Blog
/
Email
/
July 6, 2023

How Darktrace Foiled QR Code Phishing

Explore Darktrace's successful detection of QR code phishing. Understand the methods used to thwart these sophisticated cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Jul 2023

What is a QR Code?

Invented by a Japanese company in 1994 to label automobile parts, Quick Response codes, best known as QR codes, are rapidly becoming ubiquitous everywhere in the world. Their design, inspired by the board and black and white pieces of the game of Go, permits the storage of more information than regular barcodes and to access that information more quickly. The COVID-19 pandemic contributed to their increased popularity as it conveniently replaced physical media of all types for the purpose of content sharing. It is now common to see them in restaurant menus, plane tickets, advertisements and even in stickers containing minimal to no text pasted on lamp posts and other surfaces, enticing passers-by to scan its content. 

QR Code Phishing Attacks (Quishing)

Recently, threat actors have been identified using QR codes too to embed malicious URLs leading the unsuspecting user to compromised websites containing malware or designed to harvest credentials. In the past month, Darktrace has observed an increase in the number of phishing emails leveraging malicious QR codes for malware distribution and/or credential harvesting, a new form of social engineering attack labelled “Quishing” (i.e., QR code phishing).

Between June 13 and June 22, 2023, Darktrace protected a tech company against one such Quishing attack when five of its senior employees were sent malicious emails impersonating the company’s IT department. The emails contained a QR code that led to a login page designed to harvest the credentials of these senior staff members. Fortunately for the customer, Darktrace / EMAIL thwarted this phishing campaign in the first instance and the emails never reached the employee inboxes. 

Trends in Quishing Attacks

The Darktrace/Email team have noticed a recent and rapid increase in QR code abuse, suggesting that it is a growing tactic used by threat actors to deliver malicious payload links. This trend has also been observed by other security solutions [1] [2] [3] [4]. The Darktrace/Email team has identified malicious emails abusing QR codes in multiple ways. Examples include embedded image links which load a QR code and QR code images being delivered as attachments, such as those explored in this case study. Darktrace/Email is continually refining its detection of malicious QR codes and QR code extraction capabilities so that it can detect and block them regardless of their size and location within the email.   

Quishing Attack Overview

The attack consisted of five emails, each sent from different sender and envelope addresses, displayed common points between them. The emails all conveyed a sense of urgency, either via the use of words such as “urgent”, “now”, “required” or “important” in the subject field or by marking the email as high priority, thus making the recipient believe the message is pressing and requires immediate attention. 

Additionally, the subject of three of the emails directly referred to two factor authentication (2FA) enabling or QR code activation. Another particularity of these emails was that three of them attempted to impersonate the internal IT team of the company by inserting the company domain alongside strings, such as “it-desk” and “IT”, into the personal field of the emails. Email header fields like this are often abused by attackers to trick users by pretending to be an internal department or senior employee, thus avoiding more thorough validation checks. Both instilling a sense of urgency and including a known domain or name in the personal field are techniques that help draw attention to the email and maximize the chances that it is opened and engaged by the recipient. 

However, threat actors also need to make sure that the emails actually reach the intended inboxes, and this can be done in several ways. In this case, several tactics were employed. Two of the five emails were sent from legitimate sender addresses that successfully passed SPF validation, suggesting they were sent from compromised accounts. SPF is a standard email authentication method that tells the receiving email servers whether emails have been sent from authorized servers for a given domain. Without SPF validation, emails are more likely to be categorized as spam and be sent to the junk folder as they do not come from authorized sources.

Another of the malicious emails, which also passed SPF checks, used a health care facility company domain in the header-from address field but was actually sent from a different domain (i.e., envelope domain), which lowers the value of the SPF authentication. However, the envelope domain observed in this instance belonged to a company recently acquired by the tech company targeted by the campaign.

This shows a high level of targeting from the attackers, who likely hoped that this detail would make the email more familiar and less suspicious. In another case, the sender domain (i.e., banes-gn[.]com) had been created just 6 days prior, thus lowering the chances of there being open-source intelligence (OSINT) available on the domain. This reduces the chances of the email being detected by traditional email security solutions relying on signatures and known-bad lists.

Darktrace Detects Quishing Attack

Despite its novelty, the domain was detected and assessed as highly suspicious by Darktrace. Darktrace/Email was able to recognize all of the emails as spoofing and impersonation attempts and applied the relevant tags to them, namely “IT Impersonation” and “Fake Account Alert”, depending on the choice of personal field and subject. The senders of the five emails had no prior history or association with the recipient nor the company as no previous correspondence had been observed between the sender and recipient. The tags applied informed on the likely intent and nature of the suspicious indicators present in the email, as shown in Figure 1. 

Darktrace/Email UI
Figure 1: Email log overview page, displaying important information clearly and concisely. 

Quishing Attack Tactics

Minimal Plain Text

Another characteristic shared by these emails was that they had little to no text included in the body of the email and they did not contain a plain text portion, as shown in Figure 2. For most normal emails sent by email clients and most automated programs, an email will contain an HTML component and a text component, in addition to any potential attachments present. All the emails had one image attachment, suggesting the bulk of the message was displayed in the image rather than the email body. This hinders textual analysis and filtering of the email for suspicious keywords and language that could reveal its phishing intent. Additionally, the emails were well-formatted and used the logo of the well-known corporation Microsoft, suggesting some level of technical ability on the part of the attackers. 

Figure 2: Email body properties giving additional insights into the content of the email. 

Attachment and link payloads

The threat actors employed some particularly innovative and novel techniques with regards to the attachments and link payloads within these emails. As previously stated, all emails contained an image attachment and one or two links. Figure 3 shows that Darktrace/Email detected that the malicious links present in these emails were located in the attachments, rather than the body of the email. This is a technique often employed by threat actors to bypass link analysis by security gateways. Darktrace/Email was also able to detect this link as a QR code link, as shown in Figure 4.

Figure 3: Further properties and metrics regarding the location of the link within the email. 
Figure 4: Darktrace / EMAIL analyzes multiple metrics and properties related to links, some of which are detailed here. 

The majority of the text, as well as the malicious payload, was contained within the image attachment, which for one of the emails looked like this: 

example of quishing email
Figure 5: Redacted screenshot of the image payload contained in one of the emails. 

Convincing Appearance

As shown, the recipient is asked to setup 2FA authentication for their account within two days if they don’t want to be locked out. The visual formatting of the image, which includes a corporate logo and Privacy Statement and Acceptable Use Policy notices, is well balanced and convincing. The payload, in this case the QR code containing a malicious link, is positioned in the centre so as to draw attention and encourage the user to scan and click. This is a type of email employees are increasingly accustomed to receiving in order to log into corporate networks and applications. Therefore, recipients of such malicious emails might assume represents expected business activity and thus engage with the QR code without questioning it, especially if the email is claiming to be from the IT department.  

Malicious Redirection

Two of the Quishing emails contained links to legitimate file storage and sharing solutions Amazon Web Services (AWS) and and InterPlanetary File System (IPFS), whose domains are less likely to be blocked by traditional security solutions. Additionally, the AWS domain link contained a redirect to a different domain that has been flagged as malicious by multiple security vendors [5]. Malicious redirection was observed in four of the five emails, initially from well-known and benign services’ domains such as bing[.]com and login[.]microsoftonline[.]com. This technique allows attackers to hide the real destination of the link from the user and increase the likelihood that the link is clicked. In two of the emails, the redirect domain had only recently been registered, and in one case, the redirect domain observed was hosted on the new .zip top level domain (i.e., docusafe[.]zip). The domain name suggests it is attempting to masquerade as a compressed file containing important documentation. As seen in Figure 6, a new Darktrace/Email feature allows customers to safely view the final destination of the link, which in this case was a seemingly fake Microsoft login page which could be used to harvest corporate credentials.

Figure 6: Safe preview available from the Darktrace/Email Console showing the destination webpage of one of the redirect links observed.

Gathering Account Credentials

Given the nature of the landing page, it is highly likely that this phishing campaign had the objective of stealing the recipients’ credentials, as further indicated by the presence of the recipients’ email addresses in the links. Additionally, these emails were sent to senior employees, likely in an attempt to gather high value credentials to use in future attacks against the company. Had they succeeded, this would have represented a serious security incident, especially considering that 61% of attacks in 2023 involved stolen or hacked credentials according to Verizon’s 2023 data breach investigations report [6]. However, these emails received the highest possible anomaly score (100%) and were held by Darktrace/Email, thus ensuring that their intended recipients were never exposed to them. 

Looking at the indicators of compromise (IoCs) identified in this campaign, it appears that several of the IPs associated with the link payloads have been involved in previous phishing campaigns. Exploring the relations tab for these IPs in Virus Total, some of the communicating files appear to be .eml files and others have generic filenames including strings such as “invoice” “remittance details” “statement” “voice memo”, suggesting they have been involved in other phishing campaigns seemingly related to payment solicitation and other fraud attempts.

Figure 7: Virus Total’s relations tab for the IP 209.94.90[.]1 showing files communicating with the IP. 

Conclusion

Even though the authors of this Quishing campaign used all the tricks in the book to ensure that their emails would arrive unactioned by security tools to the targeted high value recipients’ inboxes, Darktrace/Email was able to immediately recognize the phishing attempts for what they were and block the emails from reaching their destination. 

This campaign used both classic and novel tactics, techniques, and procedures, but ultimately were detected and thwarted by Darktrace/Email. It is yet another example of the increasing attack sophistication mentioned in a previous Darktrace blog [7], wherein the attack landscape is moving from low-sophistication, low-impact, and generic phishing tactics to more targeted, sophisticated and higher impact attacks. Darktrace/Email does not rely on historical data nor known-bad lists and is best positioned to protect organizations from these highly targeted and sophisticated attacks.

References

[1] https://www.infosecurity-magazine.com/opinions/qr-codes-vulnerability-cybercrimes/ 

[2] https://www.helpnetsecurity.com/2023/03/21/qr-scan-scams/ 

[3] https://www.techtarget.com/searchsecurity/feature/Quishing-on-the-rise-How-to-prevent-QR-code-phishing 

[4] https://businessplus.ie/tech/qr-code-phishing-hp/ 

[5] https://www.virustotal.com/gui/domain/fistulacure.com

[6] https://www.verizon.com/business/en-gb/resources/reports/dbir/ ; https://www.verizon.com/business/en-gb/resources/reports/dbir/

[7] https://darktrace.com/blog/shifting-email-conversation 

Darktrace Model Detections 

Association models

No Sender or Content Association

New Sender

Unknown Sender

Low Sender Association

Link models

Focused Link to File Storage

Focused Rare Classified Links

New Unknown Hidden Redirect

High Risk Link + Low Sender Association

Watched Link Type

High Classified Link

File Storage From New

Hidden Link To File Storage

New Correspondent Classified Link

New Unknown Redirect

Rare Hidden Classified Link

Rare Hidden Link

Link To File Storage

Link To File Storage and Unknown Sender

Open Redirect

Unknown Sender Isolated Rare Link

Visually Prominent Link

Visually Prominent Link Unexpected For Sender

Low Link Association

Low Link Association and Unknown Sender

Spoof models

Fake Support Style

External Domain Similarities

Basic Known Entity Similarities

Unusual models

Urgent Request Banner

Urgent Request Banner + Basic Suspicious Sender

Very Young Header Domain

Young Header Domain

Unknown User Tracking

Unrelated Personal Name Address

Unrelated Personal Name Address + Freemail

Unusual Header TLD

Unusual Connection From Unknown

Unbroken Personal

Proximity models

Spam + Unknown Sender

Spam

Spam models

Unlikely Freemail Correspondence

Unlikely Freemail Personalization

General Indicators models

Incoming Mail Security Warning Message

Darktrace Model Tags

Credential Harvesting

Internal IT Impersonation

Multistage payload

Lookalike Domain

Phishing Link

Email Account Takeover

Fake Account Alert

Low Mailing History

No Association

Spoofing Indicators

Unknown Correspondent

VIP

Freemail

IoC - Type - Description & Confidence

fistulacure[.]com

domain

C2 Infrastructure

docusafe[.]zip

domain

Possible C2 Infrastructure

mwmailtec[.]com

domain

Possible C2 Infrastructure

czeromedia[.]com

domain

Possible C2 Infrastructure

192.40.165[.]109

IP address

Probable C2 Infrastructure

209.94.90[.]1

IP address

C2 Infrastructure

52.61.107[.]58

IP address

Possible C2 Infrastructure

40.126.32[.]133

IP address

Possible C2 Infrastructure

211.63.158[.]157

IP address

Possible C2 Infrastructure

119.9.27[.]129

IP address

Possible C2 Infrastructure

184.25.204[.]33

IP address

Possible C2 Infrastructure

40.107.8[.]107

IP address

Probable C2 Infrastructure

40.107.212[.]111

IP address

Possible Infrastructure

27.86.113[.]2

IP address

Possible C2 Infrastructure

192.40.191[.]19

IP address

Possible C2 Infrastructure

157.205.202[.]217

IP address

Possible C2 Infrastructure

a31f1f6063409ecebe8893e36d0048557142cbf13dbaf81af42bf14c43b12a48

SHA256 hash

Possible Malicious File

4c4fb35ab6445bf3749b9d0ab1b04f492f2bc651acb1bbf7af5f0a47502674c9

SHA256 hash

Possible Malicious File

f9c51d270091c34792b17391017a09724d9a7890737e00700dc36babeb97e252

SHA256 hash

Possible Malicious File

9f8ccfd616a8f73c69d25fd348b874d11a036b4d2b3fc7dbb99c1d6fa7413d9a

SHA256 hash

Possible Malicious File

b748894348c32d1dc5702085d70d846c6dd573296e79754df4857921e707c439

SHA256 hash

Possible Malicious File

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

Cloud

/

August 7, 2025

How CDR & Automated Forensics Transform Cloud Incident Response

cloud security investigation guy on computer doing workDefault blog imageDefault blog image

Introduction: Cloud investigations

In cloud security, speed, automation and clarity are everything. However, for many SOC teams, responding to incidents in the cloud is often very difficult especially when attackers move fast, infrastructure is ephemeral, and forensic skills are scarce.

In this blog we will walk through an example that shows exactly how Darktrace Cloud Detection and Response (CDR) and automated cloud forensics together, solve these challenges, automating cloud detection, and deep forensic investigation in a way that’s fast, scalable, and deeply insightful.

The Problem: Cloud incidents are hard to investigate

Security teams often face three major hurdles when investigating cloud detections:

Lack of forensic expertise: Most SOCs and security teams aren’t natively staffed with forensics specialists.

Ephemeral infrastructure: Cloud assets spin up and down quickly, leaving little time to capture evidence.

Lack of existing automation: Gathering forensic-level data often requires manual effort and leaves teams scrambling around during incidents — accessing logs, snapshots, and system states before they disappear. This process is slow and often blocked by permissions, tooling gaps, or lack of visibility.

How Darktrace augments cloud investigations

1. Darktrace’s CDR finds anomalous activity in the cloud

An alert is generated for a large outbound data transfer from an externally facing EC2 instance to a rare external endpoint. It’s anomalous, unexpected, and potentially serious.

2. AI-led investigation stitches together the incident for a SOC analyst to look into

When a security incident unfolds, Darktrace’s Cyber AI Analyst TM is the first to surface it, automatically correlating behaviors, surfacing anomalies, and presenting a cohesive incident summary. It’s fast, detailed, and invaluable.

Once the incident is created, more questions are raised.

  • How were the impacted resources compromised?
  • How did the attack unfold over time – what tools and malware were used?
  • What data was accessed and exfiltrated?

What you’ll see as a SOC analyst: The incident begins in Darktrace’s Threat Visualizer, where a Cyber AI Analyst incident has been generated automatically highlighting large anomalous data transfer to a suspicious external IP. This isn’t just another alert, it’s a high-fidelity signal backed by Darktrace’s Self-Learning AI.

Cyber AI Analyst incident created for anomalous outbound data transfer
Figure 1: Cyber AI Analyst incident created for anomalous outbound data transfer

The analyst can then immediately pivot to Darktrace / CLOUD’s architecture view (see below), gaining context on the asset’s environment, ingress/egress points, connected systems, potential attack paths and whether there are any current misconfigurations detected on the asset.

Darktrace / CLOUD architecture view providing critical cloud context
Figure 2: Darktrace / CLOUD architecture view providing critical cloud context

3. Automated forensic capture — No expertise required

Then comes the game-changer, Darktrace’s recent acquisition of Cado enhances its cloud forensics capabilities. From the first alert triggered, Darktrace has already kicked in and automatically processed and analyzed a full volume capture of the EC2. Everything, past and present, is preserved. No need for manual snapshots, CLI commands, or specialist intervention.

Darktrace then provides a clear timeline highlighting the evidence and preserving it. In our example we identify:

  • A brute-force attempt on a file management app, followed by a successful login
  • A reverse shell used to gain unauthorized remote access to the EC2
  • A reverse TCP connection to the same suspicious IP flagged by Darktrace
  • Attacker commands showing how the data was split and prepared for exfiltration
  • A file (a.tar) created from two sensitive archives: product_plans.zip and research_data.zip

All of this is surfaced through the timeline view, ranked by significance using machine learning. The analyst can pivot through time, correlate events, and build a complete picture of the attack — without needing cloud forensics expertise.

Darktrace even gives the ability to:

  • Download and inspect gathered files in full detail, enabling teams to verify exactly what data was accessed or exfiltrated.
  • Interact with the file system as if it were live, allowing investigators to explore directories, uncover hidden artifacts, and understand attacker movement with precision.
Figure 3 Cado critical forensic investigation automated insights
Figure 3: Cado critical forensic investigation automated insights
Figure 4: Cado forensic file analysis of reverse shell and download option
Figure 5: a.tar created from two sensitive archives: product_plans.zip and research_data.zip
Figure 6: Traverse the full file system of the asset

Why this matters?

This workflow solves the hardest parts of cloud investigation:

  1. Capturing evidence before it disappears
  2. Understanding attacker behavior in detail - automatically
  3. Linking detections to impact with full incident visibility

This kind of insight is invaluable for organizations especially regulated industries, where knowing exactly what data was affected is critical for compliance and reporting. It’s also a powerful tool for detecting insider threats, not just external attackers.

Darktrace / CLOUD and Cado together acts as a force multiplier helping with:

  • Reducing investigation time from hours to minutes
  • Preserving ephemeral evidence automatically
  • Empowering analysts with forensic-level visibility

Cloud threats aren’t slowing down. Your response shouldn’t either. Darktrace / CLOUD + Cado gives your SOC the tools to detect, contain, and investigate cloud incidents — automatically, accurately, and at scale.

[related-resource]

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security

Blog

/

Network

/

August 6, 2025

2025 Cyber Threat Landscape: Darktrace’s Mid-Year Review

cyberseucity 2025 half year threat report Default blog imageDefault blog image

2025: Threat landscape in review

The following is a retrospective of the first six months of 2025, highlighting key findings across the threat landscape impacting Darktrace customers.

Darktrace observed a wide range of tactics during this period, used by various types of threat actors including advanced persistent threats (APTs), Malware-as-a-Service (MaaS) and Ransomware-as-a-Service (RaaS) groups.

Methodology

Darktrace’s Analyst team conduct investigations and research into threats facing organizations and security teams across our customer base.  This includes direct investigations with our 24/7 Security Operations Centre (SOC), via services such as Managed Detection and Response (MDR) and Managed Threat Detection, as well as broader cross-fleet research through our Threat Research function.

At the core of our research is Darktrace’s anomaly-based detection, which the Analyst team contextualizes and analyzes to provide additional support to customers and deepen our understanding of the threats they face.

Threat actors are incorporating AI into offensive operations

Threat actors are continuously evolving their tactics, techniques, and procedures (TTPs), posing an ongoing challenge to effective defense hardening. Increasingly, many threat actors are adopting AI, particularly large language models (LLMs), into their operations to enhance the scale, sophistication, and efficacy of their attacks.

The evolving functionality of malware, such as the recently reported LameHug malware by CERT-UA, which uses an open-source LLM, exemplifies this observation [1].

Threat landscape trends in 2025

Threat actors applying AI to Email attacks

LLMs present a clear opportunity for attackers to take advantage of AI and create effective phishing emails at speed. While Darktrace cannot definitively confirm the use of AI to create the phishing emails observed across the customer base, the high volume of phishing emails and notable shifts in tactic could potentially be explained by threat actors adopting new tooling such as LLMs.

  • The total number of malicious emails detected by Darktrace from January to May 2025 was over 12.6 million
  • VIP users continue to face significant threat, with over 25% of all phishing emails targeting these users in the first five months of 2025
  • QR code-based phishing emails have remained a consistent tactic, with a similar proportion observed in January-May 2024 and 2025. The highest numbers were observed in February 2025, with over 1 million detected in that month alone.
  • Shifts towards increased sophistication within phishing emails are emerging, with a year-on-year increase in the proportion of phishing emails containing either a high text volume or multistage payloads. In the first five months of 2025, 32% of phishing emails contained a high volume of text.

The increase in proportion of phishing emails with a high volume of text in particular could point towards threat actors leveraging LLMs to create phishing emails with large, but believable, text in an easy and efficient way.

The above email statistics are derived from analysis of monitored Darktrace / EMAIL model data for all customer deployments hosted in the cloud between January 1 and May 31, 2025.

Campaign Spotlight: Simple, Quick - ClickFix

An interesting technique Darktrace observed multiple times throughout March and April was ClickFix social engineering, which exploits the intersection between humans and technology to trick users into executing malicious code on behalf of the attacker.

  • While this technique has been around since 2024, Darktrace observed campaign activity in the first half of 2025 suggesting a resurgence.  
  • A range of threat actors – from APTs to MaaS and RaaS have adopted this technique to deliver secondary payloads, like information stealing malware.
  • Attackers use fraudulent or compromised legitimate websites to inject malicious plugins that masquerade as fake CAPTCHAs.
  • Targeted users believe they are completing human verification or resolving a website issue, unaware that they are being guided through a series of simple steps to execute PowerShell code on their system.
  • Darktrace observed campaign activity during the first half of 2025 across a range of sectors, including Government, Healthcare, Insurance, Retail and, Non-profit.

Not just AI: Automation is enabling Ransomware and SaaS exploitation

The rise of phishing kits like FlowerStorm and Mamba2FA, which enable phishing and abuse users’ trust by mimicking legitimate services to bypass multi-factor authentication (MFA), highlight how the barriers to entry for sophisticated attacks continue to fall, enabling new threat actors. Combined with Software-as-a-Service (SaaS) account compromise, these techniques make up a substantial portion of cybercriminal activity observed by Darktrace so far this year.

Credentials remain the weak link

A key theme across multiple cases of ransomware was threat actors abusing compromised credentials to gain initial entry into networks via:

  • Unauthorized access to internet-facing technology such as RDP servers and virtual private networks (VPNs).
  • Unauthorized access to SaaS accounts.

SaaS targeted ransomware is on the rise

The encryption of files within SaaS environments observed by Darktrace demonstrates a continued trend of ransomware actors targeting these platforms over traditional networks, potentially driven by a higher return on investment.

SaaS accounts are often less protected than traditional systems because of Single Sign-On (SSO).  Additionally, platforms like Salesforce often host sensitive data, including emails, financial records, customer information, and network configuration details. This stresses the need for robust identity management practices and continuous monitoring.

RaaS is adding complexity and speed to cyber attacks

RaaS has dominated the attack landscape, with groups like Qilin, RansomHub, and Lynx all appearing multiple times in cases across Darktrace’s customer base over the past six months. Detecting ransomware attacks before the encryption stage remains a significant challenge, particularly in RaaS operations where different affiliates often use varying techniques for initial entry and earlier stages of the attack. Darktrace’s recent analysis of Scattered Spider underscores the challenge of hardening defenses against such varying techniques.

CVE exploitation continues despite available patches

Darktrace has also observed ransomware gangs exploiting known Common Vulnerabilities and Exposures (CVEs), including the Medusa ransomware group’s use of the SimpleHelp vulnerabilities: CVE-2024-57727 and CVE-2024-57728 in March, despite patches being made available in January [2].

Misused tools + delayed patches = growing cyber risk

The exploitation of common remote management tools like SimpleHelp highlights the serious challenges defenders face when patch management cycles are suboptimal. As threat actors continue to abuse legitimate services for malicious purposes, the challenges facing defenders will only grow more complex.

Edge exploitation

It comes as no surprise that exploitation of internet-facing devices continued to feature prominently in Darktrace’s Threat Research investigations during the first half of 2025.

Observed CVE exploitation included:

Many of Darktrace’s observations of CVE exploitation so far in 2025 align with wider industry reporting, which suggests that Chinese-nexus threat actors were deemed to likely have exploited these technologies prior to public disclosure. In the case of CVE-2025-0994 - a vulnerability affecting Trimble Cityworks, an asset management system designed for use by local governments, utilities, airports, and public work agencies [3].

Darktrace observed signs of exploitation as early as January 19, well before vulnerability’s public disclosure on February 6 [4]. Darktrace’s early identification of the exploitation stemmed from the detection of a suspicious file download from 192.210.239[.]172:3219/z44.exe - later linked to Chinese-speaking threat actors in a campaign targeting the US government [5].

This case demonstrates the risks posed by the exploitation of internet-facing devices, not only those hosting more common technologies, but also software associated specifically tied to Critical National Infrastructure (CNI); a lucrative target for threat actors. This also highlights Darktrace’s ability to detect exploitation of internet-facing systems, even without a publicly disclosed CVE. Further examples of how Darktrace’s anomaly detection can uncover malicious activity ahead of public vulnerability disclosures can be found here.

New threats and returning adversaries

In the first half of 2025, Darktrace observed a wide range of threats, from sophisticated techniques employed by APT groups to large-scale campaigns involving phishing and information stealers.

BlindEagle (APT-C-36)

Among the observed APT activity, BlindEagle (APT-C-36) was seen targeting customers in Latin America (LATM), first identified in February, with additional cases seen as recently as June.

Darktrace also observed a customer targeted in a China-linked campaign involving the LapDogs ORB network, with activity spanning from December 2024 and June 2025. These likely nation-state attacks illustrate the continued adoption of cyber and AI capabilities into the national security goals of certain countries.

Sophisticated malware functionality

Further sophistication has been observed within specific malware functionality - such as the malicious backdoor Auto-Color, which has now been found to employ suppression tactics to cover its tracks if it is unable to complete its kill chain - highlighting the potential for advanced techniques across every layer of an attack.

Familiar foes

Alongside new and emerging threats, previously observed and less sophisticated tools, such as worms, Remote Access Trojans (RATs), and information stealers, continue to impact Darktrace customers.

The Raspberry Robin worm... First seen in 2021, has been repeatedly identified within Darktrace’s customer base since 2022. Most recently, Darktrace’s Threat Research team identified cases in April and May this year. Recent open-source intelligence (OSINT) reporting suggests that Raspberry Robin continues to evolve its role as an Initial Access Broker (IAB), paving the way for various attacks and remaining a concern [6].

RATs also remain a threat, with examples like AsyncRAT and Gh0st RAT impacting Darktrace customers.

In April multiple cases of MaaS were observed in Darktrace’s customer base, with information stealers Amadey and Stealc, as well as GhostSocks being distributed as a follow up payload after an initial Amadey infection.

Conclusion

As cyber threats evolve, attackers are increasingly harnessing AI to craft highly convincing email attacks, automating phishing campaigns at unprecedented scale and speed. This, coupled with rapid exploitation of vulnerabilities and the growing sophistication of ransomware gangs operating as organized crime syndicates, makes today’s threat landscape more dynamic and dangerous than ever. Cyber defenders collaborate to combat these threats – the coordinated takedown of Lumma Stealer in May was a notable win for both industry and law-enforcement [7], however OSINT suggests that this threat persists [8], and new threats will continue to arise.

Traditional security tools that rely on static rules or signature-based detection often struggle to keep pace with these fast-moving, adaptive threats. In this environment, anomaly-based detection tools are no longer optional—they are essential. By identifying deviations in normal user and system behavior, tools like Darktrace provide a proactive layer of defense capable of detecting novel and emerging threats, even those that bypass conventional security measures. Investing in anomaly-based detection is critical to staying ahead of attackers who now operate with automation, intelligence, and global coordination.

Credit to Emma Foulger (Global Threat Research Operations Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),  Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nahisha Nobregas (Senior Cyber Analyst), Nicole Wong (Principal Cyber Analyst), Justin Torres (Senior Cyber Analyst), Matthew John (Director of Operations, SOC), Sam Lister (Specialist Security Researcher), Ryan Traill (Analyst Content Lead) and the Darktrace Incident Management team.

The information contained in this blog post is provided for general informational purposes only and represents the views and analysis of Darktrace as of the date of publication. While efforts have been made to ensure the accuracy and timeliness of the information, the cybersecurity landscape is dynamic, and new threats or vulnerabilities may have emerged since this report was compiled.

This content is provided “as is” and without warranties of any kind, either express or implied. Darktrace makes no representations or warranties regarding the completeness, accuracy, reliability, or suitability of the information, and expressly disclaims all warranties.

Nothing in this blog post should be interpreted as legal, technical, or professional advice. Users of this information assume full responsibility for any actions taken based on its content, and Darktrace shall not be liable for any loss or damage resulting from reliance on this material. Reference to any specific products, companies, or services does not constitute or imply endorsement, recommendation, or affiliation.

Appendices

Indicators of Compromise (IoCs)

IoC - Type - Description + Probability

LapDogs ORB network, December 2024-June 2025

www.northumbra[.]com – Hostname – Command and Control (C2) server

103.131.189[.]2 – IP Address - C2 server, observed December 2024 & June 2025

103.106.230[.]31 – IP Address - C2 server, observed December 2024

154.223.20[.]56 – IP Address – Possible C2 server, observed December 2024

38.60.214[.]23 – IP Address – Possible C2 server, observed January & February 2025

154.223.20[.]58:1346/systemd-log – URL – Possible ShortLeash payload, observed December 2024

CN=ROOT,OU=Police department,O=LAPD,L=LA,ST=California,C=US - TLS certificate details for C2 server

CVE-2025-0994, Trimble Cityworks exploitation, January 2025

192.210.239[.]172:3219/z44.exe – URL - Likely malicious file download

AsyncRAT, February-March 2025

windows-cam.casacam[.]net – Hostname – Likely C2 server

88.209.248[.]141 – IP Address – Likely C2 server

207.231.105[.]51 – IP Address – Likely C2 server

163.172.125[.]253 – IP Address – Likely C2 server

microsoft-download.ddnsfree[.]com – Hostname – Likely C2 server

95.217.34[.]113 – IP Address – Likely C2 server

vpnl[.]net – Hostname – Likely C2 server

157.20.182[.]16 – IP Address - Likely C2 server

185.81.157[.]19 – IP Address – Likely C2 server

dynamic.serveftp[.]net – IP Address – Likely C2 server

158.220.96.15 – IP Address – Likely C2 server

CVE-2024-57727 & CVE-2024-57728, SimpleHelp RMM exploitation, March 2025

213.183.63[.]41 – IP Address - C2 server

213.183.63[.]41/access/JWrapper-Windows64JRE-version.txt?time=3512082867 – URL - C2 server

213.183.63[.]41/access/JWrapper-Windows64JRE-00000000002-archive.p2.l2 – URL - C2 server

pruebas.pintacuario[.]mx – Hostname – Possible C2 server

144.217.181[.]205 – IP Address – Likely C2 server

erp.ranasons[.]com – Hostname – Possible destination for exfiltration

143.110.243[.]154 – IP Address – Likely destination for exfiltration

Blind Eagle, April-June 2025

sostenermio2024.duckdns[.]org/31agosto.vbs – URL – Possible malicious file download

Stealc, April 2025

88.214.48[.]93/ea2cb15d61cc476f[.]php – URL – C2 server

Amadey & GhostSocks, April 2025

195.82.147[.]98 – IP Address - Amadey C2 server

195.82.147[.]98/0Bdh3sQpbD/index.php – IP Address – Likely Amadey C2 activity

194.28.226.181 – IP Address – Likely GhostSocks C2 server

RaspberryRobin, May 2025

4j[.]pm – Hostname – C2 server

4xq[.]nl – Hostname – C2 server

8t[.]wf – Hostname – C2 server

Gh0stRAT, May 2025

lu.dssiss[.]icu  - Hostname – Likely C2 server

192.238.133[.]162:7744/1-111.exe – URL – Possible addition payload

8e9dec3b028f2406a8c546a9e9ea3d50609c36bb - SHA1 - Possible additional payload

f891c920f81bab4efbaaa1f7a850d484 - MD5 – Possible additional payload

192.238.133[.]162:7744/c3p.exe – URL - Possible additional payload

03287a15bfd67ff8c3340c0bae425ecaa37a929f - SHA1 - Possible additional payload

02aa02aee2a6bd93a4a8f4941a0e6310 - MD5 - Possible additional payload

192.238.133[.]162:7744/1-1111.exe – URL - Possible additional payload

1473292e1405882b394de5a5857f0b6fa3858fd1 - SHA1 - Possible additional payload

69549862b2d357e1de5bab899ec0c817 - MD5 - Possible additional payload

192.238.133[.]162:7744/1-25.exe – URL -  Possible additional payload

20189164c4cd5cac7eb76ba31d0bd8936761d7a7  - SHA1 - Possible additional payload

f42aa5e68b28a3f335f5ea8b6c60cb57 – MD5 - Possible additional payload

192.238.133[.]162:7744/Project1_se.exe – URL - Possible additional payload

fea1e30dfafbe9fa9abbbdefbcbe245b6b0628ad - SHA1 - Possible additional payload

5ea622c630ef2fd677868cbe8523a3d5 - MD5 - Possible additional payload

192.238.133[.]162:7744/Project1_se.exe - URL - Possible additional payload

aa5a5d2bd610ccf23e58bcb17d6856d7566d71b9  - SHA1 - Possible additional payload

9d33029eaeac1c2d05cf47eebb93a1d0 - MD5 - Possible additional payload

References and further reading

1.        https://cip.gov.ua/en/news/art28-atakuye-sektor-bezpeki-ta-oboroni-za-dopomogoyu-programnogo-zasobu-sho-vikoristovuye-shtuchnii-intelekt?utm_medium=email&_hsmi=113619842&utm_content=113619842&utm_source=hs_email

2.        https://www.s-rminform.com/latest-thinking/cyber-threat-advisory-medusa-and-the-simplehelp-vulnerability

3.        https://assetlifecycle.trimble.com/en/products/software/cityworks

4.     https://nvd.nist.gov/vuln/detail/CVE-2025-0994

5.     https://blog.talosintelligence.com/uat-6382-exploits-cityworks-vulnerability/

6.        https://www.silentpush.com/blog/raspberry-robin/

7.        https://blogs.microsoft.com/on-the-issues/2025/05/21/microsoft-leads-global-action-against-favored-cybercrime-tool/

8.     https://www.trendmicro.com/en_sg/research/25/g/lumma-stealer-returns.html

Related Darktrace investigations

-              ClickFix

-              FlowerStorm

-              Mamba 2FA

-              Qilin Ransomware

-              RansomHub Ransomware

-              RansomHub Revisited

-              Lynx Ransomware

-              Scattered Spider

-              Medusa Ransomware

-              Legitimate Services Malicious Intentions

-              CVE-2025-0282 and CVE-2025-0283 – Ivanti CS, PS and ZTA

-              CVE-2025-31324 – SAP Netweaver

-              Pre-CVE Threat Detection

-              BlindEagle (APT-C-36)

-              Raspberry Robin Worm

-              AsyncRAT

-              Amadey

-              Lumma Stealer

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI