Blog

Inside the SOC

How Darktrace Defeated SmokeLoader Malware

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
31
Jan 2024
31
Jan 2024
Read how Darktrace's AI identified and neutralized SmokeLoader malware. Gain insights into their proactive approach to cybersecurity.

What is Loader Malware?

Loader malware is a type of malicious software designed primarily to infiltrate a system and then download and execute additional malicious payloads.

In recent years, loader malware has emerged as a significant threat for organizations worldwide. This trend is expected to continue given the widespread availability of many loader strains within the Malware-as-a-Service (MaaS) marketplace. The MaaS marketplace contains a wide variety of innovative strains which are both affordable, with toolkits ranging from USD 400 to USD 1,650 [1], and continuously improving, aiming to avoid traditional detection mechanisms.

SmokeLoader is one such example of a MaaS strain that has been observed in the wild since 2011 and continues to pose a significant threat to organizations and their security teams.

How does SmokeLoader Malware work?

SmokeLoader’s ability to drop an array of different malware strains onto infected systems, from backdoors, ransomware, cryptominers, password stealers, point-of-sale malware and banking trojans, means its a highly versatile loader that has remained consistently popular among threat actors.

In addition to its versatility, it also exhibits advanced evasion strategies that make it difficult for traditional security solutions to detect and remove, and it is easily distributed via methods like spam emails or malicious file downloads.

Between July and August 2023, Darktrace observed an increasing trend in SmokeLoader compromises across its customer base. The anomaly-based threat detection capabilities of Darktrace, coupled with the autonomous response technology, identified and contained the SmokeLoader infections in their initial stages, preventing attackers from causing further disruption by deploying other malicious software or ransomware.

SmokeLoader Malware Attack Details

PROPagate Injection Technique

SmokeLoader utilizes the PROPagate code injection technique, a less common method that inserts malicious code into existing processes in order to appear legitimate and bypass traditional signature-based security measures [2] [3]. In the case of SmokeLoader, this technique exploits the Windows SetWindowsSubclass function, which is typically used to add or change the behavior of Windows Operation System. By manipulating this function, SmokeLoader can inject its code into other running processes, such as the Internet Explorer. This not only helps to disguise  the malware's activity but also allows attackers to leverage the permissions and capabilities of the infected process.

Obfuscation Methods

SmokeLoader is known to employ several obfuscation techniques to evade the detection and analysis of security teams. The techniques include scrambling portable executable files, encrypting its malicious code, obfuscating API functions and packing, and are intended to make the malware’s code appear harmless or unremarkable to antivirus software. This allows attackers to slip past defenses and execute their malicious activities while remaining undetected.

Infection Vector and Communication

SmokeLoader typically spreads via phishing emails that employ social engineering tactics to convince users to unknowingly download malicious payloads and execute the malware. Once installed on target networks, SmokeLoader acts as a backdoor, allowing attackers to control infected systems and download further malicious payloads from command-and-control (C2) servers. SmokeLoader uses fast flux, a DNS technique utilized by botets whereby IP addresses associated with C2 domains are rapidly changed, making it difficult to trace the source of the attack. This technique also boosts the resilience of attack, as taking down one or two malicious IP addresses will not significantly impact the botnet's operation.

Continuous Evolution

As with many MaaS strains, SmokeLoader is continuously evolving, with its developers regularly adding new features and techniques to increase its effectiveness and evasiveness. This includes new obfuscation methods, injection techniques, and communication protocols. This constant evolution makes SmokeLoader a significant threat and underscores the importance of advanced threat detection and response capabilities solution.

Darktrace’s Coverage of SmokeLoader Attack

Between July and August 2023, Darktrace detected one particular SmokeLoader infection at multiple stages of its kill chain on a customer network. This detection was made possible by Darktrace DETECT’s anomaly-based approach and Self-Learning AI that allows it to identify subtle deviations in device behavior.

One of the key components of this process is the classification of endpoint rarity and determining whether an endpoint is new or unusual for any given network. This classification is applied to various aspects of observed endpoints, such as domains, IP addresses, or hostnames within the network. It thereby plays a vital role in identifying SmokeLoader activity, such as the initial infection vector or C2 communication, which typically involve a device contacting a malicious endpoint associated with SmokeLoader.

The First Signs of Infection SmokeLoader Infection

Beginning in July 2023, Darktrace observed a surge in suspicious activities that were assessed with moderate to high confidence to be associated with SmokeLoader malware.

For example on July 30, a device was observed making a successful HTTPS request to humman[.]art, a domain that had never been seen on the network, and therefore classified as 100% rare by DETECT. During this connection, the device in question received a total of 6.0 KiB of data from the unusual endpoint. Open-source intelligence (OSINT) sources reported with high confidence that this domain was associated with the SmokeLoader C2 botnet.

The device was then detected making an HTTP request to another 100% rare external IP, namely 85.208.139[.]35, using a new user agent. This request contained the URI ‘/DefenUpdate.exe’, suggesting a possible download of an executable (.exe) file. This was corroborated by the total amount of data received in this connection, 4.3 MB. Both the file name and its size suggest that the offending device may have downloaded additional malicious tooling from the SmokeLoader C2 endpoint, such as a trojan or information stealer, as reported on OSINT platforms [4].

Figure 1: Device event log showing the moment when a device made its first connection to a SmokeLoader associated domain, and the use of a new user agent. A few seconds later, the DETECT model “Anomalous Connection / New User Agent to IP Without Hostname” breached.

The observed new user agent, “Mozilla/5.0 (Windows NT 10.0; Win64; x64; Trident/7.0; rv:11.0) like Gecko” was identified as suspicious by Darktrace leading to the “Anomalous Connection / New User Agent to IP Without Hostname” DETECT model breach.

As this specific user agent was associated with the Internet Explorer browser running on Windows 10, it may not have appeared suspicious to traditional security tools. However, Darktrace’s anomaly-based detection allows it to identify and mitigate emerging threats, even those that utilize sophisticated evasion techniques.

This is particularly noteworthy in this case because, as discussed earlier, SmokeLoader is known to inject its malicious code into legitimate processes, like Internet Explorer.

Figure 2: Darktrace detecting the affected device leveraging a new user agent and establishing an anomalous HTTP connection with an external IP, which was 100% rare to the network.

C2 Communication

Darktrace continued to observe the device making repeated connections to the humman[.]art endpoint. Over the next few days. On August 7, the device was observed making unusual POST requests to the endpoint using port 80, breaching the ‘Anomalous Connection / Multiple HTTP POSTs to Rare Hostname’ DETECT model. These observed POST requests were observed over a period of around 10 days and consisted of a pattern of 8 requests, each with a ten-minute interval.

Figure 3: Model Breach Event Log highlighting the Darktrace DETECT model breach ‘Anomalous Connection / Multiple HTTP POSTs to Rare Hostname’.

Upon investigating the details of this activity identified by Darktrace DETECT, a particular pattern was observed in these requests: they used the same user-agent, “Mozilla/5.0 (Windows NT 10.0; Win64; x64; Trident/7.0; rv:11.0) like Gecko”, which was previously detected in the initial breach.

Additionally, they the requests had a constantly changing  eferrer header, possibly using randomly generated domain names for each request. Further examination of the packet capture (PCAP) from these requests revealed that the payload in these POST requests contained an RC4 encrypted string, strongly indicating SmokeLoader C2 activity.

Figure4: Advanced Search results display an unusual pattern in the requests made by the device to the hostname humman[.]art. This pattern shows a constant change in the referrer header for each request, indicating anomalous behavior.
Figure 5: The PCAP shows the payload seen in these POST requests contained an RC4 encrypted string strongly indicating SmokeLoader C2 activity.  

Unfortunately in this case, Darktrace RESPOND was not active on the network meaning that the attack was able to progress through its kill chain. Despite this, the timely alerts and detailed incident insights provided by Darktrace DETECT allowed the customer’s security team to begin their remediation process, implementing blocks on their firewall, thus preventing the SmokeLoader malware from continuing its communication with C2 infrastructure.

Darktrace RESPOND Halting Potential Threats from the Initial Stages of Detection

With Darktrace RESPOND, organizations can move beyond threat detection to proactive defense against emerging threats. RESPOND is designed to halt threats as soon as they are identified by DETECT, preventing them from escalating into full-blown compromises. This is achieved through advanced machine learning and Self-Learning AI that is able to understand  the normal ‘pattern of life’ of customer networks, allowing for swift and accurate threat detection and response.

One pertinent example was seen on July 6, when Darktrace detected a separate SmokeLoader case on a customer network with RESPOND enabled in autonomous response mode. Darktrace DETECT initially identified a string of anomalous activity associated with the download of suspicious executable files, triggering the ‘Anomalous File / Multiple EXE from Rare External Locations’ model to breach.

The device was observed downloading an executable file (‘6523.exe’ and ‘/g.exe’) via HTTP over port 80. These downloads originated from endpoints that had never been seen within the customer’s environment, namely ‘hugersi[.]com’ and ‘45.66.230[.]164’, both of which had strongly been linked to SmokeLoader by OSINT sources, likely indicating the initial infection stage of the attack [5].

Figure 6: This figure illustrates Darktrace DETECT observing a device downloading multiple .exe files from rare endpoints and the associated model breach, ‘Anomalous File / Multiple EXE from Rare External Locations’.

Around the same time, Darktrace also observed the same device downloading an unusual file with a numeric file name. Threat actors often employ this tactic in order to avoid using file name patterns that could easily be recognized and blocked by traditional security measures; by frequently changing file names, malicious executables are more likely to remain undetected.

Figure 7: Graph showing the unusually high number of executable files downloaded by the device during the initial infection stage of the attack. The orange and red circles represent the number of model breaches that the device made during the observed activity related to SmokeLoader infection.
Figure 8: This figure illustrates the moment when Darktrace DETECT identified a suspicious download with a numeric file name.

With Darktrace RESPOND active and enabled in autonomous response mode, the SmokeLoader infection was thwarted in the first instance. RESPOND took swift autonomous action by blocking connections to the suspicious endpoints identified by DETECT, blocking all outgoing traffic, and enforcing a pre-established “pattern of life” on offending devices. By enforcing a patten of life on a device, Darktrace RESPOND ensures that it cannot deviate from its ‘normal’ activity to carry out potentially malicious activity, while allowing the device to continue expected business operations.

Figure 9:  A total of 8 RESPOND actions were applied, including blocking connections to suspicious endpoints and domains associated with SmokeLoader.

In addition to the autonomous mitigative actions taken by RESPOND, this customer also received a Proactive Threat Notification (PTN) informing them of potentially malicious activity on their network. This prompted the Darktrace Security Operations Center (SOC) to investigate and document the incident, allowing the customer’s security team to shift their focus to remediating and removing the threat of SmokeLoader.

Conclusion

Ultimately, Darktrace showcased its ability to detect and contain versatile and evasive strains of loader malware, like SmokeLoader. Despite its adeptness at bypassing conventional security tools by frequently changing its C2 infrastructure, utilizing existing processes to infect malicious code, and obfuscating malicious file and domain names, Darktrace’s anomaly-based approach allowed it to recognize such activity as deviations from expected network behavior, regardless of their apparent legitimacy.

Considering SmokeLoader’s wide array of functions, including C2 communication that could be used to facilitate additional attacks like exfiltration, or even the deployment of information-stealers or ransomware, Darktrace proved to be crucial in safeguarding customer networks. By identifying and mitigating SmokeLoader at the earliest possible stage, Darktrace effectively prevented the compromises from escalating into more damaging and disruptive compromises.

With the threat of loader malware expected to continue growing alongside the boom of the MaaS industry, it is paramount for organizations to adopt proactive security solutions, like Darktrace DETECT+RESPOND, that are able to make intelligent decisions to identify and neutralize sophisticated attacks.

Credit to Patrick Anjos, Senior Cyber Analyst, Justin Torres, Cyber Analyst

Appendices

Darktrace DETECT Model Detections

- Anomalous Connection / New User Agent to IP Without Hostname

- Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

- Anomalous File / Multiple EXE from Rare External Locations

- Anomalous File / Numeric File Download

List of IOCs (IOC / Type / Description + Confidence)

- 85.208.139[.]35 / IP / SmokeLoader C2 Endpoint

- 185.174.137[.]109 / IP / SmokeLoader C2 Endpoint

- 45.66.230[.]164 / IP / SmokeLoader C2 Endpoint

- 91.215.85[.]147 / IP / SmokeLoader C2 Endpoint

- tolilolihul[.]net / Hostname / SmokeLoader C2 Endpoint

- bulimu55t[.]net / Hostname / SmokeLoader C2 Endpoint

- potunulit[.]org / Hostname / SmokeLoader C2 Endpoint

- hugersi[.]com / Hostname / SmokeLoader C2 Endpoint

- human[.]art / Hostname / SmokeLoader C2 Endpoint

- 371b0d5c867c2f33ae270faa14946c77f4b0953 / SHA1 / SmokeLoader Executable

References:

[1] https://bazaar.abuse.ch/sample/d7c395ab2b6ef69210221337ea292e204b0f73fef8840b6e64ab88595eda45b3/#intel

[2] https://malpedia.caad.fkie.fraunhofer.de/details/win.smokeloader

[3] https://www.darkreading.com/cyber-risk/breaking-down-the-propagate-code-injection-attack

[4] https://n1ght-w0lf.github.io/malware%20analysis/smokeloader/

[5] https://therecord.media/surge-in-smokeloader-malware-attacks-targeting-ukrainian-financial-gov-orgs

MITRE ATT&CK Mapping

Model: Anomalous Connection / New User Agent to IP Without Hostname

ID: T1071.001

Sub technique: T1071

Tactic: COMMAND AND CONTROL

Technique Name: Web Protocols

Model: Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

ID: T1185

Sub technique: -

Tactic: COLLECTION

Technique Name: Man in the Browser

ID: T1071.001

Sub technique: T1071

Tactic: COMMAND AND CONTROL

Technique Name: Web Protocols

Model: Anomalous File / Multiple EXE from Rare External Locations

ID: T1189

Sub technique: -

Tactic: INITIAL ACCESS

Technique Name: Drive-by Compromise

ID: T1588.001

Sub technique: - T1588

Tactic: RESOURCE DEVELOPMENT

Technique Name: Malware

Model: Anomalous File / Numeric File Download

ID: T1189

Sub technique: -

Tactic: INITIAL ACCESS

Technique Name: Drive-by Compromise

ID: T1588.001

Sub technique: - T1588

Tactic: RESOURCE DEVELOPMENT

Technique Name: Malware

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Patrick Anjos
Senior Cyber Analyst
Book a 1-1 meeting with one of our experts
share this article
PRODUCT SPOTLIGHT
No items found.
COre coverage
No items found.

More in this series

No items found.

Blog

Thought Leadership

The State of AI in Cybersecurity: Understanding AI Technologies

Default blog imageDefault blog image
24
Jul 2024

About the State of AI Cybersecurity Report

Darktrace surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog continues the conversation from “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners”. This blog will focus on security professionals’ understanding of AI technologies in cybersecurity tools.

To access download the full report, click here.

How familiar are security professionals with supervised machine learning

Just 31% of security professionals report that they are “very familiar” with supervised machine learning.

Many participants admitted unfamiliarity with various AI types. Less than one-third felt "very familiar" with the technologies surveyed: only 31% with supervised machine learning and 28% with natural language processing (NLP).

Most participants were "somewhat" familiar, ranging from 46% for supervised machine learning to 36% for generative adversarial networks (GANs). Executives and those in larger organizations reported the highest familiarity.

Combining "very" and "somewhat" familiar responses, 77% had familiarity with supervised machine learning, 74% generative AI, and 73% NLP. With generative AI getting so much media attention, and NLP being the broader area of AI that encompasses generative AI, these results may indicate that stakeholders are understanding the topic on the basis of buzz, not hands-on work with the technologies.  

If defenders hope to get ahead of attackers, they will need to go beyond supervised learning algorithms trained on known attack patterns and generative AI. Instead, they’ll need to adopt a comprehensive toolkit comprised of multiple, varied AI approaches—including unsupervised algorithms that continuously learn from an organization’s specific data rather than relying on big data generalizations.  

Different types of AI

Different types of AI have different strengths and use cases in cyber security. It’s important to choose the right technique for what you’re trying to achieve.  

Supervised machine learning: Applied more often than any other type of AI in cyber security. Trained on human attack patterns and historical threat intelligence.  

Large language models (LLMs): Applies deep learning models trained on extremely large data sets to understand, summarize, and generate new content. Used in generative AI tools.  

Natural language processing (NLP): Applies computational techniques to process and understand human language.  

Unsupervised machine learning: Continuously learns from raw, unstructured data to identify deviations that represent true anomalies.  

What impact will generative AI have on the cybersecurity field?

More than half of security professionals (57%) believe that generative AI will have a bigger impact on their field over the next few years than other types of AI.

Chart showing the types of AI expected to impact security the most
Figure 1: Chart from Darktrace's State of AI in Cybersecurity Report

Security stakeholders are highly aware of generative AI and LLMs, viewing them as pivotal to the field's future. Generative AI excels at abstracting information, automating tasks, and facilitating human-computer interaction. However, LLMs can "hallucinate" due to training data errors and are vulnerable to prompt injection attacks. Despite improvements in securing LLMs, the best cyber defenses use a mix of AI types for enhanced accuracy and capability.

AI education is crucial as industry expectations for generative AI grow. Leaders and practitioners need to understand where and how to use AI while managing risks. As they learn more, there will be a shift from generative AI to broader AI applications.

Do security professionals fully understand the different types of AI in security products?

Only 26% of security professionals report a full understanding of the different types of AI in use within security products.

Confusion is prevalent in today’s marketplace. Our survey found that only 26% of respondents fully understand the AI types in their security stack, while 31% are unsure or confused by vendor claims. Nearly 65% believe generative AI is mainly used in cybersecurity, though it’s only useful for identifying phishing emails. This highlights a gap between user expectations and vendor delivery, with too much focus on generative AI.

Key findings include:

  • Executives and managers report higher understanding than practitioners.
  • Larger organizations have better understanding due to greater specialization.

As AI evolves, vendors are rapidly introducing new solutions faster than practitioners can learn to use them. There's a strong need for greater vendor transparency and more education for users to maximize the technology's value.

To help ease confusion around AI technologies in cybersecurity, Darktrace has released the CISO’s Guide to Cyber AI. A comprehensive white paper that categorizes the different applications of AI in cybersecurity. Download the White Paper here.  

Do security professionals believe generative AI alone is enough to stop zero-day threats?

No! 86% of survey participants believe generative AI alone is NOT enough to stop zero-day threats

This consensus spans all geographies, organization sizes, and roles, though executives are slightly less likely to agree. Asia-Pacific participants agree more, while U.S. participants agree less.

Despite expecting generative AI to have the most impact, respondents recognize its limited security use cases and its need to work alongside other AI types. This highlights the necessity for vendor transparency and varied AI approaches for effective security across threat prevention, detection, and response.

Stakeholders must understand how AI solutions work to ensure they offer advanced, rather than outdated, threat detection methods. The survey shows awareness that old methods are insufficient.

To access the full report, click here.

Continue reading
About the author
The Darktrace Community

Blog

Inside the SOC

Jupyter Ascending: Darktrace’s Investigation of the Adaptive Jupyter Information Stealer

Default blog imageDefault blog image
18
Jul 2024

What is Malware as a Service (MaaS)?

Malware as a Service (MaaS) is a model where cybercriminals develop and sell or lease malware to other attackers.

This approach allows individuals or groups with limited technical skills to launch sophisticated cyberattacks by purchasing or renting malware tools and services. MaaS is often provided through online marketplaces on the dark web, where sellers offer various types of malware, including ransomware, spyware, and trojans, along with support services such as updates and customer support.

The Growing MaaS Marketplace

The Malware-as-a-Service (MaaS) marketplace is rapidly expanding, with new strains of malware being regularly introduced and attracting waves of new and previous attackers. The low barrier for entry, combined with the subscription-like accessibility and lucrative business model, has made MaaS a prevalent tool for cybercriminals. As a result, MaaS has become a significant concern for organizations and their security teams, necessitating heightened vigilance and advanced defense strategies.

Examples of Malware as a Service

  • Ransomware as a Service (RaaS): Providers offer ransomware kits that allow users to launch ransomware attacks and share the ransom payments with the service provider.
  • Phishing as a Service: Services that provide phishing kits, including templates and email lists, to facilitate phishing campaigns.
  • Botnet as a Service: Renting out botnets to perform distributed denial-of-service (DDoS) attacks or other malicious activities.
  • Information Stealer: Information stealers are a type of malware specifically designed to collect sensitive data from infected systems, such as login credentials, credit card numbers, personal identification information, and other valuable data.

How does information stealer malware work?

Information stealers are an often-discussed type MaaS tool used to harvest personal and proprietary information such as administrative credentials, banking information, and cryptocurrency wallet details. This information is then exfiltrated from target networks via command-and-control (C2) communication, allowing threat actors to monetize the data. Information stealers have also increasingly been used as an initial access vector for high impact breaches including ransomware attacks, employing both double and triple extortion tactics.

After investigating several prominent information stealers in recent years, the Darktrace Threat Research team launched an investigation into indicators of compromise (IoCs) associated with another variant in late 2023, namely the Jupyter information stealer.

What is Jupyter information stealer and how does it work?

The Jupyter information stealer (also known as Yellow Cockatoo, SolarMarker, and Polazert) was first observed in the wild in late 2020. Multiple variants have since become part of the wider threat landscape, however, towards the end of 2023 a new variant was observed. This latest variant achieved greater stealth and updated its delivery method, targeting browser extensions such as Edge, Firefox, and Chrome via search engine optimization (SEO) poisoning and malvertising. This then redirects users to download malicious files that typically impersonate legitimate software, and finally initiates the infection and the attack chain for Jupyter [3][4]. In recently noted cases, users download malicious executables for Jupyter via installer packages created using InnoSetup – an open-source compiler used to create installation packages in the Windows OS.

The latest release of Jupyter reportedly takes advantage of signed digital certificates to add credibility to downloaded executables, further supplementing its already existing tactics, techniques and procedures (TTPs) for detection evasion and sophistication [4]. Jupyter does this while still maintaining features observed in other iterations, such as dropping files into the %TEMP% folder of a system and using PowerShell to decrypt and load content into memory [4]. Another reported feature includes backdoor functionality such as:

  • C2 infrastructure
  • Ability to download and execute malware
  • Execution of PowerShell scripts and commands
  • Injecting shellcode into legitimate windows applications

Darktrace Coverage of Jupyter information stealer

In September 2023, Darktrace’s Threat Research team first investigated Jupyter and discovered multiple IoCs and TTPs associated with the info-stealer across the customer base. Across most investigated networks during this time, Darktrace observed the following activity:

  • HTTP POST requests over destination port 80 to rare external IP addresses (some of these connections were also made via port 8089 and 8090 with no prior hostname lookup).
  • HTTP POST requests specifically to the root directory of a rare external endpoint.
  • Data streams being sent to unusual external endpoints
  • Anomalous PowerShell execution was observed on numerous affected networks.

Taking a further look at the activity patterns detected, Darktrace identified a series of HTTP POST requests within one customer’s environment on December 7, 2023. The HTTP POST requests were made to the root directory of an external IP address, namely 146.70.71[.]135, which had never previously been observed on the network. This IP address was later reported to be malicious and associated with Jupyter (SolarMarker) by open-source intelligence (OSINT) [5].

Device Event Log indicating several connections from the source device to the rare external IP address 146.70.71[.]135 over port 80.
Figure 1: Device Event Log indicating several connections from the source device to the rare external IP address 146.70.71[.]135 over port 80.

This activity triggered the Darktrace / NETWORK model, ‘Anomalous Connection / Posting HTTP to IP Without Hostname’. This model alerts for devices that have been seen posting data out of the network to rare external endpoints without a hostname. Further investigation into the offending device revealed a significant increase in external data transfers around the time Darktrace alerted the activity.

This External Data Transfer graph demonstrates a spike in external data transfer from the internal device indicated at the top of the graph on December 7, 2023, with a time lapse shown of one week prior.
Figure 2: This External Data Transfer graph demonstrates a spike in external data transfer from the internal device indicated at the top of the graph on December 7, 2023, with a time lapse shown of one week prior.

Packet capture (PCAP) analysis of this activity also demonstrates possible external data transfer, with the device observed making a POST request to the root directory of the malicious endpoint, 146.70.71[.]135.

PCAP of a HTTP POST request showing streams of data being sent to the endpoint, 146.70.71[.]135.
Figure 3: PCAP of a HTTP POST request showing streams of data being sent to the endpoint, 146.70.71[.]135.

In other cases investigated by the Darktrace Threat Research team, connections to the rare external endpoint 67.43.235[.]218 were detected on port 8089 and 8090. This endpoint was also linked to Jupyter information stealer by OSINT sources [6].

Darktrace recognized that such suspicious connections represented unusual activity and raised several model alerts on multiple customer environments, including ‘Compromise / Large Number of Suspicious Successful Connections’ and ‘Anomalous Connection / Multiple Connections to New External TCP Port’.

In one instance, a device that was observed performing many suspicious connections to 67.43.235[.]218 was later observed making suspicious HTTP POST connections to other malicious IP addresses. This included 2.58.14[.]246, 91.206.178[.]109, and 78.135.73[.]176, all of which had been linked to Jupyter information stealer by OSINT sources [7] [8] [9].

Darktrace further observed activity likely indicative of data streams being exfiltrated to Jupyter information stealer C2 endpoints.

Graph displaying the significant increase in the number of HTTP POST requests with No Get made by an affected device, likely indicative of Jupyter information stealer C2 activity.
Figure 4: Graph displaying the significant increase in the number of HTTP POST requests with No Get made by an affected device, likely indicative of Jupyter information stealer C2 activity.

In several cases, Darktrace was able to leverage customer integrations with other security vendors to add additional context to its own model alerts. For example, numerous customers who had integrated Darktrace with Microsoft Defender received security integration alerts that enriched Darktrace’s model alerts with additional intelligence, linking suspicious activity to Jupyter information stealer actors.

The security integration model alerts ‘Security Integration / Low Severity Integration Detection’ and (right image) ‘Security Integration / High Severity Integration Detection’, linking suspicious activity observed by Darktrace with Jupyter information stealer (SolarMarker).
Figure 5: The security integration model alerts ‘Security Integration / Low Severity Integration Detection’ and (right image) ‘Security Integration / High Severity Integration Detection’, linking suspicious activity observed by Darktrace with Jupyter information stealer (SolarMarker).

Conclusion

The MaaS ecosystems continue to dominate the current threat landscape and the increasing sophistication of MaaS variants, featuring advanced defense evasion techniques, poses significant risks once deployed on target networks.

Leveraging anomaly-based detections is crucial for staying ahead of evolving MaaS threats like Jupyter information stealer. By adopting AI-driven security tools like Darktrace / NETWORK, organizations can more quickly identify and effectively detect and respond to potential threats as soon as they emerge. This is especially crucial given the rise of stealthy information stealing malware strains like Jupyter which cannot only harvest and steal sensitive data, but also serve as a gateway to potentially disruptive ransomware attacks.

Credit to Nahisha Nobregas (Senior Cyber Analyst), Vivek Rajan (Cyber Analyst)

References

1.     https://www.paloaltonetworks.com/cyberpedia/what-is-multi-extortion-ransomware

2.     https://flashpoint.io/blog/evolution-stealer-malware/

3.     https://blogs.vmware.com/security/2023/11/jupyter-rising-an-update-on-jupyter-infostealer.html

4.     https://www.morphisec.com/hubfs/eBooks_and_Whitepapers/Jupyter%20Infostealer%20WEB.pdf

5.     https://www.virustotal.com/gui/ip-address/146.70.71.135

6.     https://www.virustotal.com/gui/ip-address/67.43.235.218/community

7.     https://www.virustotal.com/gui/ip-address/2.58.14.246/community

8.     https://www.virustotal.com/gui/ip-address/91.206.178.109/community

9.     https://www.virustotal.com/gui/ip-address/78.135.73.176/community

Appendices

Darktrace Model Detections

  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Compromise / HTTP Beaconing to Rare Destination
  • Unusual Activity / Unusual External Data to New Endpoints
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Large Number of Suspicious Successful Connections
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Excessive Posts to Root
  • Compromise / Sustained SSL or HTTP Increase
  • Security Integration / High Severity Integration Detection
  • Security Integration / Low Severity Integration Detection
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Unusual Activity / Unusual External Data Transfer

AI Analyst Incidents:

  • Unusual Repeated Connections
  • Possible HTTP Command and Control to Multiple Endpoints
  • Possible HTTP Command and Control

List of IoCs

Indicators – Type – Description

146.70.71[.]135

IP Address

Jupyter info-stealer C2 Endpoint

91.206.178[.]109

IP Address

Jupyter info-stealer C2 Endpoint

146.70.92[.]153

IP Address

Jupyter info-stealer C2 Endpoint

2.58.14[.]246

IP Address

Jupyter info-stealer C2 Endpoint

78.135.73[.]176

IP Address

Jupyter info-stealer C2 Endpoint

217.138.215[.]105

IP Address

Jupyter info-stealer C2 Endpoint

185.243.115[.]88

IP Address

Jupyter info-stealer C2 Endpoint

146.70.80[.]66

IP Address

Jupyter info-stealer C2 Endpoint

23.29.115[.]186

IP Address

Jupyter info-stealer C2 Endpoint

67.43.235[.]218

IP Address

Jupyter info-stealer C2 Endpoint

217.138.215[.]85

IP Address

Jupyter info-stealer C2 Endpoint

193.29.104[.]25

IP Address

Jupyter info-stealer C2 Endpoint

Continue reading
About the author
Nahisha Nobregas
SOC Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.