Blog

Threat Finds

Catching APT41 exploiting a zero-day vulnerability

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
01
Apr 2020
01
Apr 2020
This blog looks at how the cyber-criminal group APT41 exploited a zero-day vulnerability, and examines how Darktrace’s AI detected and investigated the threat at machine speed.

Executive summary

  • Darktrace detected several highly targeted attacks in early March, well before any associated signatures had become available. Two weeks later, the attacks were attributed to Chinese threat-actor APT41.
  • APT41 exploited the Zoho ManageEngine zero-day vulnerability CVE-2020-10189. Darktrace automatically detected and reported on the attack in its earliest stages, enabling customers to contain the threat before it could make an impact.
  • The intrusions described here were part of a wider campaign aiming to gain initial access to as many companies as possible during the window of opportunity presented by CVE-2020-10189.
  • The reports generated by Darktrace highlighted and delineated every aspect of the incident in the form of a meaningful security narrative. Even a junior responder could have reviewed this output and acted on this zero-day APT attack in under 5 minutes.

Fighting APT41’s global attack

In early March, Darktrace detected several advanced attacks targeting customers in the US and Europe. A majority of these customers are in the legal sector. The attacks shared the same Techniques, Tools & Procedures (TTPs), targeting public-facing servers and exploiting recent high-impact vulnerabilities. Last week, FireEye attributed this suspicious activity to the Chinese cyber espionage group APT41.

This campaign used the Zoho ManageEngine zero-day vulnerability CVE-2020-10189 to get access to various companies, but little to no follow-up was detected after initial intrusion. This activity indicates a broad-brush campaign to get initial access to as many target companies as possible during the zero-day window of opportunity.

The malicious activity observed by Darktrace took place late on Sunday March 8, 2020 and in the morning of March 9, 2020 (UTC), broadly in line with office hours previously attributed to the Chinese cyber espionage group APT41.

The graphic below shows an exemplary timeline from one of the customers targeted by APT41. The attacks observed in other customer environments are identical.

Timeline of the APT41 attack
Figure 1: A timeline of the attack

Technical analysis

The attack described here centered around the Zoho ManageEngine zero-day vulnerability CVE-2020-10189. Most of the attack appears to have been automated.

We observed the initial intrusion, several follow-up payload downloads, and command and control (C2) traffic. In all cases, the activity was contained before any later steps in the attack lifecycle, such as lateral movement or data exfiltration, were identified.

The below screenshot shows an overview of the key AI Analyst detections reported. Not only did it report on the SSL and HTTP C2 traffic, but it also reported on the payload downloads:

Cyber AI Analyst breaks down the APT41 attack
Figure 2: SSL C2 detection by Cyber AI Analyst
Figure 3: Payload detection by Cyber AI Analyst

Initial compromise

The initial compromise began with the successful exploitation of the Zoho ManageEngine zero-day vulnerability CVE-2020-10189. Following the initial intrusion, the Microsoft BITSAdmin command line tool was used to fetch and install a malicious Batch file, described below:

install.bat (MD5: 7966c2c546b71e800397a67f942858d0) from infrastructure 66.42.98[.]220 on port 12345.

Source: 10.60.50.XX
Destination: 66.42.98[.]220
Destination Port: 12345
Content Type: application/x-msdownload
Protocol: HTTP
Host: 66.42.98[.]220
URI: /test/install.bat
Method: GET
Status Code: 200

Figure 4: Outbound connection fetching batch file

Shortly after the initial compromise, the first stage Cobalt Strike Beacon LOADER was downloaded.

Cobalt Strike Beacon loader screenshot
Figure 5: Detection of the Cobalt Strike Beacon LOADER

Command and Control traffic

Interestingly, TeamViewer activity and the download of Notepad++ was taking place at the same time as the C2 traffic was starting in some of the customer attacks. This indicates APT41 trying to use familiar tools instead of completely ‘Living off the Land’.

Storesyncsvc.dll was a Cobalt Strike Beacon implant (trial-version) which connected to exchange.dumb1[.]com. A successful DNS resolution to 74.82.201[.]8 was identified, which Darktrace discerned as a successful SSL connection to a hostname with Dynamic DNS properties.

Multiple connections to exchange.dumb1[.]com were identified as beaconing to a C2 center. This C2 traffic to the initial Cobalt Strike Beacon was leveraged to download a second stage payload.

Interestingly, TeamViewer activity and the download of Notepad++ was taking place at the same time as the C2 traffic was starting in some of the customer attacks. This indicates APT41 trying to use familiar tools instead of completely ‘Living off the Land’. There is at least high certainty that the use of these two tools can be attributed to this intrusion instead of regular business activity. Notepad++ was not normally used in the target customers’ environments, nor was TeamViewer – in fact, the use of both applications was 100% unusual for the targeted organizations.

Attack tools download

CertUtil.exe, a command line program installed as part of Certificate Services, was then leveraged to connect externally and download the second stage payload.

Detection associated with Meterpreter activity

Figure 6: Darktrace detecting the usage of CertUtil

A few hours after this executable download, the infected device made an outbound HTTP connection requesting the URI /TzGG, which was identified as Meterpreter downloading further shellcode for the Cobalt Strike Beacon.

Figure 7: Detection associated with Meterpreter activity. No lateral movement or significant data exfiltration was observed.

How Cyber AI Analyst reported on the zero-day exploit

Darktrace not only detected this zero-day attack campaign, but Cyber AI Analyst also saved security teams valuable time by investigating disparate security events and generating a report that immediately put them in a position to take action.

The below screenshot shows the AI Analyst incidents reported in one infected environment, over the eight days covering the intrusion period. The first incident on the left represents the APT activity described here. The other five incidents are independent of the APT activity and not as severe.

AI Analyst Security Incidents
Figure 8: The security incidents surfaced by AI Analyst

AI Analyst reported on six incidents in total over the eight-day period. Each AI Analyst incident includes a detailed timeline and summary of the incident, in a concise format that takes an average of two minutes to review. This means that with Cyber AI Analyst, even a non-technical person could have actioned a response to this sophisticated, zero-day incident in less than five minutes.

Conclusion

Without public Indicators of Compromise (IoCs) or any open-source intelligence available, targeted attacks are incredibly difficult to detect. Moreover, even the best detections are useless if they cannot be actioned by a security analyst at an early stage. Too often this occurs because of an overwhelming volume of alerts, or simply because the skills barrier to triage and investigation is too high.

This appears to be a broad campaign to gain initial access to many different companies and sectors. While very sophisticated in nature, the threat sacrificed stealth for speed by targeting many companies at the same time. APT41 wanted to utilize the limited window of opportunity that the Zoho zero-day provided before IT staff starts patching.

Darktrace’s Cyber AI is specifically designed to detect the subtle signs of targeted, unknown attacks at an early stage, without relying on prior knowledge or IoCs. It achieves this by continuously learning the normal patterns of behavior for every user, device, and associated peer group from scratch, and ‘on the job’.

In the face of this zero-day attack campaign, the AI’s ability to (a) detect unknown threats with self-learning AI and (b) augment strained responders with AI-driven investigations and reporting proved crucial. Indeed, it ensured that the attacks were swiftly contained before escalating to the later stages of the attack lifecycle.

Indicators of Compromise

Selection of Darktrace model breaches:

  • Anomalous File / Script from Rare External
  • Anomalous File / EXE from Rare External Location
  • Compromise / SSL to DynDNS
  • Compliance / CertUtil External Connection
  • Anomalous Connection / CertUtil Requesting Non Certificate
  • Anomalous Connection / CertUtil to Rare Destination
  • Anomalous Connection / New User-Agent to IP Without Hostname
  • Device / Initial Breach Chain Compromise
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Beaconing Activity To External Rare
  • Anomalous File / Numeric Exe Download
  • Device / Large Number of Model Breaches
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compliance / Remote Management Tool On Server

The below screenshot shows Darktrace model breaches occurring together during the compromise of one customer:

Figure 9: Darktrace model breaches occurring together

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Max Heinemeyer
Chief Product Officer

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Book a 1-1 meeting with one of our experts
share this article
USE CASES
No items found.
PRODUCT SPOTLIGHT
No items found.
COre coverage
No items found.

More in this series

No items found.

Blog

No items found.

Attack Trends: VIP Impersonation Across the Business Hierarchy

Default blog imageDefault blog image
22
Feb 2024

What is VIP impersonation?

VIP impersonation involves a threat actor impersonating a trusted, prominent figure at an organization in an attempt to solicit sensitive information from an employee.

VIP impersonation is a high-priority issue for security teams, but it can be difficult to assess the exact risks, and whether those are more critical than other types of compromise. Looking across a range of Darktrace/Email™ customer deployments, this blog explores the patterns of individuals targeted for impersonation and evaluates if these target priorities correspond with security teams' focus on protecting attack pathways to critical assets.

How do security teams stop VIP Impersonation?

Protecting VIP entities within an organization has long been a traditional focus for security teams. The assumption is that VIPs, due to their prominence, possess the greatest access to critical assets, making them prime targets for cyber threats.  

Email remains the predominant vector for attacks, with over 90% of breaches originating from malicious emails. However, the dynamics of email-based attacks are shifting, as the widespread use of generative AI is lowering the barrier to entry by allowing adversaries to create hyper-realistic emails with minimal errors.

Given these developments, it's worth asking the question – which entities (VIP/non-VIP) are most targeted by threat actors via email? And, more importantly – which entities (VIP/non-VIP) are more valuable if they are successfully compromised?

There are two types of VIPs:  

1. When referring to emails and phishing, VIPs are the users in an organization who are well known publicly.  

2. When referring to attack paths, VIPs are users in an organization that are known publicly and have access to highly privileged assets.  

Not every prominent user has access to critical assets, and not every user that has access to critical assets is prominent.  

Darktrace analysis of VIP impersonation

We analyzed patterns of attack pathways and phishing attempts across 20 customer deployments from a large, randomized pool encompassing a diverse range of organizations.  

Understanding Attack Pathways

Our observations revealed that 57% of low-difficulty attack paths originated from VIP entities, while 43% of observed low-difficulty attack paths towards critical assets or entities began through non-VIP users. This means that targeting VIPs is not the only way attackers can reach critical assets, and that non-VIP users must be considered as well.  

While the sample size prevents us from establishing statistical significance across all customers, the randomized selection lends credence to the generalizability of these findings to other environments.

Phishing Attempts  

On average, 1.35% of total emails sent to these customers exhibited significantly malicious properties associated with phishing or some form of impersonation. Strikingly, nearly half of these malicious emails (49.6%) were directed towards VIPs, while the rest were sent to non-VIPs. This near-equal split is worth noting, as attack paths show that non-VIPs also serve as potential entry points for targeting critical assets.  

Darktrace/Email UI
Figure 1: A phishing email actioned by Darktrace, sent to multiple VIP and non-VIP entities

For example, a recent phishing campaign targeted multiple customers across deployments, with five out of 13 emails specifically aimed at VIP users. Darktrace/Email actioned the malicious emails by double locking the links, holding the messages, and stripping the attachments.

Given that non-VIP users receive nearly half of the phishing or impersonation emails, it underscores the critical importance for security teams to recognize their blind spots in protecting critical assets. Overlooking the potential threat originating from non-VIP entities could lead to severe consequences. For instance, if a non-VIP user falls victim to a phishing attack or gets compromised, their credentials could be exploited to move laterally within the organization, potentially reaching critical assets.

This highlights the necessity for a sophisticated security tool that can identify targeted users, without the need for extensive customization and regardless of VIP status. By deploying a solution capable of promptly responding to email threats – including solicitation, phishing attempts, and impersonation – regardless of the status of the targeted user, security teams can significantly enhance their defense postures.

Darktrace vs Traditional Email Detection Methods

Traditional rules and signatures-based detection mechanisms fall short in identifying the evolving threats we’ve observed, due to their reliance on knowledge of past attacks to categorize emails.

Secure Email Gateway (SEG) or Integrated Cloud Email Security (ICES) tools categorize emails based on previous or known attacks, operating on a known-good or known-bad model. Even if tools use AI to automate this process, the approach is still fundamentally looking to the past and therefore vulnerable to unknown and zero-day threats.  

Darktrace uses AI to understand each unique organization and how its email environment interoperates with each user and device on the network. Consequently, it is able to identify the subtle deviations from normal behavior that qualify as suspicious. This approach goes beyond simplistic categorizations, considering factors such as the sender’s history and recipient’s exposure score.  

This nuanced analysis enables Darktrace to differentiate between genuine communications and malicious impersonation attempts. It automatically understands who is a VIP, without the need for manual input, and will action more strongly on incoming malicious emails  based on a user’s status.

Email does determine who is a VIP, without a need of manual input, and will action more strongly on incoming malicious emails.

Darktrace/Email also feeds into Darktrace’s preventative security tools, giving the interconnected AI engines further context for assessing the high-value targets and pathways to vital internal systems and assets that start via the inbox.

Leveraging AI for Enhanced Protection Across the Enterprise  

The efficacy of AI-driven security solutions lies in their ability to make informed decisions and recommendations based on real-time business data. By leveraging this data, AI driven solutions can identify exploitable attack pathways and an organizations most critical assets. Darktrace uniquely uses several forms of AI to equip security teams with the insights needed to make informed decisions about which pathways to secure, reducing human bias around the importance of protecting VIPs.

With the emergence of tools like AutoGPT, identifying potential targets for phishing attacks has become increasingly simplified. However, the real challenge lies in gaining a comprehensive understanding of all possible and low-difficulty attack paths leading to critical assets and identities within the organization.

At the same time, organizations need email tools that can leverage the understanding of users to prevent email threats from succeeding in the first instance. For every email and user, Darktrace/Email takes into consideration changes in behavior from the sender, recipient, content, and language, and many other factors.

Integrating Darktrace/Email with Darktrace’s attack path modeling capabilities enables comprehensive threat contextualization and facilitates a deeper understanding of attack pathways. This holistic approach ensures that all potential vulnerabilities, irrespective of the user's status, are addressed, strengthening the overall security posture.  

Conclusion

Contrary to conventional wisdom, our analysis suggests that the distinction between VIPs and non-VIPs in terms of susceptibility to impersonation and low-difficulty attack paths is not as pronounced as presumed. Therefore, security teams must adopt a proactive stance in safeguarding all pathways, rather than solely focusing on VIPs.  

Attack path modeling enhances Darktrace/Email's capabilities by providing crucial metrics on potential impact, damage, exposure, and weakness, enabling more targeted and effective threat mitigation strategies. For example, stronger email actions can be enforced for users who are known to have a high potential impact in case of compromise. 

In an era where cyber threats continue to evolve in complexity, an adaptive and non-siloed approach to securing inboxes, high-priority individuals, and critical assets is indispensable.  

Continue reading
About the author
Kendra Gonzalez Duran
Director of Technology Innovation

Blog

Inside the SOC

Gootloader Malware: Detecting and Containing Multi-Functional Threats with Darktrace

Default blog imageDefault blog image
15
Feb 2024

What is multi-functional malware?

While traditional malware variants were designed with one specific objective in mind, the emergence of multi-functional malware, such as loader malware, means that organizations are likely to be confronted with multiple malicious tools and strains of malware at once. These threats often have non-linear attack patterns and kill chains that can quickly adapt and progress quicker than human security teams are able to react. Therefore, it is more important than ever for organizations to adopt an anomaly approach to combat increasingly versatile and fast-moving threats.

Example of Multi-functional malware

One example of a multi-functional malware recently observed by Darktrace can be seen in Gootloader, a multi-payload loader variant that has been observed in the wild since 2020. It is known to primarily target Windows-based systems across multiple industries in the US, Canada, France, Germany, and South Korea [1].  

How does Gootloader malware work?

Once installed on a target network, Gootloader can download additional malicious payloads that allow threat actors to carry out a range of harmful activities, such as stealing sensitive information or encrypting files for ransom.

The Gootloader malware is known to infect networks via search engine optimization (SEO) poisoning, directing users searching for legitimate documents to compromised websites hosting a malicious payload masquerading as the desired file.

If the malware remains undetected, it paves the way for a second stage payload known as Gootkit, which functions as a banking trojan and information-stealer, or other malware tools including Cobalt Strike and Osiris [2].

Darktrace detection of Gootloader malware

In late 2023, Darktrace observed one instance of Gootloader affecting a customer in the US. Thanks to its anomaly-focused approach, Darktrace DETECT™ quickly identified the anomalous activity surrounding this emerging attack and brought it to the immediate attention of the customer’s security team. All the while, Darktrace RESPOND™ was in place and able to autonomously intervene, containing the suspicious activity and ensuring the Gootloader compromise could not progress any further.

In September 2023, Darktrace identified an instance of the Gootloader malware attempting to propagate within the network of a customer in the US. Darktrace identified the first indications of the compromise when it detected a device beaconing to an unusual external location and performing network scanning. Following this, the device was observed making additional command-and-control (C2) connections, before finally downloading an executable (.exe) file which likely represented the download of a further malicious payload.

As this customer had subscribed to the Proactive Notification Service (PTN), the suspicious activity was escalated to the Darktrace Security Operations Center (SOC) for further investigation by Darktrace’s expert analysts. The SOC team were able to promptly triage the incident and advise urgent follow-up actions.

Gootloader Attack Overview

Figure 1: Timeline of Anomalous Activities seen on the breach device.

Initial Beaconing and Scanning Activity

On September 21, 2023, Darktrace observed the first indications of compromise on the network when a device began to make regular connections to an external endpoint that was considered extremely rare for the network, namely ‘analyzetest[.]ir’.

Although the endpoint did not overtly seem malicious in nature (it appeared to be related to laboratory testing), Darktrace recognized that it had never previously been seen on the customer’s network and therefore should be treated with caution.  This initial beaconing activity was just the beginning of the malicious C2 communications, with several additional instances of beaconing detected to numerous suspicious endpoints, including funadhoo.gov[.]mv, tdgroup[.]ru’ and ‘army.mil[.]ng.

Figure 2: Initial beaconing activity detected on the breach device.

Soon thereafter, Darktrace detected the device performing internal reconnaissance, with an unusually large number of connections to other internal locations observed. This scanning activity appeared to primarily be targeting the SMB protocol by scanning port 445.

Within seconds of DETECT’s detection of this suspicious SMB scanning activity, Darktrace RESPOND moved to contain the compromise by blocking the device from connecting to port 445 and enforcing its ‘pattern of life’. Darktrace’s Self-Learning AI enables it to learn a device’s normal behavior and recognize if it deviates from this; by enforcing a pattern of life on an affected device, malicious activity is inhibited but the device is allowed to continue its expected activity, minimizing disruption to business operations.

Figure 3: The breach device Model Breach Event Log showing Darktrace DETECT identifying suspicious SMB scanning activity and the corresponding RESPOND actions.

Following the initial detection of this anomalous activity, Darktrace’s Cyber AI Analyst launched an autonomous investigation into the beaconing and scanning activity and was able to connect these seemingly separate events into one incident. AI Analyst analyzes thousands of connections to hundreds of different endpoints at machine speed and then summarizes its findings in a single pane of glass, giving customers the necessary information to assess the threat and begin remediation if necessary. This significantly lessens the burden for human security teams, saving them previous time and resources, while ensuring they maintain full visibility over any suspicious activity on their network.

Figure 4: Cyber AI Analyst incident log summarizing the technical details of the device’s beaconing and scanning behavior.

Beaconing Continues

Darktrace continued to observe the device carrying out beaconing activity over the next few days, likely representing threat actors attempting to establish communication with their malicious infrastructure and setting up a foothold within the customer’s environment. In one such example, the device was seen connecting to the suspicious endpoint ‘fysiotherapie-panken[.]nl’. Multiple open-source intelligence (OSINT) vendors reported this endpoint to be a known malware delivery host [3].

Once again, Darktrace RESPOND was in place to quickly intervene in response to these suspicious external connection attempts. Over the course of several days, RESPOND blocked the offending device from connecting to suspicious endpoints via port 443 and enforced its pattern of life. These autonomous actions by RESPOND effectively mitigated and contained the attack, preventing it from escalating further along the kill chain and providing the customer’s security team crucial time to take act and employ their own remediation.

Figure 5: A sample of the autonomous RESPOND actions that was applied on the affected device.

Possible Payload Retrieval

A few days later, on September 26, 2023, Darktrace observed the affected device attempting to download a Windows Portable Executable via file transfer protocol (FTP) from the external location ‘ftp2[.]sim-networks[.]com’, which had never previously been seen on the network. This download likely represented the next step in the Gootloader infection, wherein additional malicious tooling is downloaded to further cement the malicious actors’ control over the device. In response, Darktrace RESPOND immediately blocked the device from making any external connections, ensuring it could not download any suspicious files that may have rapidly escalated the attackers’ efforts.

Figure 6: DETECT’s identification of the offending device downloading a suspicious executable file via FTP.

The observed combination of beaconing activity and a suspicious file download triggered an Enhanced Monitoring breach, a high-fidelity DETECT model designed to detect activities that are more likely to be indicative of compromise. These models are monitored by the Darktrace SOC round the clock and investigated by Darktrace’s expert team of analysts as soon as suspicious activity emerges.

In this case, Darktrace’s SOC triaged the emerging activity and sent an additional notice directly to the customer’s security team, informing them of the compromise and advising on next steps. As this customer had subscribed to Darktrace’s Ask the Expert (ATE) service, they also had a team of expert analysts available to them at any time to aid their investigations.

Figure 7: Enhanced Monitoring Model investigated by the Darktrace SOC.

Conclusion

Loader malware variants such as Gootloader often lay the groundwork for further, potentially more severe threats to be deployed within compromised networks. As such, it is crucial for organizations and their security teams to identify these threats as soon as they emerge and ensure they are effectively contained before additional payloads, like information-stealing malware or ransomware, can be downloaded.

In this instance, Darktrace demonstrated its value when faced with a multi-payload threat by detecting Gootloader at the earliest stage and responding to it with swift targeted actions, halting any suspicious connections and preventing the download of any additional malicious tooling.

Darktrace DETECT recognized that the beaconing and scanning activity performed by the affected device represented a deviation from its expected behavior and was indicative of a potential network compromise. Meanwhile, Darktrace RESPOND ensured that any suspicious activity was promptly shut down, buying crucial time for the customer’s security team to work with Darktrace’s SOC to investigate the threat and quarantine the compromised device.

Credit to: Ashiq Shafee, Cyber Security Analyst, Qing Hong Kwa, Senior Cyber Analyst and Deputy Analyst Team Lead, Singapore

Appendices

Darktrace DETECT Model Detections

Anomalous Connection / Rare External SSL Self-Signed

Device / Suspicious SMB Scanning Activity

Anomalous Connection / Young or Invalid Certificate SSL Connections to Rare

Compromise / High Volume of Connections with Beacon Score

Compromise / Beacon to Young Endpoint

Compromise / Beaconing Activity To External Rare

Compromise / Slow Beaconing Activity To External Rare

Compromise / Beacon for 4 Days

Anomalous Connection / Suspicious Expired SSL

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Compromise / Sustained SSL or HTTP Increase

Compromise / Large Number of Suspicious Successful Connections

Compromise / Large Number of Suspicious Failed Connections

Device / Large Number of Model Breaches

Anomalous File / FTP Executable from Rare External Location

Device / Initial Breach Chain Compromise

RESPOND Models

Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network/Insider Threat/Antigena Network Scan Block

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / External Threat / Antigena Suspicious File Block

Antigena / Network / External Threat / Antigena File then New Outbound Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

List of Indicators of Compromise (IoCs)

Type

Hostname

IoCs + Description

explorer[.]ee - C2 Endpoint

fysiotherapie-panken[.]nl- C2 Endpoint

devcxp2019.theclearingexperience[.]com- C2 Endpoint

campsite.bplaced[.]net- C2 Endpoint

coup2pompes[.]fr- C2 Endpoint

analyzetest[.]ir- Possible C2 Endpoint

tdgroup[.]ru- C2 Endpoint

ciedespuys[.]com- C2 Endpoint

fi.sexydate[.]world- C2 Endpoint

funadhoo.gov[.]mv- C2 Endpoint

geying.qiwufeng[.]com- C2 Endpoint

goodcomix[.]fun- C2 Endpoint

ftp2[.]sim-networks[.]com- Possible Payload Download Host

MITRE ATT&CK Mapping

Tactic – Technique

Reconnaissance - Scanning IP blocks (T1595.001, T1595)

Command and Control - Web Protocols , Application Layer Protocol, One-Way Communication, External Proxy, Non-Application Layer Protocol, Non-Standard Port (T1071.001/T1071, T1071, T1102.003/T1102, T1090.002/T1090, T1095, T1571)

Collection – Man in the Browser (T1185)

Resource Development - Web Services, Malware (T1583.006/T1583, T1588.001/T1588)

Persistence - Browser Extensions (T1176)

References

1.     https://www.blackberry.com/us/en/solutions/endpoint-security/ransomware-protection/gootloader

2.     https://redcanary.com/threat-detection-report/threats/gootloader/

3.     https://www.virustotal.com/gui/domain/fysiotherapie-panken.nl

Continue reading
About the author
Ashiq Shafee
Cyber Security Analyst

Good news for your business.
Bad news for the bad guys.

Start your free trial

Start your free trial

Flexible delivery
Cloud-based deployment.
Fast install
Just 1 hour to set up – and even less for an email security trial.
Choose your journey
Try out Self-Learning AI wherever you most need it — including cloud, network or email.
No commitment
Full access to the Darktrace Threat Visualizer and three bespoke Threat Reports, with no obligation to purchase.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
Oops! Something went wrong while submitting the form.

Get a demo

Flexible delivery
You can either install it virtually or with hardware.
Fast install
Just 1 hour to set up – and even less for an email security trial.
Choose your journey
Try out Self-Learning AI wherever you most need it — including cloud, network or email.
No commitment
Full access to the Darktrace Threat Visualizer and three bespoke Threat Reports, with no obligation to purchase.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.