Blog
/
/
October 21, 2020

Protecting Healthcare Organizations from Maze Ransomware

Discover how Darktrace detected and protected a healthcare organization from a Maze ransomware attack. Stay informed and protect your data today.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
Oct 2020

Ransomware, with more severe consequences and against increasingly high-stakes targets, continues to cause chaos and disruption to organizations globally. Earlier this year saw a surge in a strain of ransomware known as ‘Maze’, which shut down operations at leading optical products provider Canon and wreaked havoc in Fortune 500 companies like Cognizant.

Ransomware targeting healthcare

Just last month, news of a woman in Germany dying after a ransomware attack on the Dusseldorf University Hospital hit the headlines, confirming that the threat to people is no longer theoretical.

Ransomware affects all industries but 2020 has seen cyber-criminals increasingly hit essential services like healthcare, local government and critical infrastructure – intentionally or as collateral damage. As the stakes rise, so too does the need to understand how to prevent these devastating and pervasive attacks.

Once deployed, ransomware can spread laterally through an organization’s digital infrastructure in seconds, taking entire systems offline in minutes. Attackers often strike at night or at weekends, when they know security teams’ response time will be slower. Machine-speed attacks require machine-speed defenses that can detect and respond to this threat without human guidance, and autonomously block the threat.

This blog explains how AI detects and stops ransomware by learning ‘normal’ across the digital estate – from email and SaaS applications to the network, cloud, IoT and industrial control systems – by looking at an example of a Maze ransomware attack caught by Darktrace in a customer’s environment.

Darktrace’s Immune System detected the threat as soon as it emerged, but as the Autonomous Response capability was configured in passive mode, neutralizing the threat still required human action. This means that attackers were able to move laterally across the organization at speed and began to encrypt files before the security team stepped in. In active mode, Antigena Network would have contained the activity in its earliest stages.

How does Darktrace detect ransomware like Maze?

As soon as Darktrace is deployed – whether virtually or on-premise – the AI begins to learn the ‘pattern of life’ for every user and device across the organization. This enables the technology to detect anomalous activity indicative of a cyber-threat. It does this without relying on hard-coded rules and signatures; an approach that requires a ‘Patient Zero’ before updating these lists and containing subsequent identical threats. When it comes to a novel instance of ransomware spreading across an organization and infecting hundreds of devices in seconds, such an approach becomes useless.

With an understanding of the organization’s ‘pattern of life’, Darktrace’s AI recognizes unusual activity in real time. Such activity might include:

ActivityDarktrace detectionsUnusual downloads from C2 serversEXE from Rare Destination / Masqueraded File TransferBrute forcing publicly accessible RDP serversIncoming RDP brute force modelsBrute forcing access to web portal user accounts with weak passwords or lacking MFAVarious brute force modelsC2 via Cobalt Strike / Empire PowershellSSL Beaconing to Rare Endpoint / Empire Powershell and Cobalt Strike modelsNetwork scanning for reconnaissance & EternalBlue exploitSuspicious Network Scan model known to download Advanced IP Scanner after successful exploitMimikatz usage for privilege escalationUnusual Admin SMB Session / Unusual RDP Admin Session (Procdump, PingCastle, and Bloodhound)Psexec / ‘Living off the Land’ for lateral movementUnusual Remote Command Execution / Unusual PSexec / Unusual DCE RPCData exfiltration to C2 serversData Sent to Rare Domain / Unusual Internal Download / Unusual External UploadEncryptionSuspicious SMB Activity / Additional File Extensions AppendedExfiltration of passwords through various cloud storage servicesData Sent to New External DomainRDP tunnels using NgrokOutbound RDP / Various beaconing models

In addition, Darktrace is able to identify attempts to brute force access on Internet-facing servers. It can also detect specific searches for passwords stored in plain text as well as various password manager databases.

Maze ransomware analysis

Figure 1: A timeline of the attack

Most recently, Darktrace’s AI detected a case of Maze ransomware targeting a healthcare organization. Darktrace’s Immune System spotted every stage of the attack lifecycle within seconds, and the Cyber AI Analyst immediately launched an automated investigation of the full incident, surfacing a natural-language, actionable summary for the security team.

The initial infection vector was spear phishing. Maze is frequently delivered to healthcare organizations using pandemic-themed phishing emails. Darktrace also offers AI-powered email security that understands normal behavior for every Microsoft 365 user and spots anomalies that are indicative of phishing, but in the absence of this protection, the emails were waved through by traditional gateways.

The attacker began engaging in network scanning activity and enumeration to escalate access within the Research and Development subnet. Darktrace’s AI detected a successful compromise of admin level credentials, unusual RDP activities and multiple Kerberos authentication attempts.

Darktrace detected the attacker uploading a domain controller, before batch files were written to multiple file shares, which were used for the encryption process.

An infected device then connected to a suspicious domain that is associated to Maze mazedecrypt[.]top and the TOR browser bundle was downloaded, likely for C2 purposes. A large volume of sensitive data from the R&D subnet was then uploaded to a rare domain. This is typical of Maze ransomware, which is seen as a ‘double threat’ in that it not only seeks to encrypt critical files but also sends a copy of them back to the attacker.

This form of attack, also known as doxware, then provides the attacker with leverage in the possible event that the organization refused to pay the ransom – they can sell the data on the Dark Web, or threaten to leak intellectual property to competitors, for instance.

Real-time automated investigations with Cyber AI Analyst

Throughout the attack lifecycle, multiple high-fidelity alerts were generated by Darktrace AI and this prompted the Cyber AI Analyst to automatically launch an investigation in the background, stitching together the different events into a single, comprehensive security incident, which it then displayed for human review in a single screen.

Figure 2: The data exfiltration to a rare external domain

Figure 3: Darktrace’s user interface highlighting the unusual activity and model breaches on a domain controller directly linked with the ransomware attack

Targeted, double-threat attacks like Maze ransomware are on the rise and extremely dangerous – and they are increasingly targeting high-stakes environments. Thousands of organizations are turning to AI, not only to detect and investigate on ransomware intrusions as demonstrated above, but to autonomously respond to events as they occur. Ransomware attacks like these show organizations why autonomous response in active mode is not just a nice to have – but necessary – as fast-moving threats demand machine-speed responses.

In a previous blog, we looked at a novel zero-day ransomware attack that slipped through legacy security tools – but Antigena Network was configured in active mode, autonomously stopping the threat in its tracks. This unique capability is becoming crucial for organizations in every industry who find themselves targeted by increasingly sophisticated attack methods.

Thanks to Darktrace analyst Adam Stevens for his insights on the above threat find.

Learn more about Autonomous Response

Darktrace model detections

  • Device / Suspicious Network Scan Activity
  • Device / Network Scan
  • Device / ICMP Address Scan
  • Unusual Activity / Unusual Internal Connections
  • Device / Multiple Lateral Movement Model Breaches
  • Experimental / Executable Uploaded to DC
  • Compromise / Ransomware::Suspicious SMB Activity
  • Compromise / Ransomware::Ransom or Offensive Words Written to SMB
  • Compliance / SMB Drive Write
  • Compliance / High Priority Compliance Model Breach
  • Anomalous Connection / SMB Enumeration
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Device / New or Unusual Remote Command Execution
  • Anomalous Connection / New or Uncommon Service Control
  • Anomalous Connection / SMB Enumeration
  • Experimental / Possible RPC Execution
  • Anomalous Connection / High Volume of New or Uncommon Service Control
  • Experimental / Possible Ransom Note
  • Anomalous File / Internal::Additional Extension Appended to SMB File
  • Compliance / Tor Package Download
  • Device / Suspicious Domain
  • Device / Long Agent Connection to New Endpoint
  • Anomalous Connection / Data Sent to Rare Domain

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

November 12, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Default blog imageDefault blog image

What is vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

Continue reading
About the author
Christina Kreza
Cyber Analyst

Blog

/

Network

/

November 6, 2025

Darktrace Named the Only 2025 Gartner® Peer Insights™ Customers’ Choice for Network Detection and Response

Default blog imageDefault blog image

Darktrace: The only Customers’ Choice for NDR in 2025

In a year defined by rapid change across the threat landscape, recognition from those who use and rely on security technology every day means the most.

That’s why we’re proud to share that Darktrace has been named the only Customers’ Choice in the 2025 Gartner® Peer Insights™ Voice of the Customer for Network Detection and Response (NDR).

Out of 11 leading NDR vendors evaluated, Darktrace stood alone as the sole Customers’ Choice, a recognition that we feel reflects not just our innovation, but the trust and satisfaction of the customers who secure their networks with Darktrace every day.

What the Gartner® Peer Insights™ Voice of the Customer means

“Voice of the Customer” is a document that synthesizes Gartner Peer Insights reviews into insights for buyers of technology and services. This aggregated peer perspective, along with the individual detailed reviews, is complementary to Gartner expert research and can play a key role in your buying process. Peers are verified reviewers of a technology product or service, who not only rate the offering, but also provide valuable feedback to consider before making a purchase decision. Vendors placed in the upper-right “Customers’ Choice” quadrant of the “Voice of the Customer” have scores that meet or exceed the market average for both axes (User Interest and Adoption, and Overall Experience).It’s not just a rating. We feel it’s a reflection of genuine customer sentiment and success in the field.

In our view, Customers consistently highlight Darktrace’s ability to:

  • Detect and respond to unknown threats in real time
  • Deliver unmatched visibility across IT, OT, and cloud environments
  • Automate investigations and responses through AI-driven insights

We believe this recognition reinforces what our customers already know: that Darktrace helps them see, understand, and stop attacks others miss.

A rare double: recognized by customers and analysts alike

This distinction follows another major recogniton. Darktrace’s placement as a Leader in the Gartner® Magic Quadrant™ for Network Detection and Response earlier this year.

That makes Darktrace the only vendor to achieve both:

  • A Leader status in the Gartner Magic Quadrant for NDR, and
  • A Customers’ Choice in Gartner Peer Insights 2025

It’s a rare double that we feel reflects both industry leadership and customer trust, two perspectives that, together, define what great cybersecurity looks like.

A Customers’ Choice across the network and the inbox

To us, this recognition also builds on Darktrace’s momentum across multiple domains. Earlier this year, Darktrace was also named a Customers’ Choice for Email Security Platforms in the Gartner® Peer Insights™ report.

With more than 1,000 verified reviews across Network Detection and Response, Email Security Platforms, and Cyber Physical Systems (CPS), we at Darktrace are proud to be trusted across the full attack surface, from the inbox to the industrial network.

Thank you to our customers

We’re deeply grateful to every customer who shared their experience with Darktrace on Gartner Peer Insights. Your insights drive our innovation and continue to shape how we protect complex, dynamic environments across the world.

Discover why customers choose Darktrace for network and email security.

Gartner® Peer Insights™ content consists of the opinions of individual end users based on their own experiences, and should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.

Magic Quadrant and Peer Insights are registered trademarks of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.

Gartner, Voice of the Customer for Network Detection and Response, By Peer Community Contributor, 30 October 2025

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI