Blog
/
/
August 9, 2023

Improve Security with Attack Path Modeling

Learn how to prioritize vulnerabilities effectively with attack path modeling. Learn from Darktrace experts and stay ahead of cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Written by
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Aug 2023

TLDR: There are too many technical vulnerabilities and there is too little organizational context for IT teams to patch effectively. Attack path modelling provides the organizational context, allowing security teams to prioritize vulnerabilities. The result is a system where CVEs can be parsed in, organizational context added, and attack paths considered, ultimately providing a prioritized list of vulnerabilities that need to be patched.

Figure 1: The Darktrace user interface presents risk-prioritized vulnerabilities


This blog post explains how Darktrace addresses the challenge of vulnerability prioritization. Most of the industry focusses on understanding the technical impact of vulnerabilities globally (‘How could this CVE generally be exploited? Is it difficult to exploit? Are there pre-requisites to exploitation? …’), without taking local context of a vulnerability into account. We’ll discuss here how we create that local context through attack path modelling and map it to technical vulnerability information. The result is a stunningly powerful way to prioritize vulnerabilities.

We will explore:

1)    The challenge and traditional approach to vulnerability prioritization
2)    Creating local context through machine learning and attack path modelling
3)    Examining the result – contextualized, vulnerability prioritization

The Challenge

Anyone dealing with Threat and Vulnerability Management (TVM) knows this situation:

You have a vulnerability scanning report with dozens or hundreds of pages. There is a long list of ‘critical’ vulnerabilities. How do you start prioritizing these vulnerabilities, assuming your goal is reducing the most risk?

Sometimes the challenge is even more specific – you might have 100 servers with the same critical vulnerability present (e.g. MoveIT). But which one should you patch first, as all of those have the same technical vulnerability priority (‘critical’)? Which one will achieve the biggest risk reduction (critical asset e.g.)? Which one will be almost meaningless to patch (asset with no business impact e.g.) and thus just a time-sink for the patch and IT team?

There have been recent improvements upon flat CVE-scoring for vulnerability prioritization by adding threat-intelligence about exploitability of vulnerabilities into the mix. This is great, examples of that additional information are Exploit Prediction Scoring System (EPSS) and Known Exploited Vulnerabilities Catalogue (KEV).

Figure 2: The idea behind EPSS – focus on actually exploited CVEs. (diagram taken from https://www.first.org/epss/model)

With CVE and CVSS scores we have the theoretical technical impact of vulnerabilities, and with EPSS and KEV we have information about the likelihood of exploitation of vulnerabilities. That’s a step forward, but still doesn’t give us any local context. Now we know even more about the global and generic technical risk of a vulnerability, but we still lack the local impact on the organization.

Let’s add that missing link via machine learning and attack path modelling.

Adding Attack Path Modelling for Local Context

To prioritize technical vulnerabilities, we need to know as much as we can about the asset on which the vulnerability is present in the context of the local organization. Is it a crown jewel? Is it a choke point? Does it sit on a critical attack path? Is it a dead end, never used and has no business relevance? Does it have organizational priority? Is the asset used by VIP users, as part of a core business or IT process? Does it share identities with elevated credentials? Is the human user on the device susceptible to social engineering?

Those are just a few typical questions when trying to establish local context of an asset. Knowing more about the threat landscape, exploitability, or technical information of a CVE won’t help answer any of the above questions. Gathering, evaluating, maintaining, and using this local context for vulnerability prioritization is the hard part. This local context often resides informally in the head of the TVM or IT team member, having been assembled by having been at the organization for a long time, ‘knowing’ systems, applications and identities in question and talking to asset and application owners if time permits. This does unfortunately not scale, is time-consuming and heavily dependent on individuals.

Understanding all attack paths for an organization provides this local context programmatically.

We discover those attack paths, and these are bespoke for each organization through Darktrace PREVENT, using the following method (simplified):

1)    Build an adaptive model of the local business. Collect, combine, and analyze (using machine learning and non-machine learning techniques) data from various data domains:

a.     Network, Cloud, IT, and OT data (network-based attack paths, communication patterns, peer-groups, choke-points, …). Natively collected by Darktrace technology.

b.     Email data (social engineering attack paths, phishing susceptibility, external exposure, security awareness level, …). Natively collected by Darktrace technology.

c.     Identity data (account privileges, account groups, access levels, shared permissions, …). Collected via various integrations, e.g. Active Directory.

d.     Attack surface data (internet-facing exposure, high-impact vulnerabilities, …). Natively collected by Darktrace technology.

e.     SaaS information (further identity context). Natively collected by Darktrace

f.      Vulnerability information (CVEs, CVSS, EPSS, KEV, …). Collected via integrations, e.g. Vulnerability Scanners or Endpoint products.

Figure 3: Darktrace PREVENT revealing each stage of an attack path

2)    Understand what ‘crown jewels’ are and how to get to them. Calculate entity importance (user, technical asset), exposure levels, potential damage levels (blast radius) weakness levels, and other scores to identify most important entities and their relationships to each other (‘crown jewels’).

Various forms of machine learning and non-machine learning techniques are used to achieve this. Further details on some of the exact methods can be found here. The result is a holistic, adaptive and dynamic model of the organization that shows most important entities and how to get to them across various data domains.

The combination of local context and technical context, around the severity and likelihood of exploitation, creates the Darktrace Vulnerability Score. This enables effective risk-based prioritisation of CVE patching.

Figure 4: List of devices with the highest damage potential in the organization - local context

3)    Map the attack path model of the organization to common cyber domain knowledge. We can then combine things like MITRE ATT&CK techniques with those identified connectivity patterns and attack paths – making it easy to understand which techniques, tools and procedures (TTPs) can be used to move through the organization, and how difficult it is to exploit each TTP.

Figure 5: An example attack path with associated MITRE techniques and difficulty scores for each TTP

We can now easily start prioritizing CVE patching based on actual, organizational risk and local context.

Bringing It All Together

Finally, we overlay the attack paths calculated by Darktrace with the CVEs collected from a vulnerability scanner or EDR. This can either happen as a native integration in Darktrace PREVENT, if we are already ingesting CVE data from another solution, or via CSV upload.

Figure 6: Darktrace's global CVE prioritization in action.

But you can also go further than just looking at the CVE that delivers the biggest risk reduction globally in your organization if it is patched. You can also look only at certain group of vulnerabilities, or a sub-set of devices to understand where to patch first in this reduced scope:

Figure 7: An example of the information Darktrace reveals around a CVE

This also provides the TVM team clear justification for the patch and infrastructure teams on why these vulnerabilities should be prioritized and what the positive impact will be on risk reduction.

Attack path modelling can be utilized for various other use cases, such as threat modelling and improving SOC efficiency. We’ll explore those in more depth at a later stage.

Want to explore more on using machine learning for vulnerability prioritization? Want to test it on your own data, for free? Arrange a demo today.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Written by
Adam Stevens
Senior Director of Product, Cloud | Darktrace

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI