Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Share
Introduction: Mirai Malware attack on IoT devices
The rise of Internet of Things (IoT) devices, like Internet-connected cameras used in CCTV surveillance, has introduced new vulnerabilities to both personal and business environments.
With attackers exploiting the inadequate security measures typically associated with IoT devices, traditional antivirus and legacy security solutions fall short. To address this critical gap, Darktrace’s Cyber AI Platform provides advanced protection for these increasingly essential yet vulnerable technologies.
Attack Overview: Mirai Malware
In late May, Darktrace detected the Mirai malware infecting an internet-facing DVR camera owned by a logistics company in Canada.
Mirai, first discovered in 2016, continuously scans the Internet for the IP addresses of vulnerable devices in the Internet of Things (IoT), and then turns these devices into bots that can be used as part of botnets for large-scale network attacks. These attacks are often difficult to detect, as IoT devices seamlessly integrate into digital infrastructure, creating a vastly expanded attack surface for organizations.
By drawing on a bespoke, evolving understanding of what is normal for the network, Darktrace caught each stage in this attack’s lifecycle. However, because this company was still conducting their 30-day Proof of Value, Darktrace's Autonomous Response was not in active and the attack continued past the point of initial compromise. Had Darktrace's Autonomous Response been in active mode, the attack would not have advanced past initial compromise.
Attack Timeline
Figure 1: This timeline roughly outlines the major attack phases over three days of activity
Technical analysis
At the time of the initial breach, this specific botnet’s infrastructure was not yet known to open source intelligence (OSINT). Darktrace, however, detected an EXE download from a location not previously visited by the network.
After the first anomalous EXE download, another was downloaded approximately twenty minutes later. The malware then reached out to multiple IP addresses that were statistically rare for the network. Specifically, the compromised device began transferring large amounts of data to an IP address in China.
Figure 2: An overview of Darktrace detections
Darktrace, by leveraging machine learning algorithms in a protocol agnostic capacity, analyzed this individual device’s transfers within the context of a continuously evolving understanding of what is normal both for this device and for the wider organization. It was therefore able to immediately flag all of these transfers as unusual.
This activity was fully investigated and reported on by Darktrace’s Cyber AI Analyst. A sample of the AI Analyst’s report is shown below. The Suspicious File Download, the Unusual Repeated Connections, and the Unusual External Data Transfer are all presented as unexpected events that call for further investigation. The destination IP of the suspicious download was determined to have 100% hostname rarity relative to what is normal for the organization.
Figure 3: Darktrace’s Cyber AI Analyst autonomously triages the attack
Moreover, the hash of the file, highlighted in a red box in the figure above, revealed that it was a well-known file related to the Mirai Botnet. However, with no antivirus or other security defending the IoT camera, this had gone undetected.
A one-click analysis of the infected device shows a timeline of the model breaches that occurred and graphs the activity to give the report’s readers a quick understanding of the successive stages of the attack. Here, we see the second and third stages of the attack’s lifecycle, in which it starts DDoS against other devices in order to complete its mission while simultaneously continuing outgoing connections to rare destinations in order to sustain its presence.
Figure 4: The device event log showing the list of model breaches on May 23
Conclusion
Interestingly, the client saw no indicators of this activity beyond a sluggish network. This change in network activity was only explained after being identified by Darktrace. Once the client was promptly notified, the compromise was deescalated, and discovering it was a DVR security camera, the client took the device offline.
As this customer was still concluding their trial deployment, Darktrace was not in full autonomous mode. However, if it had been, Darktrace would have responded with a two-tiered action to prevent the device from communicating with the malicious endpoint, cutting the compromised connection before the attack had gained its foothold.
Darktrace model breaches:
Anomalous Connection / Uncommon 1GiB Outbound
Unusual Activity / Unusual External Activity
Unusual Activity / Enhanced Unusual External Data Transfer
Unusual Activity / Unusual External Data to New IPs
Device / Initial Breach Chain Compromise
Anomalous Server Activity / Outgoing from Server
Anomalous Connection / Data Sent to New External Device
Anomalous Connection / Multiple Connections to New External UDP Port
Anomalous Connection / Data Sent to Rare Domain
Anomalous File / EXE from Rare External Location
Anomalous File / Internet Facing System File Download
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Salty Much: Darktrace’s view on a recent Salt Typhoon intrusion
What is Salt Typhoon?
Salt Typhoon represents one of the most persistent and sophisticated cyber threats targeting global critical infrastructure today. Believed to be linked to state-sponsored actors from the People’s Republic of China (PRC), this advanced persistent threat (APT) group has executed a series of high-impact campaigns against telecommunications providers, energy networks, and government systems—most notably across the United States.
Active since at least 2019, the group—also tracked as Earth Estries, GhostEmperor, and UNC2286—has demonstrated advanced capabilities in exploiting edge devices, maintaining deep persistence, and exfiltrating sensitive data across more than 80 countries. While much of the public reporting has focused on U.S. targets, Salt Typhoon’s operations have extended into Europe, the Middle East, and Africa (EMEA) where it has targeted telecoms, government entities, and technology firms. Its use of custom malware and exploitation of high-impact vulnerabilities (e.g., Ivanti, Fortinet, Cisco) underscores the strategic nature of its campaigns, which blend intelligence collection with geopolitical influence [1].
Leveraging zero-day exploits, obfuscation techniques, and lateral movement strategies, Salt Typhoon has demonstrated an alarming ability to evade detection and maintain long-term access to sensitive environments. The group’s operations have exposed lawful intercept systems, compromised metadata for millions of users, and disrupted essential services, prompting coordinated responses from intelligence agencies and private-sector partners worldwide. As organizations reassess their threat models, Salt Typhoon serves as a stark reminder of the evolving nature of nation-state cyber operations and the urgent need for proactive defense strategies.
Darktrace’s coverage
In this case, Darktrace observed activity in a European telecommunications organisation consistent with Salt Typhoon’s known tactics, techniques and procedures (TTPs), including dynamic-link library (DLL) sideloading and abuse of legitimate software for stealth and execution.
Initial access
The intrusion likely began with exploitation of a Citrix NetScaler Gateway appliance in the first week of July 2025. From there, the actor pivoted to Citrix Virtual Delivery Agent (VDA) hosts in the client’s Machine Creation Services (MCS) subnet. Initial access activities in the intrusion originated from an endpoint potentially associated with the SoftEther VPN service, suggesting infrastructure obfuscation from the outset.
Tooling
Darktrace subsequently observed the threat actor delivering a backdoor assessed with high confidence to be SNAPPYBEE (also known as Deed RAT) [2][3] to multiple Citrix VDA hosts. The backdoor was delivered to these internal endpoints as a DLL alongside legitimate executable files for antivirus software such as Norton Antivirus, Bkav Antivirus, and IObit Malware Fighter. This pattern of activity indicates that the attacker relied on DLL side-loading via legitimate antivirus software to execute their payloads. Salt Typhoon and similar groups have a history of employing this technique [4][5], enabling them to execute payloads under the guise of trusted software and bypassing traditional security controls.
Command-and-Control (C2)
The backdoor delivered by the threat actor leveraged LightNode VPS endpoints for C2, communicating over both HTTP and an unidentified TCP-based protocol. This dual-channel setup is consistent with Salt Typhoon’s known use of non-standard and layered protocols to evade detection. The HTTP communications displayed by the backdoor included POST requests with an Internet Explorer User-Agent header and Target URI patterns such as “/17ABE7F017ABE7F0”. One of the C2 hosts contacted by compromised endpoints was aar.gandhibludtric[.]com (38.54.63[.]75), a domain recently linked to Salt Typhoon [6].
Detection timeline
Darktrace produced high confidence detections in response to the early stages of the intrusion, with both the initial tooling and C2 activities being strongly covered by both investigations by Darktrace Cyber AI AnalystTM investigations and Darktrace models. Despite the sophistication of the threat actor, the intrusion activity identified and remediated before escalating beyond these early stages of the attack, with Darktrace’s timely high-confidence detections likely playing a key role in neutralizing the threat.
Cyber AI Analyst observations
Darktrace’s Cyber AI Analyst autonomously investigated the model alerts generated by Darktrace during the early stages of the intrusion. Through its investigations, Cyber AI Analyst discovered the initial tooling and C2 events and pieced them together into unified incidents representing the attacker’s progression.
Figure 1: Cyber AI Analyst weaved together separate events from the intrusion into broader incidents summarizing the attacker’s progression.
Conclusion
Based on overlaps in TTPs, staging patterns, infrastructure, and malware, Darktrace assesses with moderate confidence that the observed activity was consistent with Salt Typhoon/Earth Estries (ALA GhostEmperor/UNC2286). Salt Typhoon continues to challenge defenders with its stealth, persistence, and abuse of legitimate tools. As attackers increasingly blend into normal operations, detecting behavioral anomalies becomes essential for identifying subtle deviations and correlating disparate signals. The evolving nature of Salt Typhoon’s tradecraft, and its ability to repurpose trusted software and infrastructure, ensures it will remain difficult to detect using conventional methods alone. This intrusion highlights the importance of proactive defense, where anomaly-based detections, not just signature matching, play a critical role in surfacing early-stage activity.
Credit to Nathaniel Jones (VP, Security & AI Strategy, FCISO), Sam Lister (Specialist Security Researcher), Emma Foulger (Global Threat Research Operations Lead), Adam Potter (Senior Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)
Appendices
Indicators of Compromise (IoCs)
IoC-Type-Description + Confidence
89.31.121[.]101 – IP Address – Possible C2 server
hxxp://89.31.121[.]101:443/WINMM.dll - URI – Likely SNAPPYBEE download
The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.
Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.
Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.
The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.
How a Major Civil Engineering Company Reduced MTTR across Network, Email and the Cloud with Darktrace
Asking more of the information security team
“What more can we be doing to secure the company?” is a great question for any cyber professional to hear from their Board of Directors. After successfully defeating a series of attacks and seeing the potential for AI tools to supercharge incoming threats, a UK-based civil engineering company’s security team had the answer: Darktrace.
“When things are coming at you at machine speed, you need machine speed to fight it off – it’s as simple as that,” said their Information Security Manager. “There were incidents where it took us a few hours to get to the bottom of what was going on. Darktrace changed that.”
Prevention was also the best cure. A peer organization in the same sector was still in business continuity measures 18 months after an attack, and the security team did not want to risk that level of business disruption.
Legacy tools were not meeting the team’s desired speed or accuracy
The company’s native SaaS email platform took between two and 14 days to alert on suspicious emails, with another email security tool flagging malicious emails after up to 24 days. After receiving an alert, responses often took a couple of days to coordinate. The team was losing precious time.
Beyond long detection and response times, the old email security platform was no longer performing: 19% of incoming spam was missed. Of even more concern: 6% of phishing emails reached users’ inboxes, and malware and ransomware email was also still getting through, with 0.3% of such email-borne payloads reaching user inboxes.
Choosing Darktrace
“When evaluating tools in 2023, only Darktrace had what I was looking for: an existing, mature, AI-based cybersecurity solution. ChatGPT had just come out and a lot of companies were saying ‘AI this’ and ‘AI that’. Then you’d take a look, and it was all rules- and cases-based, not AI at all,” their Information Security Manager.
The team knew that, with AI-enabled attacks on the horizon, a cybersecurity company that had already built, fielded, and matured an AI-powered cyber defense would give the security team the ability to fend off machine-speed attacks at the same pace as the attackers.
Darktrace accomplishes this with multi-layered AI that learns each organization’s normal business operations. With this detailed level of understanding, Darktrace’s Self-Learning AI can recognize unusual activity that may indicate a cyber-attack, and works to neutralize the threat with precise response actions. And it does this all at machine speed and with minimal disruption.
On the morning the team was due to present its findings, the session was cancelled – for a good reason. The Board didn’t feel further discussion was necessary because the case for Darktrace was so conclusive. The CEO described the Darktrace option as ‘an insurance policy we can’t do without’.
Saving time with Darktrace / EMAIL
Darktrace / EMAIL reduced the discovery, alert, and response process from days or weeks to seconds .
Darktrace / EMAIL automates what was originally a time-consuming and repetitive process. The team has recovered between eight and 10 working hours a week by automating much of this process using / EMAIL.
Today, Darktrace / EMAIL prevents phishing emails from reaching employees’ inboxes. The volume of hostile and unsolicited email fell to a third of its original level after Darktrace / EMAIL was set up.
Further savings with Darktrace / NETWORK and Darktrace / IDENTITY
Since its success with Darktrace / EMAIL, the company adopted two more products from the Darktrace ActiveAI Security Platform – Darktrace / NETWORK and Darktrace / IDENTITY.
These have further contributed to cost savings. An initial plan to build a 24/7 SOC would have required hiring and retaining six additional analysts, rather than the two that currently use Darktrace, costing an additional £220,000 per year in salary. With Darktrace, the existing analysts have the tools needed to become more effective and impactful.
An additional benefit: Darktrace adoption has lowered the company’s cyber insurance premiums. The security team can reallocate this budget to proactive projects.
Detection of novel threats provides reassurance
Darktrace’s unique approach to cybersecurity added a key benefit. The team’s previous tool took a rules-based approach – which was only good if the next attack featured the same characteristics as the ones on which the tool was trained.
“Darktrace looks for anomalous behavior, and we needed something that detected and responded based on use cases, not rules that might be out of date or too prescriptive,” their Information Security Manager. “Our existing provider could take a couple of days to update rules and signatures, and in this game, speed is of the essence. Darktrace just does everything we need - without delay.”
Where rules-based tools must wait for a threat to emerge before beginning to detect and respond to it, Darktrace identifies and protects against unknown and novel threats, speeding identification, response, and recovery, minimizing business disruption as a result.
Looking to the future
With Darktrace in place, the UK-based civil engineering company team has reallocated time and resources usually spent on detection and alerting to now tackle more sophisticated, strategic challenges. Darktrace has also equipped the team with far better and more regularly updated visibility into potential vulnerabilities.
“One thing that frustrates me a little is penetration testing; our ISO accreditation mandates a penetration test at least once a year, but the results could be out of date the next day,” their Information Security Manager. “Darktrace / Proactive Exposure Management will give me that view in real time – we can run it daily if needed - and that’s going to be a really effective workbench for my team.”
As the company looks to further develop its security posture, Darktrace remains poised to evolve alongside its partner.