Blog
/
Network
/
January 31, 2024

How Darktrace Defeated SmokeLoader Malware

Read how Darktrace's AI identified and neutralized SmokeLoader malware. Gain insights into their proactive approach to cybersecurity.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Patrick Anjos
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
31
Jan 2024

What is Loader Malware?

Loader malware is a type of malicious software designed primarily to infiltrate a system and then download and execute additional malicious payloads.

In recent years, loader malware has emerged as a significant threat for organizations worldwide. This trend is expected to continue given the widespread availability of many loader strains within the Malware-as-a-Service (MaaS) marketplace. The MaaS marketplace contains a wide variety of innovative strains which are both affordable, with toolkits ranging from USD 400 to USD 1,650 [1], and continuously improving, aiming to avoid traditional detection mechanisms.

SmokeLoader is one such example of a MaaS strain that has been observed in the wild since 2011 and continues to pose a significant threat to organizations and their security teams.

How does SmokeLoader Malware work?

SmokeLoader’s ability to drop an array of different malware strains onto infected systems, from backdoors, ransomware, cryptominers, password stealers, point-of-sale malware and banking trojans, means its a highly versatile loader that has remained consistently popular among threat actors.

In addition to its versatility, it also exhibits advanced evasion strategies that make it difficult for traditional security solutions to detect and remove, and it is easily distributed via methods like spam emails or malicious file downloads.

Between July and August 2023, Darktrace observed an increasing trend in SmokeLoader compromises across its customer base. The anomaly-based threat detection capabilities of Darktrace, coupled with the autonomous response technology, identified and contained the SmokeLoader infections in their initial stages, preventing attackers from causing further disruption by deploying other malicious software or ransomware.

SmokeLoader Malware Attack Details

PROPagate Injection Technique

SmokeLoader utilizes the PROPagate code injection technique, a less common method that inserts malicious code into existing processes in order to appear legitimate and bypass traditional signature-based security measures [2] [3]. In the case of SmokeLoader, this technique exploits the Windows SetWindowsSubclass function, which is typically used to add or change the behavior of Windows Operation System. By manipulating this function, SmokeLoader can inject its code into other running processes, such as the Internet Explorer. This not only helps to disguise  the malware's activity but also allows attackers to leverage the permissions and capabilities of the infected process.

Obfuscation Methods

SmokeLoader is known to employ several obfuscation techniques to evade the detection and analysis of security teams. The techniques include scrambling portable executable files, encrypting its malicious code, obfuscating API functions and packing, and are intended to make the malware’s code appear harmless or unremarkable to antivirus software. This allows attackers to slip past defenses and execute their malicious activities while remaining undetected.

Infection Vector and Communication

SmokeLoader typically spreads via phishing emails that employ social engineering tactics to convince users to unknowingly download malicious payloads and execute the malware. Once installed on target networks, SmokeLoader acts as a backdoor, allowing attackers to control infected systems and download further malicious payloads from command-and-control (C2) servers. SmokeLoader uses fast flux, a DNS technique utilized by botets whereby IP addresses associated with C2 domains are rapidly changed, making it difficult to trace the source of the attack. This technique also boosts the resilience of attack, as taking down one or two malicious IP addresses will not significantly impact the botnet's operation.

Continuous Evolution

As with many MaaS strains, SmokeLoader is continuously evolving, with its developers regularly adding new features and techniques to increase its effectiveness and evasiveness. This includes new obfuscation methods, injection techniques, and communication protocols. This constant evolution makes SmokeLoader a significant threat and underscores the importance of advanced threat detection and response capabilities solution.

Darktrace’s Coverage of SmokeLoader Attack

Between July and August 2023, Darktrace detected one particular SmokeLoader infection at multiple stages of its kill chain on a customer network. This detection was made possible by Darktrace DETECT’s anomaly-based approach and Self-Learning AI that allows it to identify subtle deviations in device behavior.

One of the key components of this process is the classification of endpoint rarity and determining whether an endpoint is new or unusual for any given network. This classification is applied to various aspects of observed endpoints, such as domains, IP addresses, or hostnames within the network. It thereby plays a vital role in identifying SmokeLoader activity, such as the initial infection vector or C2 communication, which typically involve a device contacting a malicious endpoint associated with SmokeLoader.

The First Signs of Infection SmokeLoader Infection

Beginning in July 2023, Darktrace observed a surge in suspicious activities that were assessed with moderate to high confidence to be associated with SmokeLoader malware.

For example on July 30, a device was observed making a successful HTTPS request to humman[.]art, a domain that had never been seen on the network, and therefore classified as 100% rare by DETECT. During this connection, the device in question received a total of 6.0 KiB of data from the unusual endpoint. Open-source intelligence (OSINT) sources reported with high confidence that this domain was associated with the SmokeLoader C2 botnet.

The device was then detected making an HTTP request to another 100% rare external IP, namely 85.208.139[.]35, using a new user agent. This request contained the URI ‘/DefenUpdate.exe’, suggesting a possible download of an executable (.exe) file. This was corroborated by the total amount of data received in this connection, 4.3 MB. Both the file name and its size suggest that the offending device may have downloaded additional malicious tooling from the SmokeLoader C2 endpoint, such as a trojan or information stealer, as reported on OSINT platforms [4].

Figure 1: Device event log showing the moment when a device made its first connection to a SmokeLoader associated domain, and the use of a new user agent. A few seconds later, the DETECT model “Anomalous Connection / New User Agent to IP Without Hostname” breached.

The observed new user agent, “Mozilla/5.0 (Windows NT 10.0; Win64; x64; Trident/7.0; rv:11.0) like Gecko” was identified as suspicious by Darktrace leading to the “Anomalous Connection / New User Agent to IP Without Hostname” DETECT model breach.

As this specific user agent was associated with the Internet Explorer browser running on Windows 10, it may not have appeared suspicious to traditional security tools. However, Darktrace’s anomaly-based detection allows it to identify and mitigate emerging threats, even those that utilize sophisticated evasion techniques.

This is particularly noteworthy in this case because, as discussed earlier, SmokeLoader is known to inject its malicious code into legitimate processes, like Internet Explorer.

Figure 2: Darktrace detecting the affected device leveraging a new user agent and establishing an anomalous HTTP connection with an external IP, which was 100% rare to the network.

C2 Communication

Darktrace continued to observe the device making repeated connections to the humman[.]art endpoint. Over the next few days. On August 7, the device was observed making unusual POST requests to the endpoint using port 80, breaching the ‘Anomalous Connection / Multiple HTTP POSTs to Rare Hostname’ DETECT model. These observed POST requests were observed over a period of around 10 days and consisted of a pattern of 8 requests, each with a ten-minute interval.

Figure 3: Model Breach Event Log highlighting the Darktrace DETECT model breach ‘Anomalous Connection / Multiple HTTP POSTs to Rare Hostname’.

Upon investigating the details of this activity identified by Darktrace DETECT, a particular pattern was observed in these requests: they used the same user-agent, “Mozilla/5.0 (Windows NT 10.0; Win64; x64; Trident/7.0; rv:11.0) like Gecko”, which was previously detected in the initial breach.

Additionally, they the requests had a constantly changing  eferrer header, possibly using randomly generated domain names for each request. Further examination of the packet capture (PCAP) from these requests revealed that the payload in these POST requests contained an RC4 encrypted string, strongly indicating SmokeLoader C2 activity.

Figure4: Advanced Search results display an unusual pattern in the requests made by the device to the hostname humman[.]art. This pattern shows a constant change in the referrer header for each request, indicating anomalous behavior.
Figure 5: The PCAP shows the payload seen in these POST requests contained an RC4 encrypted string strongly indicating SmokeLoader C2 activity.  

Unfortunately in this case, Darktrace RESPOND was not active on the network meaning that the attack was able to progress through its kill chain. Despite this, the timely alerts and detailed incident insights provided by Darktrace DETECT allowed the customer’s security team to begin their remediation process, implementing blocks on their firewall, thus preventing the SmokeLoader malware from continuing its communication with C2 infrastructure.

Darktrace RESPOND Halting Potential Threats from the Initial Stages of Detection

With Darktrace RESPOND, organizations can move beyond threat detection to proactive defense against emerging threats. RESPOND is designed to halt threats as soon as they are identified by DETECT, preventing them from escalating into full-blown compromises. This is achieved through advanced machine learning and Self-Learning AI that is able to understand  the normal ‘pattern of life’ of customer networks, allowing for swift and accurate threat detection and response.

One pertinent example was seen on July 6, when Darktrace detected a separate SmokeLoader case on a customer network with RESPOND enabled in autonomous response mode. Darktrace DETECT initially identified a string of anomalous activity associated with the download of suspicious executable files, triggering the ‘Anomalous File / Multiple EXE from Rare External Locations’ model to breach.

The device was observed downloading an executable file (‘6523.exe’ and ‘/g.exe’) via HTTP over port 80. These downloads originated from endpoints that had never been seen within the customer’s environment, namely ‘hugersi[.]com’ and ‘45.66.230[.]164’, both of which had strongly been linked to SmokeLoader by OSINT sources, likely indicating the initial infection stage of the attack [5].

Figure 6: This figure illustrates Darktrace DETECT observing a device downloading multiple .exe files from rare endpoints and the associated model breach, ‘Anomalous File / Multiple EXE from Rare External Locations’.

Around the same time, Darktrace also observed the same device downloading an unusual file with a numeric file name. Threat actors often employ this tactic in order to avoid using file name patterns that could easily be recognized and blocked by traditional security measures; by frequently changing file names, malicious executables are more likely to remain undetected.

Figure 7: Graph showing the unusually high number of executable files downloaded by the device during the initial infection stage of the attack. The orange and red circles represent the number of model breaches that the device made during the observed activity related to SmokeLoader infection.
Figure 8: This figure illustrates the moment when Darktrace DETECT identified a suspicious download with a numeric file name.

With Darktrace RESPOND active and enabled in autonomous response mode, the SmokeLoader infection was thwarted in the first instance. RESPOND took swift autonomous action by blocking connections to the suspicious endpoints identified by DETECT, blocking all outgoing traffic, and enforcing a pre-established “pattern of life” on offending devices. By enforcing a patten of life on a device, Darktrace RESPOND ensures that it cannot deviate from its ‘normal’ activity to carry out potentially malicious activity, while allowing the device to continue expected business operations.

Figure 9:  A total of 8 RESPOND actions were applied, including blocking connections to suspicious endpoints and domains associated with SmokeLoader.

In addition to the autonomous mitigative actions taken by RESPOND, this customer also received a Proactive Threat Notification (PTN) informing them of potentially malicious activity on their network. This prompted the Darktrace Security Operations Center (SOC) to investigate and document the incident, allowing the customer’s security team to shift their focus to remediating and removing the threat of SmokeLoader.

Conclusion

Ultimately, Darktrace showcased its ability to detect and contain versatile and evasive strains of loader malware, like SmokeLoader. Despite its adeptness at bypassing conventional security tools by frequently changing its C2 infrastructure, utilizing existing processes to infect malicious code, and obfuscating malicious file and domain names, Darktrace’s anomaly-based approach allowed it to recognize such activity as deviations from expected network behavior, regardless of their apparent legitimacy.

Considering SmokeLoader’s wide array of functions, including C2 communication that could be used to facilitate additional attacks like exfiltration, or even the deployment of information-stealers or ransomware, Darktrace proved to be crucial in safeguarding customer networks. By identifying and mitigating SmokeLoader at the earliest possible stage, Darktrace effectively prevented the compromises from escalating into more damaging and disruptive compromises.

With the threat of loader malware expected to continue growing alongside the boom of the MaaS industry, it is paramount for organizations to adopt proactive security solutions, like Darktrace DETECT+RESPOND, that are able to make intelligent decisions to identify and neutralize sophisticated attacks.

Credit to Patrick Anjos, Senior Cyber Analyst, Justin Torres, Cyber Analyst

Appendices

Darktrace DETECT Model Detections

- Anomalous Connection / New User Agent to IP Without Hostname

- Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

- Anomalous File / Multiple EXE from Rare External Locations

- Anomalous File / Numeric File Download

List of IOCs (IOC / Type / Description + Confidence)

- 85.208.139[.]35 / IP / SmokeLoader C2 Endpoint

- 185.174.137[.]109 / IP / SmokeLoader C2 Endpoint

- 45.66.230[.]164 / IP / SmokeLoader C2 Endpoint

- 91.215.85[.]147 / IP / SmokeLoader C2 Endpoint

- tolilolihul[.]net / Hostname / SmokeLoader C2 Endpoint

- bulimu55t[.]net / Hostname / SmokeLoader C2 Endpoint

- potunulit[.]org / Hostname / SmokeLoader C2 Endpoint

- hugersi[.]com / Hostname / SmokeLoader C2 Endpoint

- human[.]art / Hostname / SmokeLoader C2 Endpoint

- 371b0d5c867c2f33ae270faa14946c77f4b0953 / SHA1 / SmokeLoader Executable

References:

[1] https://bazaar.abuse.ch/sample/d7c395ab2b6ef69210221337ea292e204b0f73fef8840b6e64ab88595eda45b3/#intel

[2] https://malpedia.caad.fkie.fraunhofer.de/details/win.smokeloader

[3] https://www.darkreading.com/cyber-risk/breaking-down-the-propagate-code-injection-attack

[4] https://n1ght-w0lf.github.io/malware%20analysis/smokeloader/

[5] https://therecord.media/surge-in-smokeloader-malware-attacks-targeting-ukrainian-financial-gov-orgs

MITRE ATT&CK Mapping

Model: Anomalous Connection / New User Agent to IP Without Hostname

ID: T1071.001

Sub technique: T1071

Tactic: COMMAND AND CONTROL

Technique Name: Web Protocols

Model: Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

ID: T1185

Sub technique: -

Tactic: COLLECTION

Technique Name: Man in the Browser

ID: T1071.001

Sub technique: T1071

Tactic: COMMAND AND CONTROL

Technique Name: Web Protocols

Model: Anomalous File / Multiple EXE from Rare External Locations

ID: T1189

Sub technique: -

Tactic: INITIAL ACCESS

Technique Name: Drive-by Compromise

ID: T1588.001

Sub technique: - T1588

Tactic: RESOURCE DEVELOPMENT

Technique Name: Malware

Model: Anomalous File / Numeric File Download

ID: T1189

Sub technique: -

Tactic: INITIAL ACCESS

Technique Name: Drive-by Compromise

ID: T1588.001

Sub technique: - T1588

Tactic: RESOURCE DEVELOPMENT

Technique Name: Malware

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Patrick Anjos
Senior Cyber Analyst

More in this series

No items found.

Blog

/

/

May 2, 2025

SocGholish: From loader and C2 activity to RansomHub deployment

laptop and hand typingDefault blog imageDefault blog image

Over the past year, a clear pattern has emerged across the threat landscape: ransomware operations are increasingly relying on compartmentalized affiliate models. In these models, initial access brokers (IABs) [6], malware loaders, and post-exploitation operators work together.

Due to those specialization roles, a new generation of loader campaigns has risen. Threat actors increasingly employ loader operators to quietly establish footholds on the target network. These entities then hand off access to ransomware affiliates. One loader that continues to feature prominently in such campaigns is SocGholish.

What is SocGholish?

SocGholish is a loader malware that has been utilized since at least 2017 [7].  It has long been associated with fake browser updates and JavaScript-based delivery methods on infected websites.

Threat actors often target outdated or poorly secured CMS-based websites like WordPress. Through unpatched plugins, or even remote code execution flaws, they inject malicious JavaScript into the site’s HTML, templates or external JS resources [8].  Historically, SocGholish has functioned as a first-stage malware loader, ultimately leading to deployment of Cobalt Strike beacons [9], and further facilitating access persistence to corporate environments. More recently, multiple security vendors have reported that infections involving SocGholish frequently lead to the deployment of RansomHub ransomware [3] [5].

This blog explores multiple instances within Darktrace's customer base where SocGholish deployment led to subsequent network compromises. Investigations revealed indicators of compromise (IoCs) similar to those identified by external security researchers, along with variations in attacker behavior post-deployment. Key innovations in post-compromise activities include credential access tactics targeting authentication mechanisms, particularly through the abuse of legacy protocols like WebDAV and SCF file interactions over SMB.

Initial access and execution

Since January 2025, Darktrace’s Threat Research team observed multiple cases in which threat actors leveraged the SocGholish loader for initial access. Malicious actors commonly deliver SocGholish by compromising legitimate websites by injecting malicious scripts into the HTML of the affected site. When the visitor lands on an infected site, they are typically redirected to a fake browser update page, tricking them into downloading a ZIP file containing a JavaScript-based loader [1] [2]. In one case, a targeted user appears to have visited the compromised website garagebevents[.]com (IP: 35.203.175[.]30), from which around 10 MB of data was downloaded.

Device Event Log showing connections to the compromised website, following by connections to the identified Keitaro TDS instances.
Figure 1: Device Event Log showing connections to the compromised website, following by connections to the identified Keitaro TDS instances.

Within milliseconds of the connection establishment, the user’s device initiated several HTTPS sessions over the destination port 443 to the external endpoint 176.53.147[.]97, linked to the following Keitaro TDS domains:

  • packedbrick[.]com
  • rednosehorse[.]com
  • blackshelter[.]org
  • blacksaltys[.]com

To evade detection, SocGholish uses highly obfuscated code and relies on traffic distribution systems (TDS) [3].  TDS is a tool used in digital and affiliate marketing to manage and distribute incoming web traffic based on predefined rules. More specifically, Keitaro is a premium self-hosted TDS frequently utilized by attackers as a payload repository for malicious scripts following redirects from compromised sites. In the previously noted example, it appears that the device connected to the compromised website, which then retrieved JavaScript code from the aforementioned Keitaro TDS domains. The script served by those instances led to connections to the endpoint virtual.urban-orthodontics[.]com (IP: 185.76.79[.]50), successfully completing SocGholish’s distribution.

Advanced Search showing connections to the compromised website, following by those to the identified Keitaro TDS instances.
Figure 2: Advanced Search showing connections to the compromised website, following by those to the identified Keitaro TDS instances.

Persistence

During some investigations, Darktrace researchers observed compromised devices initiating HTTPS connections to the endpoint files.pythonhosted[.]org (IP: 151.101.1[.]223), suggesting Python package downloads. External researchers have previously noted how attackers use Python-based backdoors to maintain access on compromised endpoints following initial access via SocGholish [5].

Credential access and lateral movement

Credential access – external

Darktrace researchers identified observed some variation in kill chain activities following initial access and foothold establishment. For example, Darktrace detected interesting variations in credential access techniques. In one such case, an affected device attempted to contact the rare external endpoint 161.35.56[.]33 using the Web Distributed Authoring and Versioning (WebDAV) protocol. WebDAV is an extension of the HTTP protocol that allows users to collaboratively edit and manage files on remote web servers. WebDAV enables remote shares to be mounted over HTTP or HTTPS, similar to how SMB operates, but using web-based protocols. Windows supports WebDAV natively, which means a UNC path pointing to an HTTP or HTTPS resource can trigger system-level behavior such as authentication.

In this specific case, the system initiated outbound connections using the ‘Microsoft-WebDAV-MiniRedir/10.0.19045’ user-agent, targeting the URI path of /s on the external endpoint 161.35.56[.]33. During these requests, the host attempted to initiate NTML authentication and even SMB sessions over the web, both of which failed. Despite the session failures, these attempts also indicate a form of forced authentication. Forced authentication exploits a default behavior in Windows where, upon encountering a UNC path, the system will automatically try to authenticate to the resource using NTML – often without any user interaction. Although no files were directly retrieved, the WebDAV server was still likely able to retrieve the user’s NTLM hash during the session establishment requests, which can later be used by the adversary to crack the password offline.

Credential access – internal

In another investigated incident, Darktrace observed a related technique utilized for credential access and lateral movement. This time, the infected host uploaded a file named ‘Thumbs.scf’ to multiple internal SMB network shares. Shell Command File ( SCF) is a legacy Windows file format used primarily for Windows Explorer shortcuts. These files contain instructions for rendering icons or triggering shell commands, and they can be executed implicitly when a user simply opens a folder containing the file – no clicks required.

The ‘Thumbs.scf’ file dropped by the attacker was crafted to exploit this behavior. Its contents included a [Shell] section with the Command=2 directive and an IconFile path pointing to a remote UNC resource on the same external endpoint, 161.35.56[.]33, seen in the previously described case – specifically, ‘\\161.35.56[.]33\share\icon.ico’. When a user on the internal network navigates to the folder containing the SCF file, their system will automatically attempt to load the icon. In doing so, the system issues a request to the specified UNC path, which again prompts Windows to initiate NTML authentication.

This pattern of activity implies that the attacker leveraged passive internal exposure; users who simply browsed a compromised share would unknowingly send their NTML hashes to an external attacker-controlled host. Unlike the WebDAV approach, which required initiating outbound communication from the infected host, this SCF method relies on internal users to interact with poisoned folders.

Figure 3: Contents of the file 'Thumbs.scf' showing the UNC resource hosted on the external endpoint.
Figure 3: Contents of the file 'Thumbs.scf' showing the UNC resource hosted on the external endpoint.

Command-and-control

Following initial compromise, affected devices would then attempt outbound connections using the TLS/SSL protocol over port 443 to different sets of command-and-control (C2) infrastructure associated with SocGholish. The malware frequently uses obfuscated JavaScript loaders to initiate its infection chain, and once dropped, the malware communicates back to its infrastructure over standard web protocols, typically using HTTPS over port 443. However, this set of connections would precede a second set of outbound connections, this time to infrastructure linked to RansomHub affiliates, possibly facilitating the deployed Python-based backdoor.

Connectivity to RansomHub infrastructure relied on defense evasion tactics, such as port-hopping. The idea behind port-hopping is to disguise C2 traffic by avoiding consistent patterns that might be caught by firewalls, and intrusion detection systems. By cycling through ephemeral ports, the malware increases its chances of slipping past basic egress filtering or network monitoring rules that only scrutinize common web traffic ports like 443 or 80. Darktrace analysts identified systems connecting to destination ports such as 2308, 2311, 2313 and more – all on the same destination IP address associated with the RansomHub C2 environment.

Figure 4: Advanced Search connection logs showing connections over destination ports that change rapidly.

Conclusion

Since the beginning of 2025, Darktrace analysts identified a campaign whereby ransomware affiliates leveraged SocGholish to establish network access in victim environments. This activity enabled multiple sets of different post exploitation activity. Credential access played a key role, with affiliates abusing WebDAV and NTML over SMB to trigger authentication attempts. The attackers were also able to plant SCF files internally to expose NTML hashes from users browsing shared folders. These techniques evidently point to deliberate efforts at early lateral movement and foothold expansion before deploying ransomware. As ransomware groups continue to refine their playbooks and work more closely with sophisticated loaders, it becomes critical to track not just who is involved, but how access is being established, expanded, and weaponized.

Credit to Chrisina Kreza (Cyber Analyst) and Adam Potter (Senior Cyber Analyst)

Appendices

Darktrace / NETWORK model alerts

·       Anomalous Connection / SMB Enumeration

·       Anomalous Connection / Multiple Connections to New External TCP Port

·       Anomalous Connection / Multiple Failed Connections to Rare Endpoint

·       Anomalous Connection / New User Agent to IP Without Hostname

·       Compliance / External Windows Communication

·       Compliance / SMB Drive Write

·       Compromise / Large DNS Volume for Suspicious Domain

·       Compromise / Large Number of Suspicious Failed Connections

·       Device / Anonymous NTML Logins

·       Device / External Network Scan

·       Device / New or Uncommon SMB Named Pipe

·       Device / SMB Lateral Movement

·       Device / Suspicious SMB Activity

·       Unusual Activity / Unusual External Activity

·       User / Kerberos Username Brute Force

MITRE ATT&CK mapping

·       Credential Access – T1187 Forced Authentication

·       Credential Access – T1110 Brute Force

·       Command and Control – T1071.001 Web Protocols

·       Command and Control – T1571 Non-Standard Port

·       Discovery – T1083 File and Directory Discovery

·       Discovery – T1018 Remote System Discovery

·       Discovery – T1046 Network Service Discovery

·       Discovery – T1135 Network Share Discovery

·       Execution – T1059.007 JavaScript

·       Lateral Movement – T1021.002 SMB/Windows Admin Shares

·       Resource Deployment – T1608.004 Drive-By Target

List of indicators of compromise (IoCs)

·       garagebevents[.]com – 35.203.175[.]30 – Possibly compromised website

·       packedbrick[.]com – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       rednosehorse[.]com – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       blackshelter[.]org – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       blacksaltys[.]com – 176.53.147[.]97 – Keitaro TDS Domains used for SocGholish Delivery

·       virtual.urban-orthodontics[.]com – 185.76.79[.]50

·       msbdz.crm.bestintownpro[.]com – 166.88.182[.]126 – SocGholish C2

·       185.174.101[.]240 – RansomHub Python C2

·       185.174.101[.]69 – RansomHub Python C2

·       108.181.182[.]143 – RansomHub Python C2

References

[1] https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/socgholish-malware/

[2] https://intel471.com/blog/threat-hunting-case-study-socgholish

[3] https://www.trendmicro.com/en_us/research/25/c/socgholishs-intrusion-techniques-facilitate-distribution-of-rans.html

[4] https://www.proofpoint.com/us/blog/threat-insight/update-fake-updates-two-new-actors-and-new-mac-malware

[5] https://www.guidepointsecurity.com/blog/ransomhub-affiliate-leverage-python-based-backdoor/

[6] https://www.cybereason.com/blog/how-do-initial-access-brokers-enable-ransomware-attacks

[7] https://attack.mitre.org/software/S1124/

[8] https://expel.com/blog/incident-report-spotting-socgholish-wordpress-injection/

[9] https://www.esentire.com/blog/socgholish-to-cobalt-strike-in-10-minutes

Continue reading
About the author
Christina Kreza
Cyber Analyst

Blog

/

/

May 1, 2025

Your Vendors, Your Risk: Rethinking Third-Party Security in the Age of Supply Chain Attacks

man on cellphoneDefault blog imageDefault blog image

When most people hear the term supply chain attack, they often imagine a simple scenario: one organization is compromised, and that compromise is used as a springboard to attack another. This kind of lateral movement is common, and often the entry vector is as mundane and as dangerous as email.

Take, for instance, a situation where a trusted third-party vendor is breached. An attacker who gains access to their systems can then send malicious emails to your organization, emails that appear to come from a known and reputable source. Because the relationship is trusted, traditional phishing defenses may not be triggered, and recipients may be more inclined to engage with malicious content. From there, the attacker can establish a foothold, move laterally, escalate privileges, and launch a broader campaign.

This is one dimension of a supply chain cyber-attack, and it’s well understood in many security circles. But the risk doesn’t end there. In fact, it goes deeper, and it often hits the most important asset of all: your customers' data.

The risk beyond the inbox

What happens when customer data is shared with a third party for legitimate processing purposes for example billing, analytics, or customer service and that third party is then compromised?

In that case, your customer data is breached, even if your own systems were never touched. That’s the uncomfortable truth about modern cybersecurity: your risk is no longer confined to your own infrastructure. Every entity you share data with becomes an extension of your attack surface. Thus, we should rethink how we perceive responsibility.

It’s tempting to think that securing our environment is our job, and securing their environment is theirs. But if a breach of their environment results in the exposure of our customers, the accountability and reputational damage fall squarely on our shoulders.

The illusion of boundaries

In an era where digital operations are inherently interconnected, the lines of responsibility can blur quickly. Legally and ethically, organizations are still responsible for the data they collect even if that data is processed, stored, or analyzed by a third party. A customer whose data is leaked because of a vendor breach will almost certainly hold the original brand responsible, not the third-party processor they never heard of.

This is particularly important for industries that rely on extensive outsourcing and platform integrations (SaaS platforms, marketing tools, CRMs, analytics platforms, payment processors). The list of third-party vendors with access to customer data grows year over year. Each integration adds convenience, but also risk.

Encryption isn’t a silver bullet

One of the most common safeguards used in these data flows is encryption. Encrypting customer data in transit is a smart and necessary step, but it’s far from enough. Once data reaches the destination system, it typically needs to be decrypted for use. And the moment it is decrypted, it becomes vulnerable to a variety of attacks like ransomware, data exfiltration, privilege escalation, and more.

In other words, the question isn’t just is the data secure in transit? The more important question is how is it protected once it arrives?

A checklist for organizations evaluating third-parties

Given these risks, what should responsible organizations do when they need to share customer data with third parties?

Start by treating third-party security as an extension of your own security program. Here are some foundational controls that can make a difference:

Due diligence before engagement: Evaluate third-party vendors based on their security posture before signing any contracts. What certifications do they hold? What frameworks do they follow? What is their incident response capability?

Contractual security clauses: Build in specific security requirements into vendor contracts. These can include requirements for encryption standards, access control policies, and data handling protocols.

Third-party security assessments: Require vendors to provide evidence of their security controls. Independent audits, penetration test results, and SOC 2 reports can all provide useful insights.

Ongoing monitoring and attestations: Security isn’t static. Make sure vendors provide regular security attestations and reports. Where possible, schedule periodic reviews or audits, especially for vendors handling sensitive data.

Minimization and segmentation: Don’t send more data than necessary. Data minimization limits the exposure in the event of a breach. Segmentation, both within your environment and within vendor access levels, can further reduce risk.

Incident response planning: Ensure you have a playbook for handling third-party incidents, and that vendors do as well. Coordination in the event of a breach should be clear and rapid.

The human factor: Customers and communication

There’s another angle to supply chain cyber-attacks that’s easy to overlook: the post-breach exploitation of public knowledge. When a breach involving customer data hits the news, it doesn’t take long for cybercriminals to jump on the opportunity.

Attackers can craft phishing emails that appear to be follow-ups from the affected organization: “Click here to reset your password,” “Confirm your details due to the breach,” etc.

A breach doesn’t just put customer data at risk it also opens the door to further fraud, identity theft, and financial loss through social engineering. This is why post-breach communication and phishing mitigation strategies are valuable components of an incident response strategy.

Securing what matters most

Ultimately, protecting against supply chain cyber-attacks isn’t just about safeguarding your own perimeter. It’s about defending the integrity of your customers’ data, wherever it goes. When customer data is entrusted to you, the duty of care doesn’t end at your firewall.

Relying on vendors to “do their part” is not enough. True due diligence means verifying, validating, and continuously monitoring those extended attack surfaces. It means designing controls that assume failure is possible, and planning accordingly.

In today’s threat landscape, cybersecurity is no longer just a technical discipline. It’s a trust-building exercise. Your customers expect you to protect their information, and rightly so. And when a supply chain attack happens, whether the breach originated with you or your partner, the damage lands in the same place: your brand, your customers, your responsibility.

[related-resource]

Continue reading
About the author
Tony Jarvis
VP, Field CISO | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI