, the aforementioned suspicious connectivity likely constituted initial access and beaconing activity following the successful exploitation of Citrix Bleed.

Command and Control (C2) and Payload Download

Around the same time, Darktrace also detected other devices on the customer’s network conducting external connectivity to various endpoints associated with remote management and IT services, including Action1, ScreenConnect and Fixme IT. Additionally, Darktrace observed devices downloading suspicious executable files, including “tniwinagent.exe”, which is associated with the tool Total Network Inventory. While this tool is typically used for auditing and inventory management purposes, it could also be leveraged by attackers for the purpose of lateral movement.

Defense Evasion

In the days surrounding this compromise, Darktrace observed multiple devices engaging in potential defense evasion tactics using the ScreenConnect and Fixme IT services. Although ScreenConnect is a legitimate remote management tool, it has also been used by threat actors to carry out C2 communication [6]. ScreenConnect itself was the subject of a separate critical vulnerability which Darktrace investigated in early 2024. Meanwhile, CISA observed that domains associated with Fixme It (“fixme[.]it”) have been used by threat actors attempting to exploit the Citrix Bleed vulnerability [7].

Reconnaissance and Lateral Movement

A few days after the detection of the initial beaconing communication, Darktrace identified several devices on the customer’s network carrying out reconnaissance and lateral movement activity. This included SMB writes of “PSEXESVC.exe”, network scanning, DCE-RPC binds of numerous internal devices to IPC$ shares and the transfer of compromise-related tools. It was at this point that Darktrace’s Self-Learning AI deemed the activity to be likely indicative of an ongoing compromise and several Enhanced Monitoring models alerted, triggering the aforementioned PTNs and investigation by Darktrace’s SOC.

Darktrace observed a server on the network initiating a wide range of connections to more than 600 internal IPs across several critical ports, suggesting port scanning, as well as conducting unexpected DCE-RPC service control (svcctl) activity on multiple internal devices, amongst them domain controllers. Additionally, several binds to server service (srvsvc) and security account manager (samr) endpoints via IPC$ shares on destination devices were detected, indicating further reconnaissance activity. The querying of these endpoints was also observed through RPC commands to enumerate services running on the device, as well as Security Account Manager (SAM) accounts.  

Darktrace also identified devices performing SMB writes of the WinRAR data compression tool, in what likely represented preparation for the compression of data prior to data exfiltration. Further SMB file writes were observed around this time including PSEXESVC.exe, which was ultimately used by attackers to conduct remote code execution, and one device was observed making widespread failed NTLM authentication attempts on the network, indicating NTLM brute-forcing. Darktrace observed several devices using administrative credentials to carry out the above activity.

In addition to the transfer of tools and executables via SMB, Darktrace also identified numerous devices deleting files through SMB around this time. In one example, an MSI file associated with the patch management and remediation service, Action1, was deleted by an attacker. This legitimate security tool, if leveraged by attackers, could be used to uncover additional vulnerabilities on target networks.

A server on the customer’s network was also observed writing the file “m.exe” to multiple internal devices. OSINT investigation into the executable indicated that it could be a malicious tool used to prevent antivirus programs from launching or running on a network [8].

Impact and Data Exfiltration

Following the initial steps of the breach chain, Darktrace observed numerous devices on the customer’s network engaging in data exfiltration and impact events, resulting in additional PTN alerts and a SOC investigation into data egress. Specifically, two servers on the network proceeded to read and download large volumes of data via SMB from multiple internal devices over the course of a few hours. These hosts sent large outbound volumes of data to MEGA file storage sites using TLS/SSL over port 443. Darktrace also identified the use of additional file storage services during this exfiltration event, including 4sync, file[.]io, and easyupload[.]io. In total the threat actor exfiltrated over 8.5 GB of data from the customer’s network.

Darktrace Cyber AI Analyst investigation highlighting the details of a data exfiltration attempt.
Figure 2: Darktrace Cyber AI Analyst investigation highlighting the details of a data exfiltration attempt.

Finally, Darktrace detected a user account within the customer’s Software-as-a-Service (SaaS) environment conducting several suspicious Office365 and AzureAD actions from a rare IP for the network, including uncommon file reads, creations and the deletion of a large number of files.

Unfortunately for the customer in this case, Darktrace RESPOND™ was not enabled on the network and the post-exploitation activity was able to progress until the customer was made aware of the attack by Darktrace’s SOC team. Had RESPOND been active and configured in autonomous response mode at the time of the attack, it would have been able to promptly contain the post-exploitation activity by blocking external connections, shutting down any C2 activity and preventing the download of suspicious files, blocking incoming traffic, and enforcing a learned ‘pattern of life’ on offending devices.

Conclusion

Given the widespread use of Netscaler Gateway and Netscaler ADC, Citrix Bleed remains an impactful and potentially disruptive vulnerability that will likely continue to affect organizations who fail to address affected assets. In this instance, Darktrace demonstrated its ability to track and inhibit malicious activity stemming from Citrix Bleed exploitation, enabling the customer to identify affected devices and enact their own remediation.

Darktrace’s anomaly-based approach to threat detection allows it to identify such post-exploitation activity resulting from the exploitation of a vulnerability, regardless of whether it is a known CVE or a zero-day threat. Unlike traditional security tools that rely on existing threat intelligence and rules and signatures, Darktrace’s ability to identify the subtle deviations in a compromised device’s behavior gives it a unique advantage when it comes to identifying emerging threats.

Credit to Vivek Rajan, Cyber Analyst, Adam Potter, Cyber Analyst

Appendices

Darktrace Model Coverage

Device / Suspicious SMB Scanning Activity

Device / ICMP Address Scan

Device / Possible SMB/NTLM Reconnaissance

Device / Network Scan

Device / SMB Lateral Movement

Device / Possible SMB/NTLM Brute Force

Device / Suspicious Network Scan Activity

User / New Admin Credentials on Server

Anomalous File / Internal::Unusual Internal EXE File Transfer

Compliance / SMB Drive Write

Device / New or Unusual Remote Command Execution

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Rare WinRM Incoming

Anomalous Connection / Unusual Admin SMB Session

Device / Unauthorised Device

User / New Admin Credentials on Server

Anomalous Server Activity / Outgoing from Server

Device / Long Agent Connection to New Endpoint

Anomalous Connection / Multiple Connections to New External TCP Port

Device / New or Uncommon SMB Named Pipe

Device / Multiple Lateral Movement Model Breaches

Device / Large Number of Model Breaches

Compliance / Remote Management Tool On Server

Device / Anomalous RDP Followed By Multiple Model Breaches

Device / SMB Session Brute Force (Admin)

Device / New User Agent

Compromise / Large Number of Suspicious Failed Connections

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Enhanced Unusual External Data Transfer

Device / Increased External Connectivity

Unusual Activity / Unusual External Data to New Endpoints

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Active Remote Desktop Tunnel

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Compliance / Possible Unencrypted Password File On Server

Anomalous Connection / Suspicious Read Write Ratio and Rare External

Device / Reverse DNS Sweep]

Unusual Activity / Possible RPC Recon Activity

Anomalous File / Internal::Executable Uploaded to DC

Compliance / SMB Version 1 Usage

Darktrace AI Analyst Incidents

Scanning of Multiple Devices

Suspicious Remote Service Control Activity

SMB Writes of Suspicious Files to Multiple Devices

Possible SSL Command and Control to Multiple Devices

Extensive Suspicious DCE-RPC Activity

Suspicious DCE-RPC Activity

Internal Downloads and External Uploads

Unusual External Data Transfer

Unusual External Data Transfer to Multiple Related Endpoints

MITRE ATT&CK Mapping

Technique – Tactic – ID – Sub technique of

Network Scanning – Reconnaissance - T1595 - T1595.002

Valid Accounts – Defense Evasion, Persistence, Privilege Escalation, Initial Access – T1078 – N/A

Remote Access Software – Command and Control – T1219 – N/A

Lateral Tool Transfer – Lateral Movement – T1570 – N/A

Data Transfers – Exfiltration – T1567 – T1567.002

Compressed Data – Exfiltration – T1030 – N/A

NTLM Brute Force – Brute Force – T1110 - T1110.001

AntiVirus Deflection – T1553 - NA

Ingress Tool Transfer   - COMMAND AND CONTROL - T1105 - NA

Indicators of Compromise (IoCs)

204.155.149[.]37 – IP – Possible Malicious Endpoint

199.80.53[.]177 – IP – Possible Malicious Endpoint

168.100.9[.]137 – IP – Malicious Endpoint

45.134.26[.]2 – IP – Malicious Endpoint

13.35.147[.]18 – IP – Likely Malicious Endpoint

13.248.193[.]251 – IP – Possible Malicious Endpoint

76.223.1[.]166 – IP – Possible Malicious Endpoint

179.60.147[.]10 – IP – Likely Malicious Endpoint

185.220.101[.]25 – IP – Likely Malicious Endpoint

141.255.167[.]250 – IP – Malicious Endpoint

106.71.177[.]68 – IP – Possible Malicious Endpoint

cat2.hbwrapper[.]com – Hostname – Likely Malicious Endpoint

aj1090[.]online – Hostname – Likely Malicious Endpoint

dc535[.]4sync[.]com – Hostname – Likely Malicious Endpoint

204.155.149[.]140 – IP - Likely Malicious Endpoint

204.155.149[.]132 – IP - Likely Malicious Endpoint

204.155.145[.]52 – IP - Likely Malicious Endpoint

204.155.145[.]49 – IP - Likely Malicious Endpoint

References

  1. https://www.axios.com/2024/01/02/citrix-bleed-security-hacks-impact
  2. https://www.csoonline.com/article/1267774/hackers-steal-data-from-millions-of-xfinity-customers-via-citrix-bleed-vulnerability.html
  3. https://www.cybersecuritydive.com/news/citrixbleed-security-critical-vulnerability/702505/
  4. https://www.virustotal.com/gui/ip-address/168.100.9.137
  5. https://www.virustotal.com/gui/ip-address/45.134.26.2
  6. https://www.trendmicro.com/en_us/research/24/b/threat-actor-groups-including-black-basta-are-exploiting-recent-.html
  7. https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-325a
  8. https://www.file.net/process/m.exe.html
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Vivek Rajan
Cyber Analyst

More in this series

No items found.

Blog

/

Proactive Security

/

January 7, 2026

How a leading bank is prioritizing risk management to power a resilient future

Default blog imageDefault blog image

As one of the region’s most established financial institutions, this bank sits at the heart of its community’s economic life – powering everything from daily transactions to business growth and long-term wealth planning. Its blend of physical branches and advanced digital services gives customers the convenience they expect and the personal trust they rely on. But as the financial world becomes more interconnected and adversaries more sophisticated, safeguarding that trust requires more than traditional cybersecurity. It demands a resilient, forward-leaning approach that keeps pace with rising threats and tightening regulatory standards.

A complex risk landscape demands a new approach

The bank faced a challenge familiar across the financial sector: too many tools, not enough clarity. Vulnerability scans, pen tests, and risk reports all produced data, yet none worked together to show how exposures connected across systems or what they meant for day-to-day operations. Without a central platform to link and contextualize this data, teams struggled to see how individual findings translated into real exposure across the business.

  • Fragmented risk assessments: Cyber and operational risks were evaluated in silos, often duplicated across teams, and lacked the context needed to prioritize what truly mattered.
  • Limited executive visibility: Leadership struggled to gain a complete, real-time view of trends or progress, making risk ownership difficult to enforce.
  • Emerging compliance pressure: This gap also posed compliance challenges under the EU’s Digital Operational Resilience Act (DORA), which requires financial institutions to demonstrate continuous oversight, effective reporting, and the ability to withstand and recover from cyber and IT disruptions.
“The issue wasn’t the lack of data,” recalls the bank’s Chief Technology Officer. “The challenge was transforming that data into a unified, contextualized picture we could act on quickly and decisively.”

As the bank advanced its digital capabilities and embraced cloud services, its risk environment became more intricate. New pathways for exploitation emerged, human factors grew harder to quantify, and manual processes hindered timely decision-making. To maintain resilience, the security team sought a proactive, AI-powered platform that could consolidate exposures, deliver continuous insight, and ensure high-value risks were addressed before they escalated.

Choosing Darktrace to unlock proactive cyber resilience

To reclaim control over its fragmented risk landscape, the bank selected Darktrace / Proactive Exposure Management™ for cyber risk insight. The solution’s ability to consolidate scanner outputs, pen test results, CVE data, and operational context into one AI-powered view made it the clear choice. Darktrace delivered comprehensive visibility the team had long been missing.

By shifting from a reactive model to proactive security, the bank aimed to:

  • Improve resilience and compliance with DORA
  • Prioritize remediation efforts with greater accuracy
  • Eliminate duplicated work across teams
  • Provide leadership with a complete view of risk, updated continuously
  • Reduce the overall likelihood of attack or disruption

The CTO explains: “We needed a solution that didn’t just list vulnerabilities but showed us what mattered most for our business – how risks connected, how they could be exploited, and what actions would create the biggest reduction in exposure. Darktrace gave us that clarity.”

Targeting the risks that matter most

Darktrace / Proactive Exposure Management offered the bank a new level of visibility and control by continuously analyzing misconfigurations, critical attack paths, human communication patterns, and high-value assets. Its AI-driven risk scoring allowed the team to understand which vulnerabilities had meaningful business impact, not just which were technically severe.

Unifying exposure across architectures

Darktrace aggregates and contextualizes data from across the bank’s security stack, eliminating the need to manually compile or correlate findings. What once required hours of cross-team coordination now appears in a single, continuously updated dashboard.

Revealing an adversarial view of risk

The solution maps multi-stage, complex attack paths across network, cloud, identity systems, email environments, and endpoints – highlighting risks that traditional CVE lists overlook.

Identifying misconfigurations and controlling gaps

Using Self-Learning AI, Darktrace / Proactive Exposure Management spots misconfigurations and prioritizes them based on MITRE adversary techniques, business context, and the bank’s unique digital environment.

Enhancing red-team and pen test effectiveness

By directing testers to the highest-value targets, Darktrace removes guesswork and validates whether defenses hold up against realistic adversarial behavior.

Supporting DORA compliance

From continuous monitoring to executive-ready reporting, the solution provides the transparency and accountability the bank needs to demonstrate operational resilience frameworks.

Proactive security delivers tangible outcomes

Since deploying Darktrace / Proactive Exposure Management, the bank has significantly strengthened its cybersecurity posture while improving operational efficiency.

Greater insight, smarter prioritization, stronger defensee

Security teams are now saving more than four hours per week previously spent aggregating and analyzing risk data. With a unified view of their exposure, they can focus directly on remediation instead of manually correlating multiple reports.

Because risks are now prioritized based on business impact and real-time operational context, they no longer waste time on low-value tasks. Instead, critical issues are identified and resolved sooner, reducing potential windows for exploitation and strengthening the bank’s ongoing resilience against both known and emerging threats.

“Our goal was to move from reactive to proactive security,” the CTO says. “Darktrace didn’t just help us achieve that, it accelerated our roadmap. We now understand our environment with a level of clarity we simply didn’t have before.”

Leadership clarity and stronger governance

Executives and board stakeholders now receive clear, organization-wide visibility into the bank’s risk posture, supported by consistent reporting that highlights trends, progress, and areas requiring attention. This transparency has strengthened confidence in the bank’s cyber resilience and enabled leadership to take true ownership of risk across the institution.

Beyond improved visibility, the bank has also deepened its overall governance maturity. Continuous monitoring and structured oversight allow leaders to make faster, more informed decisions that strategically align security efforts with business priorities. With a more predictable understanding of exposure and risk movement over time, the organization can maintain operational continuity, demonstrate accountability, and adapt more effectively as regulatory expectations evolve.

Trading stress for control

With Darktrace, leaders now have the clarity and confidence they need to report to executives and regulators with accuracy. The ability to see organization-wide risk in context provides assurance that the right issues are being addressed at the right time. That clarity is also empowering security analysts who no longer shoulder the anxiety of wondering which risks matter most or whether something critical has slipped through the cracks. Instead, they’re working with focus and intention, redirecting hours of manual effort into strategic initiatives that strengthen the bank’s overall resilience.

Prioritizing risk to power a resilient future

For this leading financial institution, Darktrace / Proactive Exposure Management has become the foundation for a more unified, data-driven, and resilient cybersecurity program. With clearer, business-relevant priorities, stronger oversight, and measurable efficiency gains, the bank has strengthened its resilience and met demanding regulatory expectations without adding operational strain.

Most importantly, it shifted the bank’s security posture from a reactive stance to a proactive, continuous program. Giving teams the confidence and intelligence to anticipate threats and safeguard the people and services that depend on them.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist

Blog

/

AI

/

January 5, 2026

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI
Your data. Our AI.
Elevate your network security with Darktrace AI