Blog
/
Email
/
July 9, 2024

How Darktrace Detects NTLM Hash Theft

Explore Darktrace's innovative methods for detecting NTLM hash theft and safeguarding your organization from cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Charlotte Thompson
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Jul 2024

What is credential theft and how does it work?

What began as a method to achieve unauthorized access to an account, often driven by the curiosity of individual attackers, credentials theft become a key tactic for malicious actors and groups, as stolen login credentials can be abused to gain unauthorized access to accounts and systems. This access can be leveraged to carry out malicious activities such as data exfiltration, fraud, espionage and malware deployment.

It is therefore no surprise that the number of dark web marketplaces selling privileged credentials has increased in recent years, making it easier for malicious actors to monetize stolen credentials [1]. This, in turn, has created new opportunities for threat actors to use increasingly sophisticated tactics such as phishing, social engineering and credential stuffing in their attacks, targeting individuals, organizations and government entities alike [1].

Credential theft example

TA577 Threat Actor

TA577 is a threat actor known to leverage stolen credentials, also known as Hive0118 [2], an initial access broker (IAB) group that was previously known for delivering malicious payloads [2]. On March 4, 2024, Proofpoint reported evidence of TA577 using a new attack chain with a different aim in mind: stealing NT LAN Manager (NTLM) hashes that can be used to authenticate to systems without needing to know plaintext passwords [3].

How does TA577 steal credentials?

Proofpoint reported that this new attack chain, which was first observed on February 26 and 27, was made up of two distinct campaigns. The first campaign consisted of a phishing attack featuring tens of thousands of emails targeting hundreds of organizations globally [3]. These phishing emails often appeared as replies to previous messages (thread hijacking) and contained zipped HTML attachments that each contained a unique file hash, customized for each recipient [3]. These attached files also contained a HTTP Meta refresh function, which triggered an automatic connection to a text file hosted on external IP addresses running as SMB servers [3].

When attempting to access the text file, the server requires an SMB session authentication via NTLM. This session is initiated when a client sends an ‘SMB_COM_NEGOTIATE’ request to the server, which answers with a ‘SMB_COM_NEGOTIATE’ response.

The client then proceeds to send a ‘SMB_COM_SESSION_SETUP_ANDX’ request to start the SMB session setup process, which includes initiating the NTLM authentication process. The server responds with an ‘SMB_COM_SESSION_SETUP_ANDX’ response, which includes an NTLM challenge message [6].

The client can then use the challenge message and its own credentials to generate a response by hashing its password using an NTLM hash algorithm. The response is sent to the server in an ‘SMB_COM_SESSION_SETUP_ANDX’ request. The server validates the response and, if the authentication is successful, the server answers with a final ‘SMB_COM_SESSION_SETUP_ANDX’ response, which completes the session setup process and allows the client to access the file listed on the server [6].

What is the goal of threat actor TA577?

As no malware delivery was detected during these sessions, researchers have suggested that the aim of TA577 was not to deliver malware, but rather to take advantage of the NTLMV2 challenge/response to steal NTLM authentication hashes [3] [4]. Hashes stolen by attackers can be exploited in pass-the-hash attacks to authenticate to a remote server or service [4]. They can also be used for offline password cracking which, if successful, could be utilized to escalate privileges or perform lateral movement through a target network [4]. Under certain circumstances, these hashes could also permit malicious actors to hijack accounts, access sensitive information and evade security products [4].

The open-source toolkit Impacket, which includes modules for password cracking [5] and which can be identified by the default NTLM server challenge “aaaaaaaaaaaaaaaa”[3], was observed during the SMB sessions. This indicates that TA577 actor aim to use stolen credentials for password cracking and pass-the-hash attacks.

TA577 has previously been associated with Black Basta ransomware infections and Qbot, and has been observed delivering various payloads including IcedID, SystemBC, SmokeLoader, Ursnif, and Cobalt Strike [2].This change in tactic to follow the current trend of credential theft may indicate that not only are TA577 actors aware of which methods are most effective in the current threat landscape, but they also have monetary and time resources needed to create new methods to bypass existing detection tools [3].  

Darktrace’s Coverage of TA577 Activity

On February 26 and 27, coinciding with the campaign activity reported by Proofpoint, Darktrace/Email™ observed a surge of inbound emails from numerous suspicious domains targeting multiple customer environments. These emails consistently included zip files with seemingly randomly generated names, containing HTLM content and links to an unusual external IP address [3].

A summary of anomaly indicators seen for a campaign email sent by TA577, as detected by Darktrace/Email.
Figure 1: A summary of anomaly indicators seen for a campaign email sent by TA577, as detected by Darktrace/Email.
Details of the name and size of the .zip file attached to a campaign email, along with the Darktrace/Email model alerts triggered by the email.
Figure 2: Details of the name and size of the .zip file attached to a campaign email, along with the Darktrace/Email model alerts triggered by the email.

The URL of these links contained an unusually named .txt file, which corresponds with Proofpoint reports of the automatic connection to a text file hosted on an external SMB server made when the attachment is opened [3].

A link to a rare external IP address seen within a campaign email, containing an unusually named .txt file.
Figure 3: A link to a rare external IP address seen within a campaign email, containing an unusually named .txt file.

Darktrace identified devices on multiple customer networks connecting to external SMB servers via the SMB protocol. It understood this activity was suspicious as the SMB protocol is typically reserved for internal connections and the endpoint in question had never previously been observed on the network.

The Event Log of a ‘Compliance / External Windows Communication’ model alert showing a connection to an external SMB server on destination port 445.
Figure 4: The Event Log of a ‘Compliance / External Windows Communication’ model alert showing a connection to an external SMB server on destination port 445.
External Sites Summary highlighting the rarity of the external SMB server.
Figure 5: External Sites Summary highlighting the rarity of the external SMB server.
External Sites Summary highlightin that the SMB server is geolocated in Moldova.
Figure 6: External Sites Summary highlightin that the SMB server is geolocated in Moldova.

During these connections, Darktrace observed multiple devices establishing an SMB session to this server via a NTLM challenge/response, representing the potential theft of the credentials used in this session. During this session, some devices also attempted to access an unusually named .txt file, further indicating that the affected devices were trying to access the .txt file hosted on external SMB servers [3].

Packet captures (PCAPs) of these sessions show the default NTLM server challenge, indicating the use of Impacket, suggesting that the captured NTLM hashes were to be used for password cracking or pass-the-hash-attacks [3]

PCAP analysis showing usage of the default NTLM server challenge associated with Impacket.
Figure 7: PCAP analysis showing usage of the default NTLM server challenge associated with Impacket.

Conclusions

Ultimately, Darktrace’s suite of products effectively detected and alerted for multiple aspects of the TA577 attack chain and NTLM hash data theft activity across its customer base. Darktrace/Email was able to uncover the inbound phishing emails that served as the initial access vector for TA577 actors, while Darktrace DETECT identified the subsequent external connections to unusual external locations and suspicious SMB sessions.

Furthermore, Darktrace’s anomaly-based approach enabled it to detect suspicious TA577 activity across the customer base on February 26 and 27, prior to Proofpoint’s report on their new attack chain. This showcases Darktrace’s ability to identify emerging threats based on the subtle deviations in a compromised device’s behavior, rather than relying on a static list of indicators of compromise (IoCs) or ‘known bads’.

This approach allows Darktrace to remain one step ahead of increasingly adaptive threat actors, providing organizations and their security teams with a robust AI-driven solution able to safeguard their networks in an ever-evolving threat landscape.

Credit to Charlotte Thompson, Cyber Analyst, Anna Gilbertson, Cyber Analyst.

References

1)    https://www.sentinelone.com/cybersecurity-101/what-is-credential-theft/

2)    https://malpedia.caad.fkie.fraunhofer.de/actor/ta577

3)    https://www.proofpoint.com/us/blog/threat-insight/ta577s-unusual-attack-chain-leads-ntlm-data-theft

4)    https://www.bleepingcomputer.com/news/security/hackers-steal-windows-ntlm-authentication-hashes-in-phishing-attacks/

5)    https://pawanjswal.medium.com/the-power-of-impacket-a-comprehensive-guide-with-examples-1288f3a4c674

6)    https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/c083583f-1a8f-4afe-a742-6ee08ffeb8cf

7)    https://www.hivepro.com/threat-advisory/ta577-targeting-windows-ntlm-hashes-in-global-campaigns/

Darktrace Model Detections

Darktrace/Email

·       Attachment / Unsolicited Archive File

·       Attachment / Unsolicited Attachment

·       Link / New Correspondent Classified Link

·       Link / New Correspondent Rare Link

·       Spoof / Internal User Similarities

Darktrace DETECT

·       Compliance / External Windows Communications

Darktrace RESPOND

·       Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

IoCs

IoC - Type - Description

176.123.2[.]146 - IP address -Likely malicious SMB Server

89.117.2[.]33 - IP address - Likely malicious SMB Server

89.117.1[.]161 - IP address - Likely malicious SMB Server

104.129.20[.]167 - IP address - Likely malicious SMB Server

89.117.1[.]160 - IP address - Likely malicious SMB Server

85.239.33[.]149 - IP address - Likely malicious SMB Server

89.117.2[.]34 - IP address - Likely malicious SMB Server

146.19.213[.]36 - IP address - Likely malicious SMB Server

66.63.188[.]19 - IP address - Likely malicious SMB Server

103.124.104[.]76 - IP address - Likely malicious SMB Server

103.124.106[.]224 - IP address - Likely malicious SMB Server

\5aohv\9mn.txt - SMB Path and File - SMB Path and File

\hvwsuw\udrh.txt - SMB Path and File - SMB Path and File

\zkf2rj4\VmD.txt = SMB Path and File - SMB Path and File

\naams\p3aV.txt - SMB Path and File - SMB Path and File

\epxq\A.txt - SMB Path and File - SMB Path and File

\dbna\H.txt - SMB Path and File - SMB Path and File

MAGNAMSB.zip – Filename - Phishing Attachment

e751f9dddd24f7656459e1e3a13307bd03ae4e67 - SHA1 Hash - Phishing Attachment

OMNIS2C.zip  - Filename - Phishing Attachment

db982783b97555232e28d5a333525118f10942e1 - SHA1 Hash - Phishing Attachment

aaaaaaaaaaaaaaaa - NTLM Server Challenge -Impacket Default NTLM Challenge

MITRE ATT&CK Tactics, Techniques and Procedures (TTPs)

Tactic - Technique

TA0001            Initial Access

TA0002            Execution

TA0008            Lateral Movement

TA0003            Persistence

TA0005            Defense Evasion

TA0006            Credential Access

T1021.002       SMB/Windows Admin Shares

T1021  Remote Services

T1566.001       Spearfishing Attachment

T1566  Phishing

T1204.002       Malicious File

T1204  User Execution

T1021.002       SMB/Windows Admin Shares

T1574  Hijack Execution Flow

T1021  Remote Services

T1555.004       Windows Credential Manager

T1555  Credentials from Password Stores

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Charlotte Thompson
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response

Blog

/

Cloud

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI