Blog
/
Network
/
January 31, 2024

How Darktrace Defeated SmokeLoader Malware

Read how Darktrace's AI identified and neutralized SmokeLoader malware. Gain insights into their proactive approach to cybersecurity.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Patrick Anjos
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
31
Jan 2024

What is Loader Malware?

Loader malware is a type of malicious software designed primarily to infiltrate a system and then download and execute additional malicious payloads.

In recent years, loader malware has emerged as a significant threat for organizations worldwide. This trend is expected to continue given the widespread availability of many loader strains within the Malware-as-a-Service (MaaS) marketplace. The MaaS marketplace contains a wide variety of innovative strains which are both affordable, with toolkits ranging from USD 400 to USD 1,650 [1], and continuously improving, aiming to avoid traditional detection mechanisms.

SmokeLoader is one such example of a MaaS strain that has been observed in the wild since 2011 and continues to pose a significant threat to organizations and their security teams.

How does SmokeLoader Malware work?

SmokeLoader’s ability to drop an array of different malware strains onto infected systems, from backdoors, ransomware, cryptominers, password stealers, point-of-sale malware and banking trojans, means its a highly versatile loader that has remained consistently popular among threat actors.

In addition to its versatility, it also exhibits advanced evasion strategies that make it difficult for traditional security solutions to detect and remove, and it is easily distributed via methods like spam emails or malicious file downloads.

Between July and August 2023, Darktrace observed an increasing trend in SmokeLoader compromises across its customer base. The anomaly-based threat detection capabilities of Darktrace, coupled with the autonomous response technology, identified and contained the SmokeLoader infections in their initial stages, preventing attackers from causing further disruption by deploying other malicious software or ransomware.

SmokeLoader Malware Attack Details

PROPagate Injection Technique

SmokeLoader utilizes the PROPagate code injection technique, a less common method that inserts malicious code into existing processes in order to appear legitimate and bypass traditional signature-based security measures [2] [3]. In the case of SmokeLoader, this technique exploits the Windows SetWindowsSubclass function, which is typically used to add or change the behavior of Windows Operation System. By manipulating this function, SmokeLoader can inject its code into other running processes, such as the Internet Explorer. This not only helps to disguise  the malware's activity but also allows attackers to leverage the permissions and capabilities of the infected process.

Obfuscation Methods

SmokeLoader is known to employ several obfuscation techniques to evade the detection and analysis of security teams. The techniques include scrambling portable executable files, encrypting its malicious code, obfuscating API functions and packing, and are intended to make the malware’s code appear harmless or unremarkable to antivirus software. This allows attackers to slip past defenses and execute their malicious activities while remaining undetected.

Infection Vector and Communication

SmokeLoader typically spreads via phishing emails that employ social engineering tactics to convince users to unknowingly download malicious payloads and execute the malware. Once installed on target networks, SmokeLoader acts as a backdoor, allowing attackers to control infected systems and download further malicious payloads from command-and-control (C2) servers. SmokeLoader uses fast flux, a DNS technique utilized by botets whereby IP addresses associated with C2 domains are rapidly changed, making it difficult to trace the source of the attack. This technique also boosts the resilience of attack, as taking down one or two malicious IP addresses will not significantly impact the botnet's operation.

Continuous Evolution

As with many MaaS strains, SmokeLoader is continuously evolving, with its developers regularly adding new features and techniques to increase its effectiveness and evasiveness. This includes new obfuscation methods, injection techniques, and communication protocols. This constant evolution makes SmokeLoader a significant threat and underscores the importance of advanced threat detection and response capabilities solution.

Darktrace’s Coverage of SmokeLoader Attack

Between July and August 2023, Darktrace detected one particular SmokeLoader infection at multiple stages of its kill chain on a customer network. This detection was made possible by Darktrace DETECT’s anomaly-based approach and Self-Learning AI that allows it to identify subtle deviations in device behavior.

One of the key components of this process is the classification of endpoint rarity and determining whether an endpoint is new or unusual for any given network. This classification is applied to various aspects of observed endpoints, such as domains, IP addresses, or hostnames within the network. It thereby plays a vital role in identifying SmokeLoader activity, such as the initial infection vector or C2 communication, which typically involve a device contacting a malicious endpoint associated with SmokeLoader.

The First Signs of Infection SmokeLoader Infection

Beginning in July 2023, Darktrace observed a surge in suspicious activities that were assessed with moderate to high confidence to be associated with SmokeLoader malware.

For example on July 30, a device was observed making a successful HTTPS request to humman[.]art, a domain that had never been seen on the network, and therefore classified as 100% rare by DETECT. During this connection, the device in question received a total of 6.0 KiB of data from the unusual endpoint. Open-source intelligence (OSINT) sources reported with high confidence that this domain was associated with the SmokeLoader C2 botnet.

The device was then detected making an HTTP request to another 100% rare external IP, namely 85.208.139[.]35, using a new user agent. This request contained the URI ‘/DefenUpdate.exe’, suggesting a possible download of an executable (.exe) file. This was corroborated by the total amount of data received in this connection, 4.3 MB. Both the file name and its size suggest that the offending device may have downloaded additional malicious tooling from the SmokeLoader C2 endpoint, such as a trojan or information stealer, as reported on OSINT platforms [4].

Figure 1: Device event log showing the moment when a device made its first connection to a SmokeLoader associated domain, and the use of a new user agent. A few seconds later, the DETECT model “Anomalous Connection / New User Agent to IP Without Hostname” breached.

The observed new user agent, “Mozilla/5.0 (Windows NT 10.0; Win64; x64; Trident/7.0; rv:11.0) like Gecko” was identified as suspicious by Darktrace leading to the “Anomalous Connection / New User Agent to IP Without Hostname” DETECT model breach.

As this specific user agent was associated with the Internet Explorer browser running on Windows 10, it may not have appeared suspicious to traditional security tools. However, Darktrace’s anomaly-based detection allows it to identify and mitigate emerging threats, even those that utilize sophisticated evasion techniques.

This is particularly noteworthy in this case because, as discussed earlier, SmokeLoader is known to inject its malicious code into legitimate processes, like Internet Explorer.

Figure 2: Darktrace detecting the affected device leveraging a new user agent and establishing an anomalous HTTP connection with an external IP, which was 100% rare to the network.

C2 Communication

Darktrace continued to observe the device making repeated connections to the humman[.]art endpoint. Over the next few days. On August 7, the device was observed making unusual POST requests to the endpoint using port 80, breaching the ‘Anomalous Connection / Multiple HTTP POSTs to Rare Hostname’ DETECT model. These observed POST requests were observed over a period of around 10 days and consisted of a pattern of 8 requests, each with a ten-minute interval.

Figure 3: Model Breach Event Log highlighting the Darktrace DETECT model breach ‘Anomalous Connection / Multiple HTTP POSTs to Rare Hostname’.

Upon investigating the details of this activity identified by Darktrace DETECT, a particular pattern was observed in these requests: they used the same user-agent, “Mozilla/5.0 (Windows NT 10.0; Win64; x64; Trident/7.0; rv:11.0) like Gecko”, which was previously detected in the initial breach.

Additionally, they the requests had a constantly changing  eferrer header, possibly using randomly generated domain names for each request. Further examination of the packet capture (PCAP) from these requests revealed that the payload in these POST requests contained an RC4 encrypted string, strongly indicating SmokeLoader C2 activity.

Figure4: Advanced Search results display an unusual pattern in the requests made by the device to the hostname humman[.]art. This pattern shows a constant change in the referrer header for each request, indicating anomalous behavior.
Figure 5: The PCAP shows the payload seen in these POST requests contained an RC4 encrypted string strongly indicating SmokeLoader C2 activity.  

Unfortunately in this case, Darktrace RESPOND was not active on the network meaning that the attack was able to progress through its kill chain. Despite this, the timely alerts and detailed incident insights provided by Darktrace DETECT allowed the customer’s security team to begin their remediation process, implementing blocks on their firewall, thus preventing the SmokeLoader malware from continuing its communication with C2 infrastructure.

Darktrace RESPOND Halting Potential Threats from the Initial Stages of Detection

With Darktrace RESPOND, organizations can move beyond threat detection to proactive defense against emerging threats. RESPOND is designed to halt threats as soon as they are identified by DETECT, preventing them from escalating into full-blown compromises. This is achieved through advanced machine learning and Self-Learning AI that is able to understand  the normal ‘pattern of life’ of customer networks, allowing for swift and accurate threat detection and response.

One pertinent example was seen on July 6, when Darktrace detected a separate SmokeLoader case on a customer network with RESPOND enabled in autonomous response mode. Darktrace DETECT initially identified a string of anomalous activity associated with the download of suspicious executable files, triggering the ‘Anomalous File / Multiple EXE from Rare External Locations’ model to breach.

The device was observed downloading an executable file (‘6523.exe’ and ‘/g.exe’) via HTTP over port 80. These downloads originated from endpoints that had never been seen within the customer’s environment, namely ‘hugersi[.]com’ and ‘45.66.230[.]164’, both of which had strongly been linked to SmokeLoader by OSINT sources, likely indicating the initial infection stage of the attack [5].

Figure 6: This figure illustrates Darktrace DETECT observing a device downloading multiple .exe files from rare endpoints and the associated model breach, ‘Anomalous File / Multiple EXE from Rare External Locations’.

Around the same time, Darktrace also observed the same device downloading an unusual file with a numeric file name. Threat actors often employ this tactic in order to avoid using file name patterns that could easily be recognized and blocked by traditional security measures; by frequently changing file names, malicious executables are more likely to remain undetected.

Figure 7: Graph showing the unusually high number of executable files downloaded by the device during the initial infection stage of the attack. The orange and red circles represent the number of model breaches that the device made during the observed activity related to SmokeLoader infection.
Figure 8: This figure illustrates the moment when Darktrace DETECT identified a suspicious download with a numeric file name.

With Darktrace RESPOND active and enabled in autonomous response mode, the SmokeLoader infection was thwarted in the first instance. RESPOND took swift autonomous action by blocking connections to the suspicious endpoints identified by DETECT, blocking all outgoing traffic, and enforcing a pre-established “pattern of life” on offending devices. By enforcing a patten of life on a device, Darktrace RESPOND ensures that it cannot deviate from its ‘normal’ activity to carry out potentially malicious activity, while allowing the device to continue expected business operations.

Figure 9:  A total of 8 RESPOND actions were applied, including blocking connections to suspicious endpoints and domains associated with SmokeLoader.

In addition to the autonomous mitigative actions taken by RESPOND, this customer also received a Proactive Threat Notification (PTN) informing them of potentially malicious activity on their network. This prompted the Darktrace Security Operations Center (SOC) to investigate and document the incident, allowing the customer’s security team to shift their focus to remediating and removing the threat of SmokeLoader.

Conclusion

Ultimately, Darktrace showcased its ability to detect and contain versatile and evasive strains of loader malware, like SmokeLoader. Despite its adeptness at bypassing conventional security tools by frequently changing its C2 infrastructure, utilizing existing processes to infect malicious code, and obfuscating malicious file and domain names, Darktrace’s anomaly-based approach allowed it to recognize such activity as deviations from expected network behavior, regardless of their apparent legitimacy.

Considering SmokeLoader’s wide array of functions, including C2 communication that could be used to facilitate additional attacks like exfiltration, or even the deployment of information-stealers or ransomware, Darktrace proved to be crucial in safeguarding customer networks. By identifying and mitigating SmokeLoader at the earliest possible stage, Darktrace effectively prevented the compromises from escalating into more damaging and disruptive compromises.

With the threat of loader malware expected to continue growing alongside the boom of the MaaS industry, it is paramount for organizations to adopt proactive security solutions, like Darktrace DETECT+RESPOND, that are able to make intelligent decisions to identify and neutralize sophisticated attacks.

Credit to Patrick Anjos, Senior Cyber Analyst, Justin Torres, Cyber Analyst

Appendices

Darktrace DETECT Model Detections

- Anomalous Connection / New User Agent to IP Without Hostname

- Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

- Anomalous File / Multiple EXE from Rare External Locations

- Anomalous File / Numeric File Download

List of IOCs (IOC / Type / Description + Confidence)

- 85.208.139[.]35 / IP / SmokeLoader C2 Endpoint

- 185.174.137[.]109 / IP / SmokeLoader C2 Endpoint

- 45.66.230[.]164 / IP / SmokeLoader C2 Endpoint

- 91.215.85[.]147 / IP / SmokeLoader C2 Endpoint

- tolilolihul[.]net / Hostname / SmokeLoader C2 Endpoint

- bulimu55t[.]net / Hostname / SmokeLoader C2 Endpoint

- potunulit[.]org / Hostname / SmokeLoader C2 Endpoint

- hugersi[.]com / Hostname / SmokeLoader C2 Endpoint

- human[.]art / Hostname / SmokeLoader C2 Endpoint

- 371b0d5c867c2f33ae270faa14946c77f4b0953 / SHA1 / SmokeLoader Executable

References:

[1] https://bazaar.abuse.ch/sample/d7c395ab2b6ef69210221337ea292e204b0f73fef8840b6e64ab88595eda45b3/#intel

[2] https://malpedia.caad.fkie.fraunhofer.de/details/win.smokeloader

[3] https://www.darkreading.com/cyber-risk/breaking-down-the-propagate-code-injection-attack

[4] https://n1ght-w0lf.github.io/malware%20analysis/smokeloader/

[5] https://therecord.media/surge-in-smokeloader-malware-attacks-targeting-ukrainian-financial-gov-orgs

MITRE ATT&CK Mapping

Model: Anomalous Connection / New User Agent to IP Without Hostname

ID: T1071.001

Sub technique: T1071

Tactic: COMMAND AND CONTROL

Technique Name: Web Protocols

Model: Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

ID: T1185

Sub technique: -

Tactic: COLLECTION

Technique Name: Man in the Browser

ID: T1071.001

Sub technique: T1071

Tactic: COMMAND AND CONTROL

Technique Name: Web Protocols

Model: Anomalous File / Multiple EXE from Rare External Locations

ID: T1189

Sub technique: -

Tactic: INITIAL ACCESS

Technique Name: Drive-by Compromise

ID: T1588.001

Sub technique: - T1588

Tactic: RESOURCE DEVELOPMENT

Technique Name: Malware

Model: Anomalous File / Numeric File Download

ID: T1189

Sub technique: -

Tactic: INITIAL ACCESS

Technique Name: Drive-by Compromise

ID: T1588.001

Sub technique: - T1588

Tactic: RESOURCE DEVELOPMENT

Technique Name: Malware

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Patrick Anjos
Senior Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

April 14, 2025

Email bombing exposed: Darktrace’s email defense in action

picture of a computer screen showing a password loginDefault blog imageDefault blog image

What is email bombing?

An email bomb attack, also known as a "spam bomb," is a cyberattack where a large volume of emails—ranging from as few as 100 to as many as several thousand—are sent to victims within a short period.

How does email bombing work?

Email bombing is a tactic that typically aims to disrupt operations and conceal malicious emails, potentially setting the stage for further social engineering attacks. Parallels can be drawn to the use of Domain Generation Algorithm (DGA) endpoints in Command-and-Control (C2) communications, where an attacker generates new and seemingly random domains in order to mask their malicious connections and evade detection.

In an email bomb attack, threat actors typically sign up their targeted recipients to a large number of email subscription services, flooding their inboxes with indirectly subscribed content [1].

Multiple threat actors have been observed utilizing this tactic, including the Ransomware-as-a-Service (RaaS) group Black Basta, also known as Storm-1811 [1] [2].

Darktrace detection of email bombing attack

In early 2025, Darktrace detected an email bomb attack where malicious actors flooded a customer's inbox while also employing social engineering techniques, specifically voice phishing (vishing). The end goal appeared to be infiltrating the customer's network by exploiting legitimate administrative tools for malicious purposes.

The emails in these attacks often bypass traditional email security tools because they are not technically classified as spam, due to the assumption that the recipient has subscribed to the service. Darktrace / EMAIL's behavioral analysis identified the mass of unusual, albeit not inherently malicious, emails that were sent to this user as part of this email bombing attack.

Email bombing attack overview

In February 2025, Darktrace observed an email bombing attack where a user received over 150 emails from 107 unique domains in under five minutes. Each of these emails bypassed a widely used and reputable Security Email Gateway (SEG) but were detected by Darktrace / EMAIL.

Graph showing the unusual spike in unusual emails observed by Darktrace / EMAIL.
Figure 1: Graph showing the unusual spike in unusual emails observed by Darktrace / EMAIL.

The emails varied in senders, topics, and even languages, with several identified as being in German and Spanish. The most common theme in the subject line of these emails was account registration, indicating that the attacker used the victim’s address to sign up to various newsletters and subscriptions, prompting confirmation emails. Such confirmation emails are generally considered both important and low risk by email filters, meaning most traditional security tools would allow them without hesitation.

Additionally, many of the emails were sent using reputable marketing tools, such as Mailchimp’s Mandrill platform, which was used to send almost half of the observed emails, further adding to their legitimacy.

 Darktrace / EMAIL’s detection of an email being sent using the Mandrill platform.
Figure 2: Darktrace / EMAIL’s detection of an email being sent using the Mandrill platform.
Darktrace / EMAIL’s detection of a large number of unusual emails sent during a short period of time.
Figure 3: Darktrace / EMAIL’s detection of a large number of unusual emails sent during a short period of time.

While the individual emails detected were typically benign, such as the newsletter from a legitimate UK airport shown in Figure 3, the harmful aspect was the swarm effect caused by receiving many emails within a short period of time.

Traditional security tools, which analyze emails individually, often struggle to identify email bombing incidents. However, Darktrace / EMAIL recognized the unusual volume of new domain communication as suspicious. Had Darktrace / EMAIL been enabled in Autonomous Response mode, it would have automatically held any suspicious emails, preventing them from landing in the recipient’s inbox.

Example of Darktrace / EMAIL’s response to an email bombing attack taken from another customer environment.
Figure 4: Example of Darktrace / EMAIL’s response to an email bombing attack taken from another customer environment.

Following the initial email bombing, the malicious actor made multiple attempts to engage the recipient in a call using Microsoft Teams, while spoofing the organizations IT department in order to establish a sense of trust and urgency – following the spike in unusual emails the user accepted the Teams call. It was later confirmed by the customer that the attacker had also targeted over 10 additional internal users with email bombing attacks and fake IT calls.

The customer also confirmed that malicious actor successfully convinced the user to divulge their credentials with them using the Microsoft Quick Assist remote management tool. While such remote management tools are typically used for legitimate administrative purposes, malicious actors can exploit them to move laterally between systems or maintain access on target networks. When these tools have been previously observed in the network, attackers may use them to pursue their goals while evading detection, commonly known as Living-off-the-Land (LOTL).

Subsequent investigation by Darktrace’s Security Operations Centre (SOC) revealed that the recipient's device began scanning and performing reconnaissance activities shortly following the Teams call, suggesting that the user inadvertently exposed their credentials, leading to the device's compromise.

Darktrace’s Cyber AI Analyst was able to identify these activities and group them together into one incident, while also highlighting the most important stages of the attack.

Figure 5: Cyber AI Analyst investigation showing the initiation of the reconnaissance/scanning activities.

The first network-level activity observed on this device was unusual LDAP reconnaissance of the wider network environment, seemingly attempting to bind to the local directory services. Following successful authentication, the device began querying the LDAP directory for information about user and root entries. Darktrace then observed the attacker performing network reconnaissance, initiating a scan of the customer’s environment and attempting to connect to other internal devices. Finally, the malicious actor proceeded to make several SMB sessions and NTLM authentication attempts to internal devices, all of which failed.

Device event log in Darktrace / NETWORK, showing the large volume of connections attempts over port 445.
Figure 6: Device event log in Darktrace / NETWORK, showing the large volume of connections attempts over port 445.
Darktrace / NETWORK’s detection of the number of the login attempts via SMB/NTLM.
Figure 7: Darktrace / NETWORK’s detection of the number of the login attempts via SMB/NTLM.

While Darktrace’s Autonomous Response capability suggested actions to shut down this suspicious internal connectivity, the deployment was configured in Human Confirmation Mode. This meant any actions required human approval, allowing the activities to continue until the customer’s security team intervened. If Darktrace had been set to respond autonomously, it would have blocked connections to port 445 and enforced a “pattern of life” to prevent the device from deviating from expected activities, thus shutting down the suspicious scanning.

Conclusion

Email bombing attacks can pose a serious threat to individuals and organizations by overwhelming inboxes with emails in an attempt to obfuscate potentially malicious activities, like account takeovers or credential theft. While many traditional gateways struggle to keep pace with the volume of these attacks—analyzing individual emails rather than connecting them and often failing to distinguish between legitimate and malicious activity—Darktrace is able to identify and stop these sophisticated attacks without latency.

Thanks to its Self-Learning AI and Autonomous Response capabilities, Darktrace ensures that even seemingly benign email activity is not lost in the noise.

Credit to Maria Geronikolou (Cyber Analyst and SOC Shift Supervisor) and Cameron Boyd (Cyber Security Analyst), Steven Haworth (Senior Director of Threat Modeling), Ryan Traill (Analyst Content Lead)

Appendices

[1] https://www.microsoft.com/en-us/security/blog/2024/05/15/threat-actors-misusing-quick-assist-in-social-engineering-attacks-leading-to-ransomware/

[2] https://thehackernews.com/2024/12/black-basta-ransomware-evolves-with.html

Darktrace Models Alerts

Internal Reconnaissance

·      Device / Suspicious SMB Scanning Activity

·      Device / Anonymous NTLM Logins

·      Device / Network Scan

·      Device / Network Range Scan

·      Device / Suspicious Network Scan Activity

·      Device / ICMP Address Scan

·      Anomalous Connection / Large Volume of LDAP Download

·      Device / Suspicious LDAP Search Operation

·      Device / Large Number of Model Alerts

Continue reading
About the author
Maria Geronikolou
Cyber Analyst

Blog

/

Email

/

April 11, 2025

FedRAMP High-compliant email security protects federal agencies from nation-state attacks

U.S. government building with flag against blue skyDefault blog imageDefault blog image

What is FedRAMP High Authority to Operate (ATO)?

Federal Risk and Authorization Management Program (FedRAMP®) High is a government-wide program that promotes the adoption of secure cloud services across the federal government by providing a standardized approach to security and risk assessment for cloud technologies and federal agencies, ensuring the protection of federal information.  

Cybersecurity is paramount in the Defense Industrial Base (DIB), where protecting sensitive information and ensuring operational resilience from the most sophisticated adversaries has national security implications. Organizations within the DIB must comply with strict security standards to work with the U.S. federal government, and FedRAMP High is one of those standards.

Darktrace achieves FedRAMP High ATO across IT, OT, and email

Last week, Darktrace Federal shared that we achieved FedRAMP® High ATO, a significant milestone that recognizes our ability to serve federal customers across IT, OT, and email via secure cloud-native deployments.  

Achieving the FedRAMP High ATO indicates that Darktrace Federal has achieved the highest standard for cloud security controls and can handle the U.S. federal government’s most sensitive, unclassified data in cloud environments.

Azure Government email security with FedRAMP High ATO

Darktrace has now released Darktrace Commercial Government Cloud High/Email (DCGC High/Email). This applies our email coverage to systems hosted in Microsoft's Azure Government, which adheres to NIST SP 800-53 controls and other federal standards. DCGC High/Email both meets and exceeds the compliance requirements of the Department of Defense’s Cybersecurity Maturity Model Certification (CMMC), providing organizations with a much-needed email security solution that delivers unparalleled, AI-driven protection against sophisticated cyber threats.

In these ways, DCGC High/Email enhances compliance, security, and operational resilience for government and federally-affiliated customers. Notably, it is crucial for securing contractors and suppliers within DIB, helping those organizations implement necessary cybersecurity practices to protect Controlled Unclassified Information (CUI) and Federal Contract Information (FCI).

Adopting DCGC High/Email ensures organizations within the DIB can work with the government without needing to invest extensive time and money into meeting the strict compliance standards.

Building DCGC High/Email to ease DIB work with the government

DCGC High/Email was built to achieve FedRAMP High standards and meet the most rigorous security standards required of our customers. This level of compliance not only allows more organizations than ever to leverage our AI-driven technology, but also ensures that customer data is protected by the highest security measures available.

The DIB has never been more critical to national security, which means they are under constant threats from nation state and cyber criminals. We built DCGC High/Email to FedRAMP High controls to ensure sensitive company and federal government communications are secured at the highest level possible.” – Marcus Fowler, CEO of Darktrace Federal

Evolving threats now necessitate DCGC High/Email

According to Darktrace’s 2025 State of AI Cybersecurity report, more than half (54%) of global government cybersecurity professionals report seeing a significant impact from AI-powered cyber threats.  

These aren’t the only types of sophisticated threats. Advanced Persistent Threats (APTs) are launched by nation-states or cyber-criminal groups with the resources to coordinate and achieve long-term objectives.  

These attacks are carefully tailored to specific targets, using techniques like social engineering and spear phishing to gain initial access via the inbox. Once inside, attackers move laterally through networks, often remaining undetected for months or even years, silently gathering intelligence or preparing for a decisive strike.  

However, the barrier for entry for these threat actors has been lowered immensely, likely related to the observed impact of AI-powered cyber threats. Securing email environments is more important than ever.  

Darktrace’s 2025 State of AI Cybersecurity report also found that 89% of government cybersecurity professionals believe AI can help significantly improve their defensive capabilities.  

Darktrace's AI-powered defensive tools are uniquely capable of detecting and neutralizing APTs and other sophisticated threats, including ones that enter via the inbox. Our Self-Learning AI continuously adapts to evolving threats, providing real-time protection.

Darktrace builds to secure the DIB to the highest degree

In summary, Darktrace Federal's achievement of FedRAMP High ATO and the introduction of DCGC High/Email mark significant advancements in our ability to protect defense contractors and federal customers against sophisticated threats that other solutions miss.

For a technical review of Darktrace Federal’s Cyber AI Mission Defense™ solution, download an independent evaluation from the Technology Advancement Center here.

[related-resource]

Continue reading
About the author
Marcus Fowler
CEO of Darktrace Federal and SVP of Strategic Engagements and Threats
Your data. Our AI.
Elevate your network security with Darktrace AI