How Cyber-Attacks Take Down Critical Infrastructure

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Jul 2021
07
Jul 2021
Cyber-attacks can bypass IT/OT security barriers and threaten your organization's infrastructure. Here's how you can stay protected in today's threat landscape.

Balancing Operational Continuity and Safety in Critical Infrastructure

The recent high-profile attacks against Colonial Pipeline and JBS Foods highlight that operational technology (OT) — the devices that drive gas flows and food processing, along with essentially all other machine-driven physical processes — does not need to be directly targeted in order to be shut down as the result of a cyber-attack.

Indeed, in the Colonial Pipeline incident, the information technology (IT) systems were reportedly compromised, with operations shut down intentionally out of an abundance of caution, that is, so as to not risk the attack spreading to OT and threatening safety. This highlights that threats to both human and environmental safety, along with uncertainty as to the scope of infection, present risk factors for these sensitive industrial environments.

Continuity through availability and integrity

In most countries, critical infrastructure (CI) — ranging from power grids and pipelines to transportation and health care — must maintain continuous activity. The recent ransomware attack against Colonial Pipeline demonstrates why this is the case, where gas shortages due to the compromise led to dangerous panic buys and long lines at the pumps.

Ensuring continuous operation of critical infrastructure requires safeguarding the availability and integrity of machinery. This means that organizations overseeing critical infrastructure must foresee any possible risks and implement systems, procedures, and technologies that mitigate or remove these risks so as to keep their operations running.

Operational demand versus safety

Alongside this requirement for operational continuity, and often in opposition to it, is the requirement for operational safety. These requirements can be in opposition because operational continuity demands that devices remain up and running at all costs, and operational safety demands that humans and the environment be protected at all costs.

Safety measures in critical infrastructure have improved and become increasingly prioritized over the last 50 years following numerous high-profile incidents, such as the Bhopal chemical disaster, the Texas City refinery explosion, and the Deepwater Horizon oil spill. Appropriate safety precautions could have likely prevented these incidents, but at the expense of operational continuity.

Consequently, administrators of critical infrastructure have to balance the very real threat that an incident may pose to both human life and the environment with the demand to remain operational at all times. More often than not, the final decision regarding what constitutes an acceptable risk is determined by budgets and cost-benefit analyses.

Cyber-attack: A rising risk profile for critical infrastructure

In 2010, the discovery of the Stuxnet malware — which resulted in a nuclear facility in Iran having its centrifuges ruined via compromised programmable logic controllers (PLCs) — demonstrated that critical infrastructure could be targeted by a cyber-attack.

At the time of Stuxnet, critical infrastructure industries used computers designed to ensure operational continuity with little regard for cyber security, as at the time the risk of a cyber-attack seemed either non-existent or vanishingly low. Since then, a number of attacks targeting industrial environments that have emerged on the global threat landscape.

Figure 1: An overview of distinctive methods used in attacks against industrial environments

Classic strains of industrial malware, such as Stuxnet, Triton, and Industroyer, have historically been installed via removable media, such as USB. This is because OT networks are traditionally segregated from the Internet in what is known as an ‘air gap.’ And this remains a prevalent vector of attack, with a study recently finding that cyber-threats installed via USB and other external media doubled in 2021, with 79% of these holding the potential to disrupt OT.

In many ways, operational demands in the subsequent 10 years have made critical infrastructure even more vulnerable. These include the convergence of information technology and operational technology (IT/OT convergence), the adoption of devices in the Industrial Internet of Things (IIoT), and the deprecation of manual back-up systems. This means that OT can be disrupted by cyber-attacks that first target IT systems, rather than having to be installed manually via external media.

At the same time, recent government initiatives — such as the Department of Energy’s 100-day ‘cyber sprint’ to protect electricity operations and President Biden’s Executive Order on Improving the Nation’s Cybersecurity — and regulatory frameworks and directives such as the EU’s NIS directive have either encouraged or mandated that critical infrastructure industries start addressing this new risk.

With the severe and persistent threat that cyber-attacks pose to critical infrastructure, including maritime cybersecurity, and the increasing calls to address the issue, the question remains as to how to best achieve robust cyber defense.

Assessing the risk

To claim administrators of critical infrastructure are ignorant or oblivious to the threat posed by cyber-attacks would be unfair. Many organizations have implemented changes to mitigate or remove the risk either as a result of regulation or their own forward thinking.

However, these projects can take years, even decades. High costs and ever-changing operational demand also mean that these projects may never fully remove the risk.

As a result, many operators may understand the threat of a cyber-attack but not be in a position to do anything about it in the short or medium term. Instead, procedures have to be put in place to minimize risk even if this threatens operational continuity.

For example, a risk assessment may decide it is best to shut down all OT operations in the event of a cyber-attack in order to avoid a major accident. This abundance of caution is forced upon operators, who do not have the ability to immediately confirm the boundaries of a compromise. The prevalence of cyber insurance provides this option with further appeal. Any losses incurred by stopping operations can theoretically be recouped and the risk is therefore transferred.

While the full details of the Colonial Pipeline ransomware incident are still to be determined, the sequence of events outlined below provides a plausible explanation for how a cyber-attack could take down critical infrastructure, even when that cyber-attack does not reach or even target OT systems. Indeed, the CEO of Colonial Pipeline, in a testimony to congress, confirmed “the imperative to isolate and contain the attack to help ensure the malware did not spread to the operational technology network, which controls our pipeline operations, if it had not already.”

Figure 2: A sequence of events which may lead to critical infrastructure being shut down by a cyber-attack, even when that cyber-attack doesn’t directly impact OT networks

The limits of securing IT or OT in isolation

The emergence of OT cyber security solutions in the last five years demonstrates that critical infrastructure industries are trying to find a way to address the risks posed by cyber-attacks. But these solutions have limited scope, as they assume IT and OT are separated and use legacy security techniques such as malware signatures and patch management.

The 2021 SANS ICS Security Summit highlighted how the OT security community suffers from a lack of visibility in knowing and understanding their networks. For many organizations, simply determining whether an unusual incident is an attack or the result of a software error is a challenge.

Given that most OT cyber-attacks actually start in IT networks before pivoting into OT, investing in an IT security solution rather than an OT-specific solution may at first seem like a better business decision. But IT solutions fall short if an attacker successfully pivots into the OT network, or if the attacker is a rogue insider who already has direct access to the OT network. A siloed approach to securing either IT or OT in isolation will thus fall short of the full scope needed to safeguard industrial systems.

It is clear that a mature security posture for critical infrastructure would include security solutions for both IT and OT. Even then, using separate solutions to protect the IT and OT networks is limited, as it presents challenges when defending network boundaries and detecting incidents when an attacker pivots from IT to OT. Under time pressure, a security team does not want changes in visibility, detection, language or interface while trying to determine whether a threat crossed the ‘boundary’ between IT and OT.

Separate solutions can also make detecting an attacker abusing traditional IT attack TTPs within an OT network much harder if the security team is relying on a purely OT solution to defend the OT environment. Examples of this include the abuse of IT remote management tools to affect industrial environments, such as in the suspected cyber-attack at the Florida water facility earlier this year. Cybersecurity for utilities is becoming increasingly important as these sectors face growing cyber threats that can disrupt essential services.

Using AI to minimize cyber risk and maximize cyber safety

In contrast, Darktrace AI is able to defend an entire cyber ecosystem estate, building a ‘pattern of life’ across IT and OT, as well as the points at which they converge. Consequently, cyber security teams can use a single pane of glass to detect and respond to cyber-attacks as they emerge and develop, regardless of where they are in the environment.

Use cases for Darktrace’s Self-Learning AI include containing pre-existing threats to maintain continuous operations. This was seen when Darktrace’s AI detected pre-existing infections and acted autonomously to contain the threat, allowing the operator to leave infected IIoT devices active while waiting for replacements. Darktrace can also thwart ransomware in IT before it can spread into OT, as when Darktrace detected a ransomware attack targeting a supplier for critical infrastructure in North America at its earliest stages.

Darktrace’s unified protection, including visibility and early detection of zero-days, empowers security teams to overcome uncertainty and make a confident decision not to shut down operations. Darktrace has already demonstrated this ability in the wild, and allows organizations to understand normal machine and human behavior in order to enforce this behavior, even in the face of an emerging cyber-attack.

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Oakley Cox
Director of Product

Oakley is a Product Manager within the Darktrace R&D team. He collaborates with global customers, including all critical infrastructure sectors and Government agencies, to ensure Darktrace/OT remains the first in class solution for OT Cyber Security. He draws on 7 years’ experience as a Cyber Security Consultant to organizations across EMEA, APAC and ANZ. His research into cyber-physical security has been published by Cyber Security journals and by CISA. Oakley has a Doctorate (PhD) from the University of Oxford.

Book a 1-1 meeting with one of our experts
share this article
COre coverage

More in this series

No items found.

Blog

Thought Leadership

The State of AI in Cybersecurity: Understanding AI Technologies

Default blog imageDefault blog image
24
Jul 2024

About the State of AI Cybersecurity Report

Darktrace surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog continues the conversation from “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners”. This blog will focus on security professionals’ understanding of AI technologies in cybersecurity tools.

To access download the full report, click here.

How familiar are security professionals with supervised machine learning

Just 31% of security professionals report that they are “very familiar” with supervised machine learning.

Many participants admitted unfamiliarity with various AI types. Less than one-third felt "very familiar" with the technologies surveyed: only 31% with supervised machine learning and 28% with natural language processing (NLP).

Most participants were "somewhat" familiar, ranging from 46% for supervised machine learning to 36% for generative adversarial networks (GANs). Executives and those in larger organizations reported the highest familiarity.

Combining "very" and "somewhat" familiar responses, 77% had familiarity with supervised machine learning, 74% generative AI, and 73% NLP. With generative AI getting so much media attention, and NLP being the broader area of AI that encompasses generative AI, these results may indicate that stakeholders are understanding the topic on the basis of buzz, not hands-on work with the technologies.  

If defenders hope to get ahead of attackers, they will need to go beyond supervised learning algorithms trained on known attack patterns and generative AI. Instead, they’ll need to adopt a comprehensive toolkit comprised of multiple, varied AI approaches—including unsupervised algorithms that continuously learn from an organization’s specific data rather than relying on big data generalizations.  

Different types of AI

Different types of AI have different strengths and use cases in cyber security. It’s important to choose the right technique for what you’re trying to achieve.  

Supervised machine learning: Applied more often than any other type of AI in cyber security. Trained on human attack patterns and historical threat intelligence.  

Large language models (LLMs): Applies deep learning models trained on extremely large data sets to understand, summarize, and generate new content. Used in generative AI tools.  

Natural language processing (NLP): Applies computational techniques to process and understand human language.  

Unsupervised machine learning: Continuously learns from raw, unstructured data to identify deviations that represent true anomalies.  

What impact will generative AI have on the cybersecurity field?

More than half of security professionals (57%) believe that generative AI will have a bigger impact on their field over the next few years than other types of AI.

Chart showing the types of AI expected to impact security the most
Figure 1: Chart from Darktrace's State of AI in Cybersecurity Report

Security stakeholders are highly aware of generative AI and LLMs, viewing them as pivotal to the field's future. Generative AI excels at abstracting information, automating tasks, and facilitating human-computer interaction. However, LLMs can "hallucinate" due to training data errors and are vulnerable to prompt injection attacks. Despite improvements in securing LLMs, the best cyber defenses use a mix of AI types for enhanced accuracy and capability.

AI education is crucial as industry expectations for generative AI grow. Leaders and practitioners need to understand where and how to use AI while managing risks. As they learn more, there will be a shift from generative AI to broader AI applications.

Do security professionals fully understand the different types of AI in security products?

Only 26% of security professionals report a full understanding of the different types of AI in use within security products.

Confusion is prevalent in today’s marketplace. Our survey found that only 26% of respondents fully understand the AI types in their security stack, while 31% are unsure or confused by vendor claims. Nearly 65% believe generative AI is mainly used in cybersecurity, though it’s only useful for identifying phishing emails. This highlights a gap between user expectations and vendor delivery, with too much focus on generative AI.

Key findings include:

  • Executives and managers report higher understanding than practitioners.
  • Larger organizations have better understanding due to greater specialization.

As AI evolves, vendors are rapidly introducing new solutions faster than practitioners can learn to use them. There's a strong need for greater vendor transparency and more education for users to maximize the technology's value.

To help ease confusion around AI technologies in cybersecurity, Darktrace has released the CISO’s Guide to Cyber AI. A comprehensive white paper that categorizes the different applications of AI in cybersecurity. Download the White Paper here.  

Do security professionals believe generative AI alone is enough to stop zero-day threats?

No! 86% of survey participants believe generative AI alone is NOT enough to stop zero-day threats

This consensus spans all geographies, organization sizes, and roles, though executives are slightly less likely to agree. Asia-Pacific participants agree more, while U.S. participants agree less.

Despite expecting generative AI to have the most impact, respondents recognize its limited security use cases and its need to work alongside other AI types. This highlights the necessity for vendor transparency and varied AI approaches for effective security across threat prevention, detection, and response.

Stakeholders must understand how AI solutions work to ensure they offer advanced, rather than outdated, threat detection methods. The survey shows awareness that old methods are insufficient.

To access the full report, click here.

Continue reading
About the author
The Darktrace Community

Blog

Inside the SOC

Jupyter Ascending: Darktrace’s Investigation of the Adaptive Jupyter Information Stealer

Default blog imageDefault blog image
18
Jul 2024

What is Malware as a Service (MaaS)?

Malware as a Service (MaaS) is a model where cybercriminals develop and sell or lease malware to other attackers.

This approach allows individuals or groups with limited technical skills to launch sophisticated cyberattacks by purchasing or renting malware tools and services. MaaS is often provided through online marketplaces on the dark web, where sellers offer various types of malware, including ransomware, spyware, and trojans, along with support services such as updates and customer support.

The Growing MaaS Marketplace

The Malware-as-a-Service (MaaS) marketplace is rapidly expanding, with new strains of malware being regularly introduced and attracting waves of new and previous attackers. The low barrier for entry, combined with the subscription-like accessibility and lucrative business model, has made MaaS a prevalent tool for cybercriminals. As a result, MaaS has become a significant concern for organizations and their security teams, necessitating heightened vigilance and advanced defense strategies.

Examples of Malware as a Service

  • Ransomware as a Service (RaaS): Providers offer ransomware kits that allow users to launch ransomware attacks and share the ransom payments with the service provider.
  • Phishing as a Service: Services that provide phishing kits, including templates and email lists, to facilitate phishing campaigns.
  • Botnet as a Service: Renting out botnets to perform distributed denial-of-service (DDoS) attacks or other malicious activities.
  • Information Stealer: Information stealers are a type of malware specifically designed to collect sensitive data from infected systems, such as login credentials, credit card numbers, personal identification information, and other valuable data.

How does information stealer malware work?

Information stealers are an often-discussed type MaaS tool used to harvest personal and proprietary information such as administrative credentials, banking information, and cryptocurrency wallet details. This information is then exfiltrated from target networks via command-and-control (C2) communication, allowing threat actors to monetize the data. Information stealers have also increasingly been used as an initial access vector for high impact breaches including ransomware attacks, employing both double and triple extortion tactics.

After investigating several prominent information stealers in recent years, the Darktrace Threat Research team launched an investigation into indicators of compromise (IoCs) associated with another variant in late 2023, namely the Jupyter information stealer.

What is Jupyter information stealer and how does it work?

The Jupyter information stealer (also known as Yellow Cockatoo, SolarMarker, and Polazert) was first observed in the wild in late 2020. Multiple variants have since become part of the wider threat landscape, however, towards the end of 2023 a new variant was observed. This latest variant achieved greater stealth and updated its delivery method, targeting browser extensions such as Edge, Firefox, and Chrome via search engine optimization (SEO) poisoning and malvertising. This then redirects users to download malicious files that typically impersonate legitimate software, and finally initiates the infection and the attack chain for Jupyter [3][4]. In recently noted cases, users download malicious executables for Jupyter via installer packages created using InnoSetup – an open-source compiler used to create installation packages in the Windows OS.

The latest release of Jupyter reportedly takes advantage of signed digital certificates to add credibility to downloaded executables, further supplementing its already existing tactics, techniques and procedures (TTPs) for detection evasion and sophistication [4]. Jupyter does this while still maintaining features observed in other iterations, such as dropping files into the %TEMP% folder of a system and using PowerShell to decrypt and load content into memory [4]. Another reported feature includes backdoor functionality such as:

  • C2 infrastructure
  • Ability to download and execute malware
  • Execution of PowerShell scripts and commands
  • Injecting shellcode into legitimate windows applications

Darktrace Coverage of Jupyter information stealer

In September 2023, Darktrace’s Threat Research team first investigated Jupyter and discovered multiple IoCs and TTPs associated with the info-stealer across the customer base. Across most investigated networks during this time, Darktrace observed the following activity:

  • HTTP POST requests over destination port 80 to rare external IP addresses (some of these connections were also made via port 8089 and 8090 with no prior hostname lookup).
  • HTTP POST requests specifically to the root directory of a rare external endpoint.
  • Data streams being sent to unusual external endpoints
  • Anomalous PowerShell execution was observed on numerous affected networks.

Taking a further look at the activity patterns detected, Darktrace identified a series of HTTP POST requests within one customer’s environment on December 7, 2023. The HTTP POST requests were made to the root directory of an external IP address, namely 146.70.71[.]135, which had never previously been observed on the network. This IP address was later reported to be malicious and associated with Jupyter (SolarMarker) by open-source intelligence (OSINT) [5].

Device Event Log indicating several connections from the source device to the rare external IP address 146.70.71[.]135 over port 80.
Figure 1: Device Event Log indicating several connections from the source device to the rare external IP address 146.70.71[.]135 over port 80.

This activity triggered the Darktrace / NETWORK model, ‘Anomalous Connection / Posting HTTP to IP Without Hostname’. This model alerts for devices that have been seen posting data out of the network to rare external endpoints without a hostname. Further investigation into the offending device revealed a significant increase in external data transfers around the time Darktrace alerted the activity.

This External Data Transfer graph demonstrates a spike in external data transfer from the internal device indicated at the top of the graph on December 7, 2023, with a time lapse shown of one week prior.
Figure 2: This External Data Transfer graph demonstrates a spike in external data transfer from the internal device indicated at the top of the graph on December 7, 2023, with a time lapse shown of one week prior.

Packet capture (PCAP) analysis of this activity also demonstrates possible external data transfer, with the device observed making a POST request to the root directory of the malicious endpoint, 146.70.71[.]135.

PCAP of a HTTP POST request showing streams of data being sent to the endpoint, 146.70.71[.]135.
Figure 3: PCAP of a HTTP POST request showing streams of data being sent to the endpoint, 146.70.71[.]135.

In other cases investigated by the Darktrace Threat Research team, connections to the rare external endpoint 67.43.235[.]218 were detected on port 8089 and 8090. This endpoint was also linked to Jupyter information stealer by OSINT sources [6].

Darktrace recognized that such suspicious connections represented unusual activity and raised several model alerts on multiple customer environments, including ‘Compromise / Large Number of Suspicious Successful Connections’ and ‘Anomalous Connection / Multiple Connections to New External TCP Port’.

In one instance, a device that was observed performing many suspicious connections to 67.43.235[.]218 was later observed making suspicious HTTP POST connections to other malicious IP addresses. This included 2.58.14[.]246, 91.206.178[.]109, and 78.135.73[.]176, all of which had been linked to Jupyter information stealer by OSINT sources [7] [8] [9].

Darktrace further observed activity likely indicative of data streams being exfiltrated to Jupyter information stealer C2 endpoints.

Graph displaying the significant increase in the number of HTTP POST requests with No Get made by an affected device, likely indicative of Jupyter information stealer C2 activity.
Figure 4: Graph displaying the significant increase in the number of HTTP POST requests with No Get made by an affected device, likely indicative of Jupyter information stealer C2 activity.

In several cases, Darktrace was able to leverage customer integrations with other security vendors to add additional context to its own model alerts. For example, numerous customers who had integrated Darktrace with Microsoft Defender received security integration alerts that enriched Darktrace’s model alerts with additional intelligence, linking suspicious activity to Jupyter information stealer actors.

The security integration model alerts ‘Security Integration / Low Severity Integration Detection’ and (right image) ‘Security Integration / High Severity Integration Detection’, linking suspicious activity observed by Darktrace with Jupyter information stealer (SolarMarker).
Figure 5: The security integration model alerts ‘Security Integration / Low Severity Integration Detection’ and (right image) ‘Security Integration / High Severity Integration Detection’, linking suspicious activity observed by Darktrace with Jupyter information stealer (SolarMarker).

Conclusion

The MaaS ecosystems continue to dominate the current threat landscape and the increasing sophistication of MaaS variants, featuring advanced defense evasion techniques, poses significant risks once deployed on target networks.

Leveraging anomaly-based detections is crucial for staying ahead of evolving MaaS threats like Jupyter information stealer. By adopting AI-driven security tools like Darktrace / NETWORK, organizations can more quickly identify and effectively detect and respond to potential threats as soon as they emerge. This is especially crucial given the rise of stealthy information stealing malware strains like Jupyter which cannot only harvest and steal sensitive data, but also serve as a gateway to potentially disruptive ransomware attacks.

Credit to Nahisha Nobregas (Senior Cyber Analyst), Vivek Rajan (Cyber Analyst)

References

1.     https://www.paloaltonetworks.com/cyberpedia/what-is-multi-extortion-ransomware

2.     https://flashpoint.io/blog/evolution-stealer-malware/

3.     https://blogs.vmware.com/security/2023/11/jupyter-rising-an-update-on-jupyter-infostealer.html

4.     https://www.morphisec.com/hubfs/eBooks_and_Whitepapers/Jupyter%20Infostealer%20WEB.pdf

5.     https://www.virustotal.com/gui/ip-address/146.70.71.135

6.     https://www.virustotal.com/gui/ip-address/67.43.235.218/community

7.     https://www.virustotal.com/gui/ip-address/2.58.14.246/community

8.     https://www.virustotal.com/gui/ip-address/91.206.178.109/community

9.     https://www.virustotal.com/gui/ip-address/78.135.73.176/community

Appendices

Darktrace Model Detections

  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Compromise / HTTP Beaconing to Rare Destination
  • Unusual Activity / Unusual External Data to New Endpoints
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Large Number of Suspicious Successful Connections
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Excessive Posts to Root
  • Compromise / Sustained SSL or HTTP Increase
  • Security Integration / High Severity Integration Detection
  • Security Integration / Low Severity Integration Detection
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Unusual Activity / Unusual External Data Transfer

AI Analyst Incidents:

  • Unusual Repeated Connections
  • Possible HTTP Command and Control to Multiple Endpoints
  • Possible HTTP Command and Control

List of IoCs

Indicators – Type – Description

146.70.71[.]135

IP Address

Jupyter info-stealer C2 Endpoint

91.206.178[.]109

IP Address

Jupyter info-stealer C2 Endpoint

146.70.92[.]153

IP Address

Jupyter info-stealer C2 Endpoint

2.58.14[.]246

IP Address

Jupyter info-stealer C2 Endpoint

78.135.73[.]176

IP Address

Jupyter info-stealer C2 Endpoint

217.138.215[.]105

IP Address

Jupyter info-stealer C2 Endpoint

185.243.115[.]88

IP Address

Jupyter info-stealer C2 Endpoint

146.70.80[.]66

IP Address

Jupyter info-stealer C2 Endpoint

23.29.115[.]186

IP Address

Jupyter info-stealer C2 Endpoint

67.43.235[.]218

IP Address

Jupyter info-stealer C2 Endpoint

217.138.215[.]85

IP Address

Jupyter info-stealer C2 Endpoint

193.29.104[.]25

IP Address

Jupyter info-stealer C2 Endpoint

Continue reading
About the author
Nahisha Nobregas
SOC Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.