How Cyber-Attacks Take Down Critical Infrastructure
07
Jul 2021
Cyber-attacks can bypass IT/OT security barriers and threaten your organization's infrastructure. Here's how you can stay protected in today's threat landscape.
Balancing Operational Continuity and Safety in Critical Infrastructure
The recent high-profile attacks against Colonial Pipeline and JBS Foods highlight that operational technology (OT) — the devices that drive gas flows and food processing, along with essentially all other machine-driven physical processes — does not need to be directly targeted in order to be shut down as the result of a cyber-attack.
Indeed, in the Colonial Pipeline incident, the information technology (IT) systems were reportedly compromised, with operations shut down intentionally out of an abundance of caution, that is, so as to not risk the attack spreading to OT and threatening safety. This highlights that threats to both human and environmental safety, along with uncertainty as to the scope of infection, present risk factors for these sensitive industrial environments.
Continuity through availability and integrity
In most countries, critical infrastructure (CI) — ranging from power grids and pipelines to transportation and health care — must maintain continuous activity. The recent ransomware attack against Colonial Pipeline demonstrates why this is the case, where gas shortages due to the compromise led to dangerous panic buys and long lines at the pumps.
Ensuring continuous operation of critical infrastructure requires safeguarding the availability and integrity of machinery. This means that organizations overseeing critical infrastructure must foresee any possible risks and implement systems, procedures, and technologies that mitigate or remove these risks so as to keep their operations running.
Operational demand versus safety
Alongside this requirement for operational continuity, and often in opposition to it, is the requirement for operational safety. These requirements can be in opposition because operational continuity demands that devices remain up and running at all costs, and operational safety demands that humans and the environment be protected at all costs.
Safety measures in critical infrastructure have improved and become increasingly prioritized over the last 50 years following numerous high-profile incidents, such as the Bhopal chemical disaster, the Texas City refinery explosion, and the Deepwater Horizon oil spill. Appropriate safety precautions could have likely prevented these incidents, but at the expense of operational continuity.
Consequently, administrators of critical infrastructure have to balance the very real threat that an incident may pose to both human life and the environment with the demand to remain operational at all times. More often than not, the final decision regarding what constitutes an acceptable risk is determined by budgets and cost-benefit analyses.
Cyber-attack: A rising risk profile for critical infrastructure
In 2010, the discovery of the Stuxnet malware — which resulted in a nuclear facility in Iran having its centrifuges ruined via compromised programmable logic controllers (PLCs) — demonstrated that critical infrastructure could be targeted by a cyber-attack.
At the time of Stuxnet, critical infrastructure industries used computers designed to ensure operational continuity with little regard for cyber security, as at the time the risk of a cyber-attack seemed either non-existent or vanishingly low. Since then, a number of attacks targeting industrial environments that have emerged on the global threat landscape.
Classic strains of industrial malware, such as Stuxnet, Triton, and Industroyer, have historically been installed via removable media, such as USB. This is because OT networks are traditionally segregated from the Internet in what is known as an ‘air gap.’ And this remains a prevalent vector of attack, with a study recently finding that cyber-threats installed via USB and other external media doubled in 2021, with 79% of these holding the potential to disrupt OT.
In many ways, operational demands in the subsequent 10 years have made critical infrastructure even more vulnerable. These include the convergence of information technology and operational technology (IT/OT convergence), the adoption of devices in the Industrial Internet of Things (IIoT), and the deprecation of manual back-up systems. This means that OT can be disrupted by cyber-attacks that first target IT systems, rather than having to be installed manually via external media.
At the same time, recent government initiatives — such as the Department of Energy’s 100-day ‘cyber sprint’ to protect electricity operations and President Biden’s Executive Order on Improving the Nation’s Cybersecurity — and regulatory frameworks and directives such as the EU’s NIS directive have either encouraged or mandated that critical infrastructure industries start addressing this new risk.
With the severe and persistent threat that cyber-attacks pose to critical infrastructure, including maritime cybersecurity, and the increasing calls to address the issue, the question remains as to how to best achieve robust cyber defense.
Assessing the risk
To claim administrators of critical infrastructure are ignorant or oblivious to the threat posed by cyber-attacks would be unfair. Many organizations have implemented changes to mitigate or remove the risk either as a result of regulation or their own forward thinking.
However, these projects can take years, even decades. High costs and ever-changing operational demand also mean that these projects may never fully remove the risk.
As a result, many operators may understand the threat of a cyber-attack but not be in a position to do anything about it in the short or medium term. Instead, procedures have to be put in place to minimize risk even if this threatens operational continuity.
For example, a risk assessment may decide it is best to shut down all OT operations in the event of a cyber-attack in order to avoid a major accident. This abundance of caution is forced upon operators, who do not have the ability to immediately confirm the boundaries of a compromise. The prevalence of cyber insurance provides this option with further appeal. Any losses incurred by stopping operations can theoretically be recouped and the risk is therefore transferred.
While the full details of the Colonial Pipeline ransomware incident are still to be determined, the sequence of events outlined below provides a plausible explanation for how a cyber-attack could take down critical infrastructure, even when that cyber-attack does not reach or even target OT systems. Indeed, the CEO of Colonial Pipeline, in a testimony to congress, confirmed “the imperative to isolate and contain the attack to help ensure the malware did not spread to the operational technology network, which controls our pipeline operations, if it had not already.”
The limits of securing IT or OT in isolation
The emergence of OT cyber security solutions in the last five years demonstrates that critical infrastructure industries are trying to find a way to address the risks posed by cyber-attacks. But these solutions have limited scope, as they assume IT and OT are separated and use legacy security techniques such as malware signatures and patch management.
The 2021 SANS ICS Security Summit highlighted how the OT security community suffers from a lack of visibility in knowing and understanding their networks. For many organizations, simply determining whether an unusual incident is an attack or the result of a software error is a challenge.
Given that most OT cyber-attacks actually start in IT networks before pivoting into OT, investing in an IT security solution rather than an OT-specific solution may at first seem like a better business decision. But IT solutions fall short if an attacker successfully pivots into the OT network, or if the attacker is a rogue insider who already has direct access to the OT network. A siloed approach to securing either IT or OT in isolation will thus fall short of the full scope needed to safeguard industrial systems.
It is clear that a mature security posture for critical infrastructure would include security solutions for both IT and OT. Even then, using separate solutions to protect the IT and OT networks is limited, as it presents challenges when defending network boundaries and detecting incidents when an attacker pivots from IT to OT. Under time pressure, a security team does not want changes in visibility, detection, language or interface while trying to determine whether a threat crossed the ‘boundary’ between IT and OT.
Separate solutions can also make detecting an attacker abusing traditional IT attack TTPs within an OT network much harder if the security team is relying on a purely OT solution to defend the OT environment. Examples of this include the abuse of IT remote management tools to affect industrial environments, such as in the suspected cyber-attack at the Florida water facility earlier this year. Cybersecurity for utilities is becoming increasingly important as these sectors face growing cyber threats that can disrupt essential services.
Using AI to minimize cyber risk and maximize cyber safety
In contrast, Darktrace AI is able to defend an entire cyber ecosystem estate, building a ‘pattern of life’ across IT and OT, as well as the points at which they converge. Consequently, cyber security teams can use a single pane of glass to detect and respond to cyber-attacks as they emerge and develop, regardless of where they are in the environment.
Use cases for Darktrace’s Self-Learning AI include containing pre-existing threats to maintain continuous operations. This was seen when Darktrace’s AI detected pre-existing infections and acted autonomously to contain the threat, allowing the operator to leave infected IIoT devices active while waiting for replacements. Darktrace can also thwart ransomware in IT before it can spread into OT, as when Darktrace detected a ransomware attack targeting a supplier for critical infrastructure in North America at its earliest stages.
Darktrace’s unified protection, including visibility and early detection of zero-days, empowers security teams to overcome uncertainty and make a confident decision not to shut down operations. Darktrace has already demonstrated this ability in the wild, and allows organizations to understand normal machine and human behavior in order to enforce this behavior, even in the face of an emerging cyber-attack.
Like this and want more?
Receive the latest blog in your inbox
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Newsletter
Stay ahead of threats with the Darktrace blog newsletter
Get the latest insights from the cybersecurity landscape, including threat trends, incident analysis, and the latest Darktrace product developments – delivered directly to your inbox, monthly.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
Oops! Something went wrong while submitting the form.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Oakley Cox
Director of Product
Oakley is a Product Manager within the Darktrace R&D team. He collaborates with global customers, including all critical infrastructure sectors and Government agencies, to ensure Darktrace/OT remains the first in class solution for OT Cyber Security. He draws on 7 years’ experience as a Cyber Security Consultant to organizations across EMEA, APAC and ANZ. His research into cyber-physical security has been published by Cyber Security journals and by CISA. Oakley has a Doctorate (PhD) from the University of Oxford.
Darktrace’s view on Operation Lunar Peek: Exploitation of Palo Alto firewall devices (CVE 2024-2012 and 2024-9474)
Introduction: Spike in exploitation and post-exploitation activity affecting Palo Alto firewall devices
As the first line of defense for many organizations, perimeter devices such as firewalls are frequently targeted by threat actors. If compromised, these devices can serve as the initial point of entry to the network, providing access to vulnerable internal resources. This pattern of malicious behavior has become readily apparent within the Darktrace customer base. In 2024, Darktrace Threat Research analysts identified and investigated at least two major campaigns targeting internet-exposed perimeter devices. These included the exploitation of PAN-OS firewall exploitation via CVE 2024-3400 and FortiManager appliances via CVE 2024-47575.
More recently, at the end of November, Darktrace analysts observed a spike in exploitation and post-exploitation activity affecting, once again, Palo Alto firewall devices in the days following the disclosure of the CVE 2024-0012 and CVE-2024-9474 vulnerabilities.
Threat Research analysts had already been investigating potential exploitation of the firewalls’ management interface after Palo Alto published a security advisory (PAN-SA-2024-0015) on November 8. Subsequent analysis of data from Darktrace’s Security Operations Center (SOC) and external research uncovered multiple cases of Palo Alto firewalls being targeted via the likely exploitation of these vulnerabilities since November 13, through the end of the month. Although this spike in anomalous behavior may not be attributable to a single malicious actor, Darktrace Threat Research identified a clear increase in PAN-OS exploitation across the customer base by threat actors likely utilizing the recently disclosed vulnerabilities, resulting in broad patterns of post-exploitation activity.
How did exploitation occur?
CVE 2024-0012 is an authentication bypass vulnerability affecting unpatched versions of Palo Alto Networks Next-Generation Firewalls. The vulnerability resides in the management interface application on the firewalls specifically, which is written in PHP. When attempting to access highly privileged scripts, users are typically redirected to a login page. However, this can be bypassed by supplying an HTTP request where a Palo Alto related authentication header can be set to “off”. Users can supply this header value to the Nginx reverse proxy server fronting the application which will then send it without any prior processing [1].
CVE-2024-9474 is a privilege escalation vulnerability that allows a PAN-OS administrator with access to the management web interface to execute root-level commands, granting full control over the affected device [2]. When combined, these vulnerabilities enable unauthenticated adversaries to execute arbitrary commands on the firewall with root privileges.
Post-Exploitation Patterns of Activity
Darktrace Threat Research analysts examined potential indicators of PAN-OS software exploitation via CVE 2024-0012 and CVE-2024-9474 during November 2024. The investigation identified three main groupings of post-exploitation activity:
Exploit validation and initial payload retrieval
Command and control (C2) connectivity, potentially featuring further binary downloads
Potential reconnaissance and cryptomining activity
Exploit Validation
Across multiple investigated customers, Darktrace analysts identified likely vulnerable PAN-OS devices conducting external network connectivity to bin services. Specifically, several hosts performed DNS queries for, and HTTP requests to Out-of-Band Application Security Testing (OAST) domains, such as csv2im6eq58ujueonqs0iyq7dqpak311i.oast[.]pro. These endpoints are commonly used by network administrators to harden defenses, but they are increasingly used by threat actors to verify successful exploitation of targeted devices and assess their potential for further compromise. Although connectivity involving OAST domains were prevalent across investigated incidents, this activity was not necessarily the first indicator observed. In some cases, device behavior involving OAST domains also occurred shortly after an initial payload was downloaded.
Initial Payload Retrieval
Following successful exploitation, affected devices commonly performed behaviors indicative of initial payload download, likely in response to incoming remote command execution. Typically, the affected PAN-OS host would utilize the command line utilities curl and Wget, seen via use of user agents curl/7.61.1 and Wget/1.19.5 (linux-gnu), respectively.
In some cases, the use of these command line utilities by the infected devices was considered new behavior. Given the nature of the user agents, interaction with the host shell suggests remote command execution to achieve the outgoing payload requests.
While additional binaries and scripts were retrieved in later stages of the post-exploitation activity in some cases, this set of behaviors and payloads likely represent initial persistence and execution mechanisms that will enable additional functionality later in the kill chain. During the investigation, Darktrace analysts noted the prevalence of shell script payload requests. Devices analyzed would frequently make HTTP requests over the usual destination port 80 using the command line URL utility (curl), as seen in the user-agent field.
The observed URIs often featured requests for text files, such as “1.txt”, or shell scripts such as “y.sh”. Although packet capture (PCAP) samples were unavailable for review, external researchers have noted that the IP address hosting such “1.txt” files (46.8.226[.]75) serves malicious PHP payloads. When examining the contents of the “y.sh” shell script, Darktrace analysts noticed the execution of bash commands to upload a PHP-written web shell on the affected server.
While not all investigated cases saw initial shell script retrieval, affected systems would commonly make an external HTTP connection, almost always via Wget, for the Executable and Linkable Format (ELF) file “/palofd” from the rare external IP 38.180.147[.]18.
Such requests were frequently made without prior hostname lookups, suggesting that the process or script initiating the requests already contained the external IP address. Analysts noticed a consistent SHA1 hash present for all identified instances of “/palofd” downloads (90f6890fa94b25fbf4d5c49f1ea354a023e06510). Multiple open-source intelligence (OSINT) vendors have associated this hash sample with Spectre RAT, a remote access trojan with capabilities including remote command execution, payload delivery, process manipulation, file transfers, and data theft [3][4].
Several targeted customer devices were observed initiating TLS/SSL connections to rare external IPs with self-signed TLS certificates following exploitation. Model data from across the Darktrace fleet indicated some overlap in JA3 fingerprints utilized by affected PAN-OS devices engaging in the suspicious TLS activity. Although JA3 hashes alone cannot be used for process attribution, this evidence suggests some correlation of source process across instances of PAN-OS exploitation.
These TLS/SSL sessions were typically established without the specification of a Server Name Indication (SNI) within the TLS extensions. The SNI extension prevents servers from supplying an incorrect certificate to the requesting client when multiple sites are hosted on the same IP. SSL connectivity without SNI specification suggests a potentially malicious running process as most software establishing TLS sessions typically supply this information during the handshake. Although the encrypted nature of the connection prevented further analysis of the payload packets, external sources note that JavaScript content is transmitted during these sessions, serving as initial payloads for the Sliver C2 platform using Wget [5].
C2 Communication and Additional Payloads
Following validation and preliminary post-compromise actions, examined hosts would commonly initiate varying forms of C2 connectivity. During this time, devices were frequently detected making further payload downloads, likely in response to directives set within C2 communications.
Palo Alto firewalls likely exploited via the newly disclosed CVEs would commonly utilize the Sliver C2 platform for external communication. Sliver’s functionality allows for different styles and formatting for communication. An open-source alternative to Cobalt Strike, this framework has been increasingly popular among threat actors, enabling the generation of dynamic payloads (“slivers”) for multiple platforms, including Windows, MacOS, Linux.
These payloads allow operators to establish persistence, spawn new shells, and exfiltrate data. URI patterns and PCAPs analysis yielded evidence of both English word type encoding within Sliverand Gzip formatting.
For example, multiple devices contacted the Sliver-linked IP address 77.221.158[.]154 using HTTP to retrieve Gzip files. The URIs present for these requests follow known Sliver Gzip formatted communication patterns [6]. Investigations yielded evidence of both English word encoding within Sliver, identified through PCAP analysis, and Gzip formatting.
External connectivity during this phase also featured TCP connection attempts over uncommon ports for common application protocols. For both Sliver and non-Sliver related IP addresses, devices utilized destination ports such as 8089, 3939, 8880, 8084, and 9999 for the HTTP protocol. The use of uncommon destination ports may represent attempts to avoid detection of connectivity to rare external endpoints. Moreover, some external beaconing within included URIs referencing the likely IP of the affected device. Such behavior can suggest the registration of compromised devices with command servers.
Targeted devices also proceeded to download additional payloads from rare external endpoints as beaconing/C2 activity was ongoing. For example, the newly registered domain repositorylinux[.]org (IP: 103.217.145[.]112) received numerous HTTP GET requests from investigated devices throughout the investigation period for script files including “linux.sh” and “cron.sh”. Young domains, especially those that present as similar to known code repositories, tend to host harmful content. Packet captures of the cron.sh file reveal commands within the HTTP body content involving crontab operations, likely to schedule future downloads. Some hosts that engaged in connectivity to the fake repository domain were later seen conducting crypto-mining connections, potentially highlighting the download of miner applications from the domain.
Additional payloads observed during this time largely featured variations of shell scripts, PHP content, and/or executables. Typically, shell scripts direct the device to retrieve additional content from external servers or repositories or contain potential configuration details for subsequent binaries to run on the device. For example, the “service.sh” retrieves a tar-compressed archive, a configuration JSON file as well as a file with the name “solr” from GitHub, potentially associated with the Apache Solr tool used for enterprise search. These could be used for further enumeration of the host and/or the network environment. PHP scripts observed may involve similar web shell functionality and were retrieved from both rare external IPs identified as well by external researchers [7]. Darktrace also detected the download of octet-stream data occurring mid-compromise from an Amazon Web Services (AWS) S3 bucket. Although no outside research confirmed the functionality, additional executable downloads for files such as “/initd”(IP: 178.215.224[.]246) and “/x6” (IP: 223.165.4[.]175) may relate to tool ingress, further Trojan/backdoor functionality, or cryptocurrency mining.
Reconnaissance and Cryptomining
Darktrace analysts also noticed additional elements of kill chain operations from affected devices after periods of initial exploit activity. Several devices initiated TCP connections to endpoints affiliated with cryptomining pools such as us[.]zephyr[.]herominers[.]com and xmrig[.]com. Connectivity to these domains indicates likely successful installation of mining software during earlier stages of post-compromise activity. In a small number of instances, Darktrace observed reconnaissance and lateral movement within the time range of PAN-OS exploitation. Firewalls conducted large numbers of internal connectivity attempts across several critical ports related to privileged protocols, including SMB and SSH. Darktrace detected anonymous NTLM login attempts and new usage of potential PAN-related credentials. These behaviors likely constitute attempts at lateral movement to adjacent devices to further extend network compromise impact.
Conclusion
Darktrace Threat Research and SOC analysts increasingly detect spikes in malicious activity on internet-facing devices in the days following the publication of new vulnerabilities. The latest iteration of this trend highlighted how threat actors quickly exploited Palo Alto firewall using authentication bypass and remote command execution vulnerabilities to enable device compromise. A review of the post-exploitation activity during these events reveals consistent patterns of perimeter device exploitation, but also some distinct variations.
Prior campaigns targeting perimeter devices featured activity largely confined to the exfiltration of configuration data and some initial payload retrieval. Within the current campaign, analysts identified a broader scope post-compromise activity consisting not only of payloads downloads but also extensive C2 activity, reconnaissance, and coin mining operations. While the use of command line tools like curl featured prominently in prior investigations, devices were seen retrieving a generally wider array of payloads during the latest round of activity. The use of the Sliver C2 platform further differentiates the latest round of PAN-OS compromises, with evidence of Sliver activity in about half of the investigated cases.
Several of the endpoints contacted by the infected firewall devices did not have any OSINT associated with them at the time of the attack. However, these indicators were noted as unusual for the devices according to Darktrace based on normal network traffic patterns. This reality further highlights the need for anomaly-based detection that does not rely necessarily on known indicators of compromise (IoCs) associated with CVE exploitation for detection. Darktrace’s experience in 2024 of multiple rounds of perimeter device exploitation may foreshadow future increases in these types of comprise operations.
Credit to Adam Potter (Senior Cyber Analyst), Alexandra Sentenac (Senior Cyber Analyst), Emma Foulger (Principal Cyber Analyst) and the Darktrace Threat Research team.
Cloud Security: Addressing Common CISO Challenges with Advanced Solutions
Cloud adoption is a cornerstone of modern business with its unmatched potential for scalability, cost efficiency, flexibility, and net-zero targets around sustainability. However, as organizations migrate more workloads, applications, and sensitive data to the cloud it introduces more complex challenges for CISO’s. Let’s dive into the most pressing issues keeping them up at night—and how Darktrace / CLOUD provides a solution for each.
1. Misconfigurations: The Silent Saboteur
Misconfigurations remain the leading cause of cloud-based data breaches. In 2023 alone over 80% of data breaches involved data stored in the cloud.1 Think open storage buckets or overly permissive permissions; seemingly minor errors that are easily missed and can snowball into major disasters. The fallout of breaches can be costly—both financially and reputationally.
How Darktrace / CLOUD Helps:
Darktrace / CLOUD continuously monitors your cloud asset configurations, learning your environment and using these insights to flag potential misconfigurations. New scans are triggered when changes take place, then grouped and prioritised intelligently, giving you an evolving and prioritised view of vulnerabilities, best practice and mitigation strategies.
2. Hybrid Environments: The Migration Maze
Many organizations are migrating to the cloud, but hybrid setups (where workloads span both on-premises and cloud environments) create unique challenges and visibility gaps which significantly increase complexity. More traditional and most cloud native security tooling struggles to provide adequate monitoring for these setups.
How Darktrace / CLOUD Helps:
Provides the ability to monitor runtime activity for both on-premises and cloud workloads within the same user interface. By leveraging the right AI solution across this diverse data set, we understand the behaviour of your on-premises workloads and how they interact with cloud systems, spotting unusual connectivity or data flow activity during and after the migration process.
This unified visibility enables proactive detection of anomalies, ensures seamless monitoring across hybrid environments, and provides actionable insights to mitigate risks during and after the migration process.
3. Securing Productivity Suites: The Last Mile
Cloud productivity suites like Microsoft 365 (M365) are essential for modern businesses and are often the first step for an organization on a journey to Infrastructure as a Service (IaaS) or Platform as a Service (PaaS) use cases. They also represent a prime target for attackers. Consider a scenario where an attacker gains access to an M365 account, and proceeds to; access sensitive emails, downloading files from SharePoint, and impersonating the user to send phishing emails to internal employees and external partners. Without a system to detect these behaviours, the attack may go unnoticed until significant damage is done.
How Darktrace helps:
Darktrace’s Active AI platform integrates with M365 and establishes an understanding of normal business activity, enabling the detection of abnormalities across its suite including Email, SharePoint and Teams. By identifying subtle deviations in behaviour, such as:
• Unusual file accesses
• Anomalous login attempts from unexpected locations or devices.
• Suspicious email forwarding rules created by compromised accounts.
Darktrace’s Autonomous Response can act precisely to block malicious actions, by disabling compromised accounts and containing threats before they escalate. Precise actions also ensure that critical business operations are maintained even when a response is triggered.
4. Agent Fatigue: The Visibility Struggle
To secure cloud environments, visibility is critical. If you don’t know what’s there, how can you secure it? Many solutions require agents to be deployed on every server, workload, and endpoint. But managing and deploying agents across sprawling hybrid environments can be both complex and time-consuming when following change controls, and especially as cloud resources scale dynamically.
How Darktrace / CLOUD Helps:
Darktrace reduces or eliminates the need for widespread agent deployment. Its agentless by default, integrating directly with cloud environments and providing instant visibility without the operational headache. Darktrace ensures coverage with minimal friction. By intelligently graphing the relationships between assets and logically grouping your deployed Cloud resources, you are equipped with real-time visibility to quickly understand and protect your environment.
So why Darktrace / CLOUD?
Darktrace’s Self-Learning AI redefines cloud security by adapting to your unique environment, detecting threats as they emerge, and responding in real-time. From spotting misconfigurations to protecting productivity suites and securing hybrid environments. Darktrace / CLOUD simplifies cloud security challenges without adding operational burdens.
From Chaos to Clarity
Cloud security doesn’t have to be a game of endless whack-a-mole. With Darktrace / CLOUD, CISOs can achieve the visibility, control, and proactive protection they need to navigate today’s complex cloud ecosystems confidently.