Blog
/
Network
/
February 23, 2024

Quasar Remote Access Tool and Its Security Risks

Discover how the Quasar remote access tool can become a vulnerability in the wrong hands and strategies to mitigate these risks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Feb 2024

The threat of interoperability

As the “as-a-Service” market continues to grow, indicators of compromise (IoCs) and malicious infrastructure are often interchanged and shared between multiple malware strains and attackers. This presents organizations and their security teams with a new threat: interoperability.

Interoperable threats not only enable malicious actors to achieve their objectives more easily by leveraging existing infrastructure and tools to launch new attacks, but the lack of clear attribution often complicates identification for security teams and incident responders, making it challenging to mitigate and contain the threat.

One such threat observed across the Darktrace customer base in late 2023 was Quasar, a legitimate remote administration tool that has becoming increasingly popular for opportunistic attackers in recent years. Working in tandem, the anomaly-based detection of Darktrace DETECT™ and the autonomous response capabilities of Darktrace RESPOND™ ensured that affected customers were promptly made aware of any suspicious activity on the attacks were contained at the earliest possible stage.

What is Quasar?

Quasar is an open-source remote administration tool designed for legitimate use; however, it has evolved to become a popular tool used by threat actors due to its wide array of capabilities.  

How does Quasar work?

For instance, Quasar can perform keylogging, take screenshots, establish a reverse proxy, and download and upload files on a target device [1].  A report released towards the end of 2023 put Quasar back on threat researchers’ radars as it disclosed the new observation of dynamic-link library (DLL) sideloading being used by malicious versions of this tool to evade detection [1].  DLL sideloading involves configuring legitimate Windows software to run a malicious file rather than the legitimate file it usually calls on as the software loads.  The evolving techniques employed by threat actors using Quasar highlights defenders’ need for anomaly-based detections that do not rely on pre-existing knowledge of attacker techniques, and can identify and alert for unusual behavior, even if it is performed by a legitimate application.

Although Quasar has been used by advanced persistent threat (APT) groups for global espionage operations [2], Darktrace observed the common usage of default configurations for Quasar, which appeared to use shared malicious infrastructure, and occurred alongside other non-compliant activity such as BitTorrent use and cryptocurrency mining.  

Quasar Attack Overview and Darktrace Coverage

Between September and October 2023, Darktrace detected multiple cases of malicious Quasar activity across several customers, suggesting probable campaign activity.  

Quasar infections can be difficult to detect using traditional network or host-based tools due to the use of stealthy techniques such as DLL side-loading and encrypted SSL connections for command-and control (C2) communication, that traditional security tools may not be able to identify.  The wide array of capabilities Quasar possesses also suggests that attacks using this tool may not necessarily be modelled against a linear kill chain. Despite this, the anomaly-based detection of Darktrace DETECT allowed it to identify IoCs related to Quasar at multiple stages of the kill chain.

Quasar Initial Infection

During the initial infection stage of a Quasar compromise observed on the network of one customer, Darktrace detected a device downloading several suspicious DLL and executable (.exe) files from multiple rare external sources using the Xmlst user agent, including the executable ‘Eppzjtedzmk[.]exe’.  Analyzing this file using open-source intelligence (OSINT) suggests this is a Quasar payload, potentially indicating this represented the initial infection through DLL sideloading [3].

Interestingly, the Xmlst user agent used to download the Quasar payload has also been associated with Raccoon Stealer, an information-stealing malware that also acts as a dropper for other malware strains [4][5]. The co-occurrence of different malware components is increasingly common across the threat landscape as MaaS operating models increases in popularity, allowing attackers to employ cross-functional components from different strains.

Figure 1: Cyber AI Analyst Incident summarizing the multiple different downloads in one related incident, with technical details for the Quasar payload included. The incident event for Suspicious File Download is also linked to Possible HTTP Command and Control, suggesting escalation of activity following the initial infection.  

Quasar Establishing C2 Communication

During this phase, devices on multiple customer networks were identified making unusual external connections to the IP 193.142.146[.]212, which was not commonly seen in their networks. Darktrace analyzed the meta-properties of these SSL connections without needing to decrypt the content, to alert the usage of an unusual port not typically associated with the SSL protocol, 4782, and the usage of self-signed certificates.  Self-signed certificates do not provide any trust value and are commonly used in malware communications and ill-reputed web servers.  

Further analysis into these alerts using OSINT indicated that 193.142.146[.]212 is a Quasar C2 server and 4782 is the default port used by Quasar [6][7].  Expanding on the self-signed certificate within the Darktrace UI (see Figure 3) reveals a certificate subject and issuer of “CN=Quasar Server CA”, which is also the default self-signed certificate compiled by Quasar [6].

Figure 2: Cyber AI Analyst Incident summarizing the repeated external connections to a rare external IP that was later associated with Quasar.
Figure 3: Device Event Log of the affected device, showing Darktrace’s analysis of the SSL Certificate associated with SSL connections to 193.142.146[.]212.

A number of insights can be drawn from analysis of the Quasar C2 endpoints detected by Darktrace across multiple affected networks, suggesting a level of interoperability in the tooling used by different threat actors. In one instance, Darktrace detected a device beaconing to the endpoint ‘bittorrents[.]duckdns[.]org’ using the aforementioned “CN=Quasar Server CA” certificate. DuckDNS is a dynamic DNS service that could be abused by attackers to redirect users from their intended endpoint to malicious infrastructure, and may be shared or reused in multiple different attacks.

Figure 4: A device’s Model Event Log, showing the Quasar Server CA SSL certificate used in connections to 41.233.139[.]145 on port 5, which resolves via passive replication to ‘bittorrents[.]duckdns[.]org’.  

The sharing of malicious infrastructure among threat actors is also evident as several OSINT sources have also associated the Quasar IP 193.142.146[.]212, detected in this campaign, with different threat types.

While 193.142.146[.]212:4782 is known to be associated with Quasar, 193.142.146[.]212:8808 and 193.142.146[.]212:6606 have been associated with AsyncRAT [11], and the same IP on port 8848 has been associated with RedLineStealer [12].  Aside from the relative ease of using already developed tooling, threat actors may prefer to use open-source malware in order to avoid attribution, making the true identity of the threat actor unclear to incident responders [1][13].  

Quasar Executing Objectives

On multiple customer deployments affected by Quasar, Darktrace detected devices using BitTorrent and performing cryptocurrency mining. While these non-compliant, and potentially malicious, activities are not necessarily specific IoCs for Quasar, they do suggest that affected devices may have had greater attack surfaces than others.

For instance, one affected device was observed initiating connections to 162.19.139[.]184, a known Minergate cryptomining endpoint, and ‘zayprostofyrim[.]zapto[.]org’, a dynamic DNS endpoint linked to the Quasar Botnet by multiple OSINT vendors [9].

Figure 5: A Darktrace DETECT Event Log showing simultaneous connections to a Quasar endpoint and a cryptomining endpoint 162.19.139[.]184.

Not only does cryptocurrency mining use a significant amount of processing power, potentially disrupting an organization’s business operations and racking up high energy bills, but the software used for this mining is often written to a poor standard, thus increasing the attack surfaces of devices using them. In this instance, Quasar may have been introduced as a secondary payload from a user or attacker-initiated download of cryptocurrency mining malware.

Similarly, it is not uncommon for malicious actors to attach malware to torrented files and there were a number of examples of Darktrace detect identifying non-compliant activity, like BitTorrent connections, overlapping with connections to external locations associated with Quasar. It is therefore important for organizations to establish and enforce technical and policy controls for acceptable use on corporate devices, particularly when remote working introduces new risks.  

Figure 6: A device’s Event Log filtered by Model Breaches, showing a device connecting to BitTorrent shortly before making new or repeated connections to unusual endpoints, which were subsequently associated to Quasar.

In some cases observed by Darktrace, devices affected by Quasar were also being used to perform data exfiltration. Analysis of a period of unusual external connections to the aforementioned Quasar C2 botnet server, ‘zayprostofyrim[.]zapto[.]org’, revealed a small data upload, which may have represented the exfiltration of some data to attacker infrastructure.

Darktrace’s Autonomous Response to Quasar Attacks

On customer networks that had Darktrace RESPOND™ enabled in autonomous response mode, the threat of Quasar was mitigated and contained as soon as it was identified by DETECT. If RESPOND is not configured to respond autonomously, these actions would instead be advisory, pending manual application by the customer’s security team.

For example, following the detection of devices downloading malicious DLL and executable files, Darktrace RESPOND advised the customer to block specific connections to the relevant IP addresses and ports. However, as the device was seen attempting to download further files from other locations, RESPOND also suggested enforced a ‘pattern of life’ on the device, meaning it was only permitted to make connections that were part its normal behavior. By imposing a pattern of life, Darktrace RESPOND ensures that a device cannot perform suspicious behavior, while not disrupting any legitimate business activity.

Had RESPOND been configured to act autonomously, these mitigative actions would have been applied without any input from the customer’s security team and the Quasar compromise would have been contained in the first instance.

Figure 7: The advisory actions Darktrace RESPOND initiated to block specific connections to a malicious IP and to enforce the device’s normal patterns of life in response to the different anomalies detected on the device.

In another case, one customer affected by Quasar did have enabled RESPOND to take autonomous action, whilst also integrating it with a firewall. Here, following the detection of a device connecting to a known Quasar IP address, RESPOND initially blocked it from making connections to the IP via the customer’s firewall. However, as the device continued to perform suspicious activity after this, RESPOND escalated its response by blocking all outgoing connections from the device, effectively preventing any C2 activity or downloads.

Figure 8: RESPOND actions triggered to action via integrated firewall and TCP Resets.

Conclusion

When faced with a threat like Quasar that utilizes the infrastructure and tools of both legitimate services and other malicious malware variants, it is essential for security teams to move beyond relying on existing knowledge of attack techniques when safeguarding their network. It is no longer enough for organizations to rely on past attacks to defend against the attacks of tomorrow.

Crucially, Darktrace’s unique approach to threat detection focusses on the anomaly, rather than relying on a static list of IoCs or "known bads” based on outdated threat intelligence. In the case of Quasar, alternative or future strains of the malware that utilize different IoCs and TTPs would still be identified by Darktrace as anomalous and immediately alerted.

By learning the ‘normal’ for devices on a customer’s network, Darktrace DETECT can recognize the subtle deviations in a device’s behavior that could indicate an ongoing compromise. Darktrace RESPOND is subsequently able to follow this up with swift and targeted actions to contain the attack and prevent it from escalating further.

Credit to Nicole Wong, Cyber Analyst, Vivek Rajan Cyber Analyst

Appendices

Darktrace DETECT Model Breaches

  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Rare External SSL Self-Signed
  • Compromise / New or Repeated to Unusual SSL Port
  • Compromise / Beaconing Activity To External Rare
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Large Number of Suspicious Failed Connections
  • Unusual Activity / Unusual External Activity

List of IoCs

IP:Port

193.142.146[.]212:4782 -Quasar C2 IP and default port

77.34.128[.]25: 8080 - Quasar C2 IP

Domain

zayprostofyrim[.]zapto[.]org - Quasar C2 Botnet Endpoint

bittorrents[.]duckdns[.]org - Possible Quasar C2 endpoint

Certificate

CN=Quasar Server CA - Default certificate used by Quasar

Executable

Eppzjtedzmk[.]exe - Quasar executable

IP Address

95.214.24[.]244 - Quasar C2 IP

162.19.139[.]184 - Cryptocurrency Miner IP

41.233.139[.]145[VR1] [NW2] - Possible Quasar C2 IP

MITRE ATT&CK Mapping

Command and Control

T1090.002: External Proxy

T1071.001: Web Protocols

T1571: Non-Standard Port

T1001: Data Obfuscation

T1573: Encrypted Channel

T1071: Application Layer Protocol

Resource Development

T1584: Compromise Infrastructure

References

[1] https://thehackernews.com/2023/10/quasar-rat-leverages-dll-side-loading.html

[2] https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/cicada-apt10-japan-espionage

[3]https://www.virustotal.com/gui/file/bd275a1f97d1691e394d81dd402c11aaa88cc8e723df7a6aaf57791fa6a6cdfa/community

[4] https://twitter.com/g0njxa/status/1691826188581298389

[5] https://www.linkedin.com/posts/grjk83_raccoon-stealer-announce-return-after-hiatus-activity-7097906612580802560-1aj9

[6] https://community.netwitness.com/t5/netwitness-community-blog/using-rsa-netwitness-to-detect-quasarrat/ba-p/518952

[7] https://www.cisa.gov/news-events/analysis-reports/ar18-352a

[8]https://any.run/report/6cf1314c130a41c977aafce4585a144762d3fb65f8fe493e836796b989b002cb/7ac94b56-7551-4434-8e4f-c928c57327ff

[9] https://threatfox.abuse.ch/ioc/891454/

[10] https://www.virustotal.com/gui/ip-address/41.233.139.145/relations

[11] https://raw.githubusercontent.com/stamparm/maltrail/master/trails/static/malware/asyncrat.txt

[12] https://sslbl.abuse.ch/ssl-certificates/signature/RedLineStealer/

[13] https://www.botconf.eu/botconf-presentation-or-article/hunting-the-quasar-family-how-to-hunt-a-malware-family/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst

More in this series

No items found.

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

Network

/

November 21, 2025

Xillen Stealer Updates to Version 5 to Evade AI Detection

xillen stealer updates to version 5 to evade ai detectionDefault blog imageDefault blog image

Introduction

Python-based information stealer “Xillen Stealer” has recently released versions 4 and 5, expanding its targeting and functionality. The cross-platform infostealer, originally reported by Cyfirma in September 2025, targets sensitive data including credentials, cryptocurrency wallets, system information, browser data and employs anti-analysis techniques.  

The update to v4/v5 includes significantly more functionality, including:

  • Persistence
  • Ability to steal credentials from password managers, social media accounts, browser data (history, cookies and passwords) from over 100 browsers, cryptocurrency from over 70 wallets
  • Kubernetes configs and secrets
  • Docker scanning
  • Encryption
  • Polymorphism
  • System hooks
  • Peer-to-Peer (P2P) Command-and-Control (C2)
  • Single Sign-On (SSO) collector
  • Time-Based One-Time Passwords (TOTP) and biometric collection
  • EDR bypass
  • AI evasion
  • Interceptor for Two-Factor Authentication (2FA)
  • IoT scanning
  • Data exfiltration via Cloud APIs

Xillen Stealer is marketed on Telegram, with different licenses available for purchase. Users who deploy the malware have access to a professional-looking GUI that enables them to view exfiltrated data, logs, infections, configurations and subscription information.

Screenshot of the Xillen Stealer portal.
Figure 1: Screenshot of the Xillen Stealer portal.

Technical analysis

The following technical analysis examines some of the interesting functions of Xillen Stealer v4 and v5. The main functionality of Xillen Stealer is to steal cryptocurrency, credentials, system information, and account information from a range of stores.

Xillen Stealer specifically targets the following wallets and browsers:

AITargetDectection

Screenshot of Xillen Stealer’s AI Target detection function.
Figure 2: Screenshot of Xillen Stealer’s AI Target detection function.

The ‘AITargetDetection’ class is intended to use AI to detect high-value targets based on weighted indicators and relevant keywords defined in a dictionary. These indicators include “high value targets”, like cryptocurrency wallets, banking data, premium accounts, developer accounts, and business emails. Location indicators include high-value countries such as the United States, United Kingdom, Germany and Japan, along with cryptocurrency-friendly countries and financial hubs. Wealth indicators such as keywords like CEO, trader, investor and VIP have also been defined in a dictionary but are not in use at this time, pointing towards the group’s intent to develop further in the future.

While the class is named ‘AITargetDetection’ and includes placeholder functions for initializing and training a machine learning model, there is no actual implementation of machine learning. Instead, the system relies entirely on rule-based pattern matching for detection and scoring. Even though AI is not actually implemented in this code, it shows how malware developers could use AI in future malicious campaigns.

Screenshot of dead code function.
Figure 3: Screenshot of dead code function.

AI Evasion

Screenshot of AI evasion function to create entropy variance.
Figure 4: Screenshot of AI evasion function to create entropy variance.

‘AIEvasionEngine’ is a module designed to help malware evade AI-based or behavior-based detection systems, such as EDRs and sandboxes. It mimics legitimate user and system behavior, injects statistical noise, randomizes execution patterns, and camouflages resource usage. Its goal is to make the malware appear benign to machine learning detectors. The techniques used to achieve this are:

  • Behavioral Mimicking: Simulates user actions (mouse movement, fake browser use, file/network activity)
  • Noise Injection: Performs random memory, CPU, file, and network operations to confuse behavioral classifiers
  • Timing Randomization: Introduces irregular delays and sleep patterns to avoid timing-based anomaly detection
  • Resource Camouflage: Adjusts CPU and memory usage to imitate normal apps (such as browsers, text editors)
  • API Call Obfuscation: Random system API calls and pattern changes to hide malicious intent
  • Memory Access Obfuscation: Alters access patterns and entropy to bypass ML models monitoring memory behavior

PolymorphicEngine

As part of the “Rust Engine” available in Xillen Stealer is the Polymorphic Engine. The ‘PolymorphicEngine’ struct implements a basic polymorphic transformation system designed for obfuscation and detection evasion. It uses predefined instruction substitutions, control-flow pattern replacements, and dead code injection to produce varied output. The mutate_code() method scans input bytes and replaces recognized instruction patterns with randomized alternatives, then applies control flow obfuscation and inserts non-functional code to increase variability. Additional features include string encryption via XOR and a stub-based packer.

Collectors

DevToolsCollector

Figure 5: Screenshot of Kubernetes data function.

The ‘DevToolsCollector’ is designed to collect sensitive data related to a wide range of developer tools and environments. This includes:

IDE configurations

  • VS Code, VS Code Insiders, Visual Studio
  • JetBrains: Intellij, PyCharm, WebStorm
  • Sublime
  • Atom
  • Notepad++
  • Eclipse

Cloud credentials and configurations

  • AWS
  • GCP
  • Azure
  • Digital Ocean
  • Heroku

SSH keys

Docker & Kubernetes configurations

Git credentials

Database connection information

  • HeidiSQL
  • Navicat
  • DBeaver
  • MySQL Workbench
  • pgAdmin

API keys from .env files

FTP configs

  • FileZilla
  • WinSCP
  • Core FTP

VPN configurations

  • OpenVPN
  • WireGuard
  • NordVPN
  • ExpressVPN
  • CyberGhost

Container persistence

Screenshot of Kubernetes inject function.
Figure 6: Screenshot of Kubernetes inject function.

Biometric Collector

Screenshot of the ‘BiometricCollector’ function.
Figure 7: Screenshot of the ‘BiometricCollector’ function.

The ‘BiometricCollector’ attempts to collect biometric information from Windows systems by scanning the C:\Windows\System32\WinBioDatabase directory, which stores Windows Hello and other biometric configuration data. If accessible, it reads the contents of each file, encodes them in Base64, preparing them for later exfiltration. While the data here is typically encrypted by Windows, its collection indicates an attempt to extract sensitive biometric data.

Password Managers

The ‘PasswordManagerCollector’ function attempts to steal credentials stored in password managers including, OnePass, LastPass, BitWarden, Dashlane, NordPass and KeePass. However, this function is limited to Windows systems only.

SSOCollector

The ‘SSOCollector’ class is designed to collect authentication tokens related to SSO systems. It targets three main sources: Azure Active Directory tokens stored under TokenBroker\Cache, Kerberos tickets obtained through the klist command, and Google Cloud authentication data in user configuration folders. For each source, it checks known directories or commands, reads partial file contents, and stores the results as in a dictionary. Once again, this function is limited to Windows systems.

TOTP Collector

The ‘TOTP Collector’ class attempts to collect TOTPs from:

  • Authy Desktop by locating and reading from Authy.db SQLite databases
  • Microsoft Authenticator by scanning known application data paths for stored binary files
  • TOTP-related Chrome extensions by searching LevelDB files for identifiable keywords like “gauth” or “authenticator”.

Each method attempts to locate relevant files, parse or partially read their contents, and store them in a dictionary under labels like authy, microsoft_auth, or chrome_extension. However, as before, this is limited to Windows, and there is no handling for encrypted tokens.

Enterprise Collector

The ‘EnterpriseCollector’ class is used to extract credentials related to an enterprise Windows system. It targets configuration and credential data from:

  • VPN clients
    • Cisco AnyConnect, OpenVPN, Forticlient, Pulse Secure
  • RDP credentials
  • Corporate certificates
  • Active Directory tokens
  • Kerberos tickets cache

The files and directories are located based on standard environment variables with their contents read in binary mode and then encoded in Base64.

Super Extended Application Collector

The ‘SuperExtendedApplication’ Collector class is designed to scan an environment for 160 different applications on a Windows system. It iterates through the paths of a wide range of software categories including messaging apps, cryptocurrency wallets, password managers, development tools, enterprise tools, gaming clients, and security products. The list includes but is not limited to Teams, Slack, Mattermost, Zoom, Google Meet, MS Office, Defender, Norton, McAfee, Steam, Twitch, VMWare, to name a few.

Bypass

AppBoundBypass

This code outlines a framework for bypassing App Bound protections, Google Chrome' s cookie encryption. The ‘AppBoundBypass’ class attempts several evasion techniques, including memory injection, dynamic-link library (DLL) hijacking, process hollowing, atom bombing, and process doppelgänging to impersonate or hijack browser processes. As of the time of writing, the code contains multiple placeholders, indicating that the code is still in development.

Steganography

The ‘SteganographyModule’ uses steganography (hiding data within an image) to hide the stolen data, staging it for exfiltration. Multiple methods are implemented, including:

  • Image steganography: LSB-based hiding
  • NTFS Alternate Data Streams
  • Windows Registry Keys
  • Slack space: Writing into unallocated disk cluster space
  • Polyglot files: Appending archive data to images
  • Image metadata: Embedding data in EXIF tags
  • Whitespace encoding: Hiding binary in trailing spaces of text files

Exfiltration

CloudProxy

Screenshot of the ‘CloudProxy’ class.
Figure 8: Screenshot of the ‘CloudProxy’ class.

The CloudProxy class is designed for exfiltrating data by routing it through cloud service domains. It encodes the input data using Base64, attaches a timestamp and SHA-256 signature, and attempts to send this payload as a JSON object via HTTP POST requests to cloud URLs including AWS, GCP, and Azure, allowing the traffic to blend in. As of the time of writing, these public facing URLs do not accept POST requests, indicating that they are placeholders meant to be replaced with attacker-controlled cloud endpoints in a finalized build.

P2PEngine

Screenshot of the P2PEngine.
Figure 9: Screenshot of the P2PEngine.

The ‘P2PEngine’ provides multiple methods of C2, including embedding instructions within blockchain transactions (such as Bitcoin OP_RETURN, Ethereum smart contracts), exfiltrating data via anonymizing networks like Tor and I2P, and storing payloads on IPFS (a distributed file system). It also supports domain generation algorithms (DGA) to create dynamic .onion addresses for evading detection.

After a compromise, the stealer creates both HTML and TXT reports containing the stolen data. It then sends these reports to the attacker’s designated Telegram account.

Xillen Killers

 Xillen Killers.
FIgure 10: Xillen Killers.

Xillen Stealer appears to be developed by a self-described 15-year-old “pentest specialist” “Beng/jaminButton” who creates TikTok videos showing basic exploits and open-source intelligence (OSINT) techniques. The group distributing the information stealer, known as “Xillen Killers”, claims to have 3,000 members. Additionally, the group claims to have been involved in:

  • Analysis of Project DDoSia, a tool reportedly used by the NoName057(16) group, revealing that rather functioning as a distributed denial-of-service (DDos) tool, it is actually a remote access trojan (RAT) and stealer, along with the identification of involved individuals.
  • Compromise of doxbin.net in October 2025.
  • Discovery of vulnerabilities on a Russian mods site and a Ukrainian news site

The group, which claims to be part of the Russian IT scene, use Telegram for logging, marketing, and support.

Conclusion

While some components of XillenStealer remain underdeveloped, the range of intended feature set, which includes credential harvesting, cryptocurrency theft, container targeting, and anti-analysis techniques, suggests that once fully developed it could become a sophisticated stealer. The intention to use AI to help improve targeting in malware campaigns, even though not yet implemented, indicates how threat actors are likely to incorporate AI into future campaigns.  

Credit to Tara Gould (Threat Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendicies

Indicators of Compromise (IoCs)

395350d9cfbf32cef74357fd9cb66134 - confid.py

F3ce485b669e7c18b66d09418e979468 - stealer_v5_ultimate.py

3133fe7dc7b690264ee4f0fb6d867946 - xillen_v5.exe

https://github[.]com/BengaminButton/XillenStealer

https://github[.]com/BengaminButton/XillenStealer/commit/9d9f105df4a6b20613e3a7c55379dcbf4d1ef465

MITRE ATT&CK

ID Technique

T1059.006 - Python

T1555 - Credentials from Password Stores

T1555.003 - Credentials from Password Stores: Credentials from Web Browsers

T1555.005 - Credentials from Password Stores: Password Managers

T1649 - Steal or Forge Authentication Certificates

T1558 - Steal or Forge Kerberos Tickets

T1539 - Steal Web Session Cookie

T1552.001 - Unsecured Credentials: Credentials In Files

T1552.004 - Unsecured Credentials: Private Keys

T1552.005 - Unsecured Credentials: Cloud Instance Metadata API

T1217 - Browser Information Discovery

T1622 - Debugger Evasion

T1082 - System Information Discovery

T1497.001 - Virtualization/Sandbox Evasion: System Checks

T1115 - Clipboard Data

T1001.002 - Data Obfuscation: Steganography

T1567 - Exfiltration Over Web Service

T1657 - Financial Theft

Continue reading
About the author
Tara Gould
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI