Blog
/
/
May 19, 2020

Understanding a SaaS Attack and How AI Can Investigate

The Cyber AI Platform recently detected and investigated two incidents of SaaS account takeover in real-time. Learn about the importance of cyber security here!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
May 2020

Executive summary

  • Darktrace has observed a significant increase in attacks against SaaS platforms, including file storage, collaborative work, and email solutions.
  • This blog post details two example threats that are representative of the current threat landscape: an Office 365 business email compromise and a Box.com file sharing account compromise.
  • Organizations are recommended to enable multi-factor authentication to combat credential stuffing attacks and the re-use of stolen credentials from data dumps. It is further advised to actively monitor SaaS environments for in-progress cyber-attacks.
  • SaaS exacerbates the skill gap in security – identifying and investigating threats in SaaS environments is a different skill to traditional security operations skill-sets.

Introduction

The digital transformation – whether planned naturally or forced by the global pandemic – has increased the use of Software-as-a-Service (SaaS) solutions in modern organizations. The annual growth rate of the SaaS market is currently 18%, and as the workforce becomes increasingly remote throughout 2020, this is set to skyrocket.

Attackers have been targeting SaaS solutions for a long time – but almost nobody talks about how the Techniques, Tools & Procedures (TTPs) in SaaS attacks differ significantly from traditional TTPs seen in networks and endpoint attacks.

How do you create meaningful detections in SaaS environments that don’t have endpoint or network data? How can you investigate threats in a SaaS environment as an analyst? What does a ‘good’ SaaS event look like, and what does a threat look like? Finding skilled security analysts that can work in traditional IT environments is already hard – it gets even harder when trying to hire security people with SaaS domain knowledge.

SaaS consumers are left with only a few choices: either use the native SaaS security controls provided in each SaaS solution – and rely on the (non-)maturity of the SaaS provider – or go with a third party SaaS security solution, often in the form of Cloud Access Security Brokers (CASBs). Both cases are often not ideal.

This blog outlines two attacks we have recently observed in SaaS environments that are representative for the broader SaaS threat landscape: a Microsoft (Office) 365 business email compromise (BEC) and the compromise of a corporate Box.com account. The analysis serves to illuminate the sharp distinction between a traditional network attack and a SaaS compromise – demonstrating how using machine learning to detect anomalies in behavior offers crucial hope for defenders as SaaS applications define this new era of work.

Anonymized SaaS Threat 1: Office 365 Business Email Compromise

Figure 1: The timeline of attack for the Microsoft 365 Compromise

In this case of a classic BEC attack, a threat-actor infiltrated an employee’s Microsoft 365 account to access sensitive financial documents hosted in SharePoint, including pay slip and banking details. The attacker went on to make configuration changes to the hacked inbox, deleting items and making updates that may have allowed them to cover their tracks.

Darktrace first observed the employee’s account log in from unusual IP ranges. The particular account had never logged in from Bulgaria before, and the peer accounts belonging to those from the same department had not exhibited similar behavioral traits. This in itself was a low-level anomaly and not necessarily indicative of malicious activity – employees might change locations after all.

The unusual login location was then accompanied by an unusual login time and a new user-agent. All of these anomalies triggered Cyber AI Analyst – Darktrace’s automated threat investigation technology – to launch a deeper analysis.

Darktrace then identified that the account was starting to access highly sensitive information, including payroll information on a Sharepoint. Two examples that were highlighted by AI Analyst are shown below:

  • hxxps://anonymised[.]sharepoint[.]com/anonymised/pages/Understanding-my-payslip[.]aspx
  • hxxps:// anonymised [.]sharepoint[.]com/anonymised /pages/Changing-my-bank-details[.]aspx

The attacker tried to gain insights about payment information and credit card details, with the likely intention of changing the payroll details to an attacker-controlled bank account. But with its ability to automatically analyze events to piece together attack narratives, Cyber AI Analyst was able to put together these weak signals of a threat and illuminate the likely account compromise. The security team was then able to lock the account and alert the user, who subsequently changed their credentials.

Anonymized SaaS Threat 2: Box.com Compromise

Figure 2: The timeline of attack for the Box.com Compromise

Darktrace observed a case of unauthorized access to a corporate Box.com file storage account belonging to an employee of a global supply company. The Box.com account login took place in the US – the same country that this organization operates in – but from an unusual IP space and ASN. Made suspicious by this low-level anomaly, Cyber AI Analyst did further, ongoing investigations into the user’s activity.

The actor behind the account logged in to Box.com successfully, and then proceeded to download expense reports, invoices, and other financial documents. It became evident that the account started accessing files that were highly unusual for the account to access. Darktrace recognized that neither the account itself, nor its peer group were usually accessing the file called ‘PASSWORD SHEET.xlsx’.

With Cyber AI’s bespoke knowledge of ‘self’ for every member of the organization’s workforce, the technology was able to identify the threat immediately. The Darktrace Cyber AI Platform detected that the activity occurred at a highly unusual time for the legitimate user, and that the location of the actor’s IP address was also anomalous compared to the employee’s previous access locations for this particular SaaS service.

While accessing these documents may have been normal for the employee in another context, Darktrace Cyber AI’s deep understanding of user behavior and granular visibility within the Box.com application allowed it to spot the subtle signs of account compromise. Moreover, when Darktrace’s Cyber AI Analyst automatically investigated the threat, it was able to illuminate the wider narrative, understanding that each unauthorized file exposure was part of a connected incident and highlighted the breach as a key concern for the security team.

Conclusion

Traditional detection approaches like ‘more than X failed logins from Y’ are not enough to ensure sufficient security across SaaS applications. Keeping threat intelligence lists up to date is even more difficult, as most SaaS attacks don’t involve any Command & Control – just indiscriminate logins from remote devices. Attackers may use VPN, Tor, other compromised devices, dynamic DNS, or virtual private servers to further mask their tracks.

A more intricate and effective approach to SaaS security requires understanding the dynamic individual behind the account. SaaS applications are fundamentally platforms for humans to communicate – allowing them to exchange and store ideas and information. Abnormal, threatening behavior is therefore impossible to detect without a nuanced understanding of those unique individuals: where and when do they typically access a SaaS account, which files are they like to access, who do they typically connect with?

Cyber AI asks these questions, continuously analyzing data not only across SaaS platforms, but from the unique ‘patterns of life’ of every user and device in the organization as a whole. With this context, it can chain together seemingly disparate anomalies – unusual login times, login locations, access of new or unusual files, and hundreds of other indicators of threat. These anomalies then act as a trigger for more in-depth investigations via Cyber AI Analyst that can link the anomalies together and create a coherent attack narrative.

Both of the above SaaS attacks were comprehensively but succinctly investigated and fully reported on by the Darktrace’s Cyber AI Analyst, which then surfaced an easy-to-understand incident report, ready for executive review. For a more in-depth look at how Cyber AI Analyst investigated an emerging APT threat in the wild, read: Catching APT41 exploiting a zero-day vulnerability.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
David Ison
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI