Learn how to prioritize vulnerabilities effectively with attack path modeling. Learn from Darktrace experts and stay ahead of cyber threats.
TLDR: There are too many technical vulnerabilities and there is too little organizational context for IT teams to patch effectively. Attack path modelling provides the organizational context, allowing security teams to prioritize vulnerabilities. The result is a system where CVEs can be parsed in, organizational context added, and attack paths considered, ultimately providing a prioritized list of vulnerabilities that need to be patched.
Figure 1: The Darktrace user interface presents risk-prioritized vulnerabilities
This blog post explains how Darktrace addresses the challenge of vulnerability prioritization. Most of the industry focusses on understanding the technical impact of vulnerabilities globally (‘How could this CVE generally be exploited? Is it difficult to exploit? Are there pre-requisites to exploitation? …’), without taking local context of a vulnerability into account. We’ll discuss here how we create that local context through attack path modelling and map it to technical vulnerability information. The result is a stunningly powerful way to prioritize vulnerabilities.
We will explore:
1) The challenge and traditional approach to vulnerability prioritization 2) Creating local context through machine learning and attack path modelling 3) Examining the result – contextualized, vulnerability prioritization
The Challenge
Anyone dealing with Threat and Vulnerability Management (TVM) knows this situation:
You have a vulnerability scanning report with dozens or hundreds of pages. There is a long list of ‘critical’ vulnerabilities. How do you start prioritizing these vulnerabilities, assuming your goal is reducing the most risk?
Sometimes the challenge is even more specific – you might have 100 servers with the same critical vulnerability present (e.g. MoveIT). But which one should you patch first, as all of those have the same technical vulnerability priority (‘critical’)? Which one will achieve the biggest risk reduction (critical asset e.g.)? Which one will be almost meaningless to patch (asset with no business impact e.g.) and thus just a time-sink for the patch and IT team?
There have been recent improvements upon flat CVE-scoring for vulnerability prioritization by adding threat-intelligence about exploitability of vulnerabilities into the mix. This is great, examples of that additional information are Exploit Prediction Scoring System (EPSS) and Known Exploited Vulnerabilities Catalogue (KEV).
With CVE and CVSS scores we have the theoretical technical impact of vulnerabilities, and with EPSS and KEV we have information about the likelihood of exploitation of vulnerabilities. That’s a step forward, but still doesn’t give us any local context. Now we know even more about the global and generic technical risk of a vulnerability, but we still lack the local impact on the organization.
Let’s add that missing link via machine learning and attack path modelling.
Adding Attack Path Modelling for Local Context
To prioritize technical vulnerabilities, we need to know as much as we can about the asset on which the vulnerability is present in the context of the local organization. Is it a crown jewel? Is it a choke point? Does it sit on a critical attack path? Is it a dead end, never used and has no business relevance? Does it have organizational priority? Is the asset used by VIP users, as part of a core business or IT process? Does it share identities with elevated credentials? Is the human user on the device susceptible to social engineering?
Those are just a few typical questions when trying to establish local context of an asset. Knowing more about the threat landscape, exploitability, or technical information of a CVE won’t help answer any of the above questions. Gathering, evaluating, maintaining, and using this local context for vulnerability prioritization is the hard part. This local context often resides informally in the head of the TVM or IT team member, having been assembled by having been at the organization for a long time, ‘knowing’ systems, applications and identities in question and talking to asset and application owners if time permits. This does unfortunately not scale, is time-consuming and heavily dependent on individuals.
Understanding all attack paths for an organization provides this local context programmatically.
We discover those attack paths, and these are bespoke for each organization through Darktrace PREVENT™, using the following method (simplified):
1) Build an adaptive model of the local business. Collect, combine, and analyze (using machine learning and non-machine learning techniques) data from various data domains:
a. Network, Cloud, IT, and OT data (network-based attack paths, communication patterns, peer-groups, choke-points, …). Natively collected by Darktrace technology.
b. Email data (social engineering attack paths, phishing susceptibility, external exposure, security awareness level, …). Natively collected by Darktrace technology.
c. Identity data (account privileges, account groups, access levels, shared permissions, …). Collected via various integrations, e.g. Active Directory.
d. Attack surface data (internet-facing exposure, high-impact vulnerabilities, …). Natively collected by Darktrace technology.
e. SaaS information (further identity context). Natively collected by Darktrace
f. Vulnerability information (CVEs, CVSS, EPSS, KEV, …). Collected via integrations, e.g. Vulnerability Scanners or Endpoint products.
Figure 3: Darktrace PREVENT revealing each stage of an attack path
2) Understand what ‘crown jewels’ are and how to get to them. Calculate entity importance (user, technical asset), exposure levels, potential damage levels (blast radius) weakness levels, and other scores to identify most important entities and their relationships to each other (‘crown jewels’).
Various forms of machine learning and non-machine learning techniques are used to achieve this. Further details on some of the exact methods can be found here. The result is a holistic, adaptive and dynamic model of the organization that shows most important entities and how to get to them across various data domains.
The combination of local context and technical context, around the severity and likelihood of exploitation, creates the Darktrace Vulnerability Score. This enables effective risk-based prioritisation of CVE patching.
Figure 4: List of devices with the highest damage potential in the organization - local context
3) Map the attack path model of the organization to common cyber domain knowledge. We can then combine things like MITRE ATT&CK techniques with those identified connectivity patterns and attack paths – making it easy to understand which techniques, tools and procedures (TTPs) can be used to move through the organization, and how difficult it is to exploit each TTP.
Figure 5: An example attack path with associated MITRE techniques and difficulty scores for each TTP
We can now easily start prioritizing CVE patching based on actual, organizational risk and local context.
Bringing It All Together
Finally, we overlay the attack paths calculated by Darktrace with the CVEs collected from a vulnerability scanner or EDR. This can either happen as a native integration in Darktrace PREVENT, if we are already ingesting CVE data from another solution, or via CSV upload.
Figure 6: Darktrace's global CVE prioritization in action.
But you can also go further than just looking at the CVE that delivers the biggest risk reduction globally in your organization if it is patched. You can also look only at certain group of vulnerabilities, or a sub-set of devices to understand where to patch first in this reduced scope:
Figure 7: An example of the information Darktrace reveals around a CVE
This also provides the TVM team clear justification for the patch and infrastructure teams on why these vulnerabilities should be prioritized and what the positive impact will be on risk reduction.
Attack path modelling can be utilized for various other use cases, such as threat modelling and improving SOC efficiency. We’ll explore those in more depth at a later stage.
Want to explore more on using machine learning for vulnerability prioritization? Want to test it on your own data, for free? Arrange a demo today.
Like this and want more?
Receive the latest blog in your inbox
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Newsletter
Enjoying the blog?
Sign up to receive the latest news and insights from the Darktrace newsletter – delivered directly to your inbox
Thanks for signing up!
Look out for your first newsletter, coming soon.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Max Heinemeyer
Global Field CISO
Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.
Darktrace's Detection of State-Linked ShadowPad Malware
An integral part of cybersecurity is anomaly detection, which involves identifying unusual patterns or behaviors in network traffic that could indicate malicious activity, such as a cyber-based intrusion. However, attribution remains one of the ever present challenges in cybersecurity. Attribution involves the process of accurately identifying and tracing the source to a specific threat actor(s).
Given the complexity of digital networks and the sophistication of attackers who often use proxies or other methods to disguise their origin, pinpointing the exact source of a cyberattack is an arduous task. Threat actors can use proxy servers, botnets, sophisticated techniques, false flags, etc. Darktrace’s strategy is rooted in the belief that identifying behavioral anomalies is crucial for identifying both known and novel threat actor campaigns.
The ShadowPad cluster
Between July 2024 and November 2024, Darktrace observed a cluster of activity threads sharing notable similarities. The threads began with a malicious actor using compromised user credentials to log in to the target organization's Check Point Remote Access virtual private network (VPN) from an attacker-controlled, remote device named 'DESKTOP-O82ILGG'. In one case, the IP from which the initial login was carried out was observed to be the ExpressVPN IP address, 194.5.83[.]25. After logging in, the actor gained access to service account credentials, likely via exploitation of an information disclosure vulnerability affecting Check Point Security Gateway devices. Recent reporting suggests this could represent exploitation of CVE-2024-24919 [27,28]. The actor then used these compromised service account credentials to move laterally over RDP and SMB, with files related to the modular backdoor, ShadowPad, being delivered to the ‘C:\PerfLogs\’ directory of targeted internal systems. ShadowPad was seen communicating with its command-and-control (C2) infrastructure, 158.247.199[.]185 (dscriy.chtq[.]net), via both HTTPS traffic and DNS tunneling, with subdomains of the domain ‘cybaq.chtq[.]net’ being used in the compromised devices’ TXT DNS queries.
Figure 1: Darktrace’s Advanced Search data showing the VPN-connected device initiating RDP connections to a domain controller (DC). The device subsequently distributes likely ShadowPad-related payloads and makes DRSGetNCChanges requests to a second DC.
Figure 2: Event Log data showing a DC making DNS queries for subdomains of ‘cbaq.chtq[.]net’ to 158.247.199[.]185 after receiving SMB and RDP connections from the VPN-connected device, DESKTOP-O82ILGG.
Additional cases of ShadowPad were observed across Darktrace’s customer base in 2024. In some cases, common C2 infrastructure with the cluster discussed above was observed, with dscriy.chtq[.]net and cybaq.chtq[.]net both involved; however, no other common features were identified. These ShadowPad infections were observed between April and November 2024, with customers across multiple regions and sectors affected. Darktrace’s observations align with multiple other public reports that fit the timeframe of this campaign.
Darktrace has also observed other cases of ShadowPad without common infrastructure since September 2024, suggesting the use of this tool by additional threat actors.
The data theft thread
One of the Darktrace customers impacted by the ShadowPad cluster highlighted above was a European manufacturer. A distinct thread of activity occurred within this organization’s network several months after the ShadowPad intrusion, in October 2024.
The thread involved the internal distribution of highly masqueraded executable files via Sever Message Block (SMB) and WMI (Windows Management Instrumentation), the targeted collection of sensitive information from an internal server, and the exfiltration of collected information to a web of likely compromised sites. This observed thread of activity, therefore, consisted of three phrases: lateral movement, collection, and exfiltration.
The lateral movement phase began when an internal user device used an administrative credential to distribute files named ‘ProgramData\Oracle\java.log’ and 'ProgramData\Oracle\duxwfnfo' to the c$ share on another internal system.
Figure 3: Darktrace model alert highlighting an SMB write of a file named ‘ProgramData\Oracle\java.log’ to the c$ share on another device.
Over the next few days, Darktrace detected several other internal systems using administrative credentials to upload files with the following names to the c$ share on internal systems:
ProgramData\Adobe\ARM\webservices.dll
ProgramData\Adobe\ARM\wksprt.exe
ProgramData\Oracle\Java\wksprt.exe
ProgramData\Oracle\Java\webservices.dll
ProgramData\Microsoft\DRM\wksprt.exe
ProgramData\Microsoft\DRM\webservices.dll
ProgramData\Abletech\Client\webservices.dll
ProgramData\Abletech\Client\client.exe
ProgramData\Adobe\ARM\rzrmxrwfvp
ProgramData\3Dconnexion\3DxWare\3DxWare.exe
ProgramData\3Dconnexion\3DxWare\webservices.dll
ProgramData\IDMComp\UltraCompare\updater.exe
ProgramData\IDMComp\UltraCompare\webservices.dll
ProgramData\IDMComp\UltraCompare\imtrqjsaqmm
Figure 4: Cyber AI Analyst highlighting an SMB write of a file named ‘ProgramData\Adobe\ARM\webservices.dll’ to the c$ share on an internal system.
The threat actor appears to have abused the Microsoft RPC (MS-RPC) service, WMI, to execute distributed payloads, as evidenced by the ExecMethod requests to the IWbemServices RPC interface which immediately followed devices’ SMB uploads.
Figure 5: Cyber AI Analyst data highlighting a thread of activity starting with an SMB data upload followed by ExecMethod requests.
Several of the devices involved in these lateral movement activities, both on the source and destination side, were subsequently seen using administrative credentials to download tens of GBs of sensitive data over SMB from a specially selected server. The data gathering stage of the threat sequence indicates that the threat actor had a comprehensive understanding of the organization’s system architecture and had precise objectives for the information they sought to extract.
Immediately after collecting data from the targeted server, devices went on to exfiltrate stolen data to multiple sites. Several other likely compromised sites appear to have been used as general C2 infrastructure for this intrusion activity. The sites used by the threat actor for C2 and data exfiltration purport to be sites for companies offering a variety of service, ranging from consultancy to web design.
Figure 6: Screenshotof one of the likely compromised sites used in the intrusion.
At least 16 sites were identified as being likely data exfiltration or C2 sites used by this threat actor in their operation against this organization. The fact that the actor had such a wide web of compromised sites at their disposal suggests that they were well-resourced and highly prepared.
Figure 7: Darktrace model alert highlighting an internal device slowly exfiltrating data to the external endpoint, yasuconsulting[.]com.
Figure 8: Darktrace model alert highlighting an internal device downloading nearly 1 GB of data from an internal system just before uploading a similar volume of data to another suspicious endpoint, www.tunemmuhendislik[.]com
Cyber AI Analyst spotlight
Figure 9: Cyber AI Analyst identifying and piecing together the various steps of a ShadowPad intrusion.
Figure 10: Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.
As shown in the above figures, Cyber AI Analyst’s ability to thread together the different steps of these attack chains are worth highlighting.
In the ShadowPad attack chains, Cyber AI Analyst was able to identify SMB writes from the VPN subnet to the DC, and the C2 connections from the DC. It was also able to weave together this activity into a single thread representing the attacker’s progression.
Similarly, in the data exfiltration attack chain, Cyber AI Analyst identified and connected multiple types of lateral movement over SMB and WMI and external C2 communication to various external endpoints, linking them in a single, connected incident.
These Cyber AI Analyst actions enabled a quicker understanding of the threat actor sequence of events and, in some cases, faster containment.
Attribution puzzle
Publicly shared research into ShadowPad indicates that it is predominantly used as a backdoor in People’s Republic of China (PRC)-sponsored espionage operations [5][6][7][8][9][10]. Most publicly reported intrusions involving ShadowPad are attributed to the China-based threat actor, APT41 [11][12]. Furthermore, Google Threat Intelligence Group (GTIG) recently shared their assessment that ShadowPad usage is restricted to clusters associated with APT41 [13]. Interestingly, however, there have also been public reports of ShadowPad usage in unattributed intrusions [5].
The data theft activity that later occurred in the same Darktrace customer network as one of these ShadowPad compromises appeared to be the targeted collection and exfiltration of sensitive data. Such an objective indicates the activity may have been part of a state-sponsored operation. The tactics, techniques, and procedures (TTPs), artifacts, and C2 infrastructure observed in the data theft thread appear to resemble activity seen in previous Democratic People’s Republic of Korea (DPRK)-linked intrusion activities [15] [16] [17] [18] [19].
The distribution of payloads to the following directory locations appears to be a relatively common behavior in DPRK-sponsored intrusions.
Observed examples:
C:\ProgramData\Oracle\Java\
C:\ProgramData\Adobe\ARM\
C:\ProgramData\Microsoft\DRM\
C:\ProgramData\Abletech\Client\
C:\ProgramData\IDMComp\UltraCompare\
C:\ProgramData\3Dconnexion\3DxWare\
Additionally, the likely compromised websites observed in the data theft thread, along with some of the target URI patterns seen in the C2 communications to these sites, resemble those seen in previously reported DPRK-linked intrusion activities.
No clear evidence was found to link the ShadowPad compromise to the subsequent data theft activity that was observed on the network of the manufacturing customer. It should be noted, however, that no clear signs of initial access were found for the data theft thread – this could suggest the ShadowPad intrusion itself represents the initial point of entry that ultimately led to data exfiltration.
Motivation-wise, it seems plausible for the data theft thread to have been part of a DPRK-sponsored operation. DPRK is known to pursue targets that could potentially fulfil its national security goals and had been publicly reported as being active in months prior to this intrusion [21]. Furthermore, the timing of the data theft aligns with the ratification of the mutual defense treaty between DPRK and Russia and the subsequent accused activities [20].
Darktrace assesses with medium confidence that a nation-state, likely DPRK, was responsible, based on our investigation, the threat actor applied resources, patience, obfuscation, and evasiveness combined with external reporting, collaboration with the cyber community, assessing the attacker’s motivation and world geopolitical timeline, and undisclosed intelligence.
Conclusion
When state-linked cyber activity occurs within an organization’s environment, previously unseen C2 infrastructure and advanced evasion techniques will likely be used. State-linked cyber actors, through their resources and patience, are able to bypass most detection methods, leaving anomaly-based methods as a last line of defense.
Two threads of activity were observed within Darktrace’s customer base over the last year: The first operation involved the abuse of Check Point VPN credentials to log in remotely to organizations’ networks, followed by the distribution of ShadowPad to an internal domain controller. The second operation involved highly targeted data exfiltration from the network of one of the customers impacted by the previously mentioned ShadowPad activity.
Despite definitive attribution remaining unresolved, both the ShadowPad and data exfiltration activities were detected by Darktrace’s Self-Learning AI, with Cyber AI Analyst playing a significant role in identifying and piecing together the various steps of the intrusion activities.
Credit to Sam Lister (R&D Detection Analyst), Emma Foulger (Principal Cyber Analyst), Nathaniel Jones (VP), and the Darktrace Threat Research team.
Appendices
Darktrace / NETWORK model alerts
User / New Admin Credentials on Client
Anomalous Connection / Unusual Admin SMB Session
Compliance / SMB Drive Write
Device / Anomalous SMB Followed By Multiple Model Breaches
Survey findings: AI Cyber Threats are a Reality, the People are Acting Now
Artificial intelligence is changing the cybersecurity field as fast as any other, both on the offensive and defensive side. We surveyed over 1,500 cybersecurity professionals from around the world to uncover their attitudes, understanding, and priorities when it comes to AI cybersecurity in 2025. Our full report, unearthing some telling trends, is out now.
Nearly 74% of participants say AI-powered threats are a major challenge for their organization and 90% expect these threats to have a significant impact over the next one to two years, a slight increase from last year. These statistics highlight that AI is not just an emerging risk but a present and evolving one.
As attackers harness AI to automate and scale their operations, security teams must adapt just as quickly. Organizations that fail to prioritize AI-specific security measures risk falling behind, making proactive defense strategies more critical than ever.
Some of the most pressing AI-driven cyber threats include:
AI-powered social engineering: Attackers are leveraging AI to craft highly personalized and convincing phishing emails, making them harder to detect and more likely to bypass traditional defenses.
More advanced attacks at speed and scale: AI lowers the barrier for less skilled threat actors, allowing them to launch sophisticated attacks with minimal effort.
Attacks targeting AI systems: Cybercriminals are increasingly going after AI itself, compromising machine learning models, tampering with training data, and exploiting vulnerabilities in AI-driven applications and APIs.
Safe and secure use of AI
AI is having an effect on the cyber-threat landscape, but it also is starting to impact every aspect of a business – from marketing to HR to operations. The accessibility of AI tools for employees improves workflows, but also poses risks like data privacy violations, shadow AI, and violation of industry regulations.
How are security practitioners accommodating for this uptick in AI use across business?
Among survey participants 45% of security practitioners say they had already established a policy on the safe and secure use of AI and around 50% are in discussions to do so.
While almost all participants acknowledge that this is a topic that needs to be addressed, the gap between discussion and execution could underscore a need for greater insight, stronger leadership commitment, and adaptable security frameworks to keep pace with AI advancements in the workplace. The most popular actions taken are:
Implemented security controls to prevent unwanted exposure of corporate data when using AI technology (67%)
Implemented security controls to protect against other threats/risks associated with using AI technology (62%)
This year specifically, we see further action being taken with the implementation of security controls, training, and oversight.
For a more detailed breakdown that includes results based on industry and organizational size, download the full report here.
AI threats are rising, but security teams still face major challenges
78% of CISOs say AI-powered cyber-threats are already having a significant impact on their organization, a 5% increase from last year.
While cyber professionals feel more prepared for AI powered threats than they did 12 months ago, 45% still say their organization is not adequately prepared—down from 60% last year.
Despite this optimism, key challenges remain, including:
A shortage of personnel to manage tools and alerts
Gaps in knowledge and skills related to AI-driven countermeasures
Confidence in traditional security tools vs. new AI based tools
This year, 73% of survey participants expressed confidence in their security team’s proficiency in using AI within their tool stack, marking an increase from the previous year.
However, only 50% of participants have confidence in traditional cybersecurity tools to detect and block AI-powered threats. In contrast, 75% of participants are confident in AI-powered security solutions for detecting and blocking such threats and attacks.
As leading organizations continue to implement and optimize their use of AI, they are incorporating it into an increasing number of workflows. This growing familiarity with AI is likely to boost the confidence levels of practitioners even further.
The data indicates a clear trend towards greater reliance on AI-powered security solutions over traditional tools. As organizations become more adept at integrating AI into their operations, their confidence in these advanced technologies grows.
This shift underscores the importance of staying current with AI advancements and ensuring that security teams are well-trained in utilizing these tools effectively. The increasing confidence in AI-driven solutions reflects their potential to enhance cybersecurity measures and better protect against sophisticated threats.
The full report for Darktrace’s State of AI Cybersecurity is out now. Download the paper to dig deeper into these trends, and see how results differ by industry, region, organization size, and job title.