Blog
/
Proactive Security
/
June 6, 2022

Unraveling Disinformation Tactics in Uncertain Times

Learn how Darktrace AI is combating disinformation! Learn more about the impact of disinformation and how Darktrace tackles this pressing issue.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Taisiia Garkava
Security Analyst
Written by
Justin Frank
Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Jun 2022

Since the beginning of the internet, we have seen a near, if not an exponential, surge of information sharing amongst users in cyberspace. Not long after, we saw how the emergence of social media ushered an access to public online platforms where other internet users worldwide could share, discuss, promote, and consume information, whether by deliberate choice or not.

These platforms, which are now wealthy in users, enabled the effectual sharing of a wide range of information and has facilitated the emergence of online communities, forums, webpages, and blogs - where everyone could create content and share it with other users leading to near infinite number of sources.

Public and private organisations have been able to leverage these platforms to communicate directly with the public, share relevant knowledge with their audiences, and expand users’ exposure to their organisation’s online presence – often by providing the users a direct link to websites and domains containing supplementary information on their organisations. However, there are some issues that organisations and users face when using such platforms.

Misinformation vs Disinformation

The ever-growing catalogue of informational sources and contributing users has introduced an old challenge with a more complex twist: distinguishing which information is truth and which is not. Two terms are used to describe inaccurate information – misinformation and disinformation.

Misinformation is “false information that is spread, regardless of whether there is intent or mislead”. For example, someone can read a compelling story on social media and share it with others without checking whether this story is, in fact, true.

During the COVID-19 pandemic, many people were rightfully concerned and anxious about their health, so they wanted to inform themselves as much as possible on the looming health risk. However, when they went looking for answers – they were overloaded with varying opinions and ‘fake facts’ that it became increasingly difficult to distinguish true facts from fiction.

Subsequently, at times a social media post - or two - that contained false information was shared by a friend, relative, or acquaintance who initially had good intentions in sharing what they had learned, but unfortunately, they were misinformed.

Disinformation instead means “deliberately misleading or biased information; manipulated narrative or facts; propaganda”, which can be interpreted as the intentional spreading of misinformation.

The main difference between misinformation and disinformation is the presence of clear intent in the latter. For example, during political conflict – or even wars – it is not uncommon for one, or both, opposing parties to broadcast news narratives to their own domestic audiences in the way that portrays them as either the righteous liberator or the unsuspecting victim.

Disinformation and Geopolitics

During turbulent times – such as (geo)political conflicts, national strife, digital revolutions, and pandemics – one can see the prevalence of massive disinformation campaigns being arranged by nation-state actors, independent threat actors and other ideologically driven actors. The likes of such campaigns are targeting businesses, governments, and individuals alike.

One of the most common channels used to spread disinformation would be social media platforms. In essence, any piece of information shared on social media can spread rapidly to all kinds of audiences across the globe. This is amplified by maliciously motivated actors’ use of “bots” to speed up the momentum of which disinformation is spread.

A bot is a “computer program that operates as an agent for a user or other program to stimulate a human activity. It is used to perform specific tasks repeatedly and autonomously. There is a plethora of these bots actively used to spread disinformation throughout the most popular social platforms including Facebook, Twitter and Instagram.

Impact of Disinformation on Organizations

When organisations are targeted by disinformation campaigns, malicious actors aim to leverage the discord and uncertainty on topics that are shrouded in controversy. Malicious actors like online scammers aim to exploit this induced discord by e.g., creating phishing emails that are more compelling to recipients – who are just trying to navigate between what is real and not real.

For example, a campaign stating that data held by a big telecommunication company was breached is used to craft emails in which scammers would prompt the recipients to check whether their personal data was also affected by this ‘breach’.

Regardless of whether this information is correct or not, the flux of news floating around the internet makes it increasingly difficult for a person to decide whether this information is accurate.

In parallel, the recipient may be experiencing feelings of anxiety and uncertainty regarding the breach – and the news about the breach – which often affects the recipients' decision to immediately react to new information on the topic. Since scammers use domains that are carefully crafted to seem legitimate to an untrained eye – e.g., domains containing near uncanny resemblance to the official organisation’s domain – it further increases the recipient’s susceptibility to trusting dubious sources. Thus, increasing the likelihood that recipients of phishing emails would be more compelled to e.g., click on a link attached to an email to verify whether their data was also leaked, or not.

The Future of Disinformation

Organisations who are already dealing with the social strains created by disinformation campaigns are now facing an additional risk: their audiences may be more susceptible to phishing campaigns in times of widespread uncertainty. To make a convincing phishing campaign, malign actors often use compromised domains, or attempt to mimic legitimate domains through a method called ‘typo squatting’.

Typo squatting is the act of registering domains with intentionally misspelled names of popular or official web presences and often filling these with untrustworthy content – to give their victims a false sense of legitimacy surrounding the source.

Once this false sense of legitimacy has been established between the attacker’s source and the victim’s susceptibility in trusting that source, it will be nearly entirely up to the victim to avoid being misled. Consequently, this means the attack surface of an organisation is growing as fast as disinformation and false domains can be created and shared to its audience.

Combatting Disinformation with Attack Surface Management

Organisations trying to protect their audiences from being misled by false domains will need get better visibility on domains associated with their brand. A brand-centric approach to discovering domains can shine light on:

  • The state of existing domains that are currently managed by your organisation – if they are being well maintained and properly secured.
  • The influx of ‘new’ domains that are attempting to impersonate your organisation’s brand.

Visibility on these types of domains and how your audience often interact with these domains enables an organisation to be more vigilant and responsive to the malign actors attempting to manipulate, hijack or impersonate your brand. Since an organisation’s brand pervades all sorts of publicly accessible assets – like domains – it has become of significant importance to include them in your organisation’s attack surface management regimen. Utilising a brand-centric approach to attack surface management will give your organisation a clearer view of your attack surface from a reputation risk perspective.

An attack surface management solution bolstered by such an approach will help your organisation’s security team to efficiently determine which domains – or other external facing digital assets – are posing a risk to your audience and reputation. It will help remove the repetitive work needed to identify these domains (and other assets), detect the risks associated with them, and help you manage any changes or actions required to protect both your audience and your organisation.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Taisiia Garkava
Security Analyst
Written by
Justin Frank
Security Analyst

More in this series

No items found.

Blog

/

Identity

/

July 8, 2025

Defending the Cloud: Stopping Cyber Threats in Azure and AWS with Darktrace

fingerprintDefault blog imageDefault blog image

Real-world intrusions across Azure and AWS

As organizations pursue greater scalability and flexibility, cloud platforms like Microsoft Azure and Amazon Web Services (AWS) have become essential for enabling remote operations and digitalizing corporate environments. However, this shift introduces a new set of security risks, including expanding attack surfaces, misconfigurations, and compromised credentials frequently exploited by threat actors.

This blog dives into three instances of compromise within a Darktrace customer’s Azure and AWS environment which Darktrace.

  1. The first incident took place in early 2024 and involved an attacker compromising a legitimate user account to gain unauthorized access to a customer’s Azure environment.
  2. The other two incidents, taking place in February and March 2025, targeted AWS environments. In these cases, threat actors exfiltrated corporate data, and in one instance, was able to detonate ransomware in a customer’s environment.

Case 1 - Microsoft Azure

Simplified timeline of the attack on a customer’s Azure environment.
Figure 1: Simplified timeline of the attack on a customer’s Azure environment.

In early 2024, Darktrace identified a cloud compromise on the Azure cloud environment of a customer in the Europe, the Middle East and Africa (EMEA) region.

Initial access

In this case, a threat actor gained access to the customer’s cloud environment after stealing access tokens and creating a rogue virtual machine (VM). The malicious actor was found to have stolen access tokens belonging to a third-party external consultant’s account after downloading cracked software.

With these stolen tokens, the attacker was able to authenticate to the customer’s Azure environment and successfully modified a security rule to allow inbound SSH traffic from a specific IP range (i.e., securityRules/AllowCidrBlockSSHInbound). This was likely performed to ensure persistent access to internal cloud resources.

Detection and investigation of the threat

Darktrace / IDENTITY recognized that this activity was highly unusual, triggering the “Repeated Unusual SaaS Resource Creation” alert.

Cyber AI Analyst launched an autonomous investigation into additional suspicious cloud activities occurring around the same time from the same unusual location, correlating the individual events into a broader account hijack incident.

Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 2: Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 2: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 3: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 4: Surrounding resource creation events highlighted by Cyber AI Analyst.

“Create resource service limit” events typically indicate the creation or modification of service limits (i.e., quotas) for a specific Azure resource type within a region. Meanwhile, “Registers the Capacity Resource Provider” events refer to the registration of the Microsoft Capacity resource provider within an Azure subscription, responsible for managing capacity-related resources, particularly those related to reservations and service limits. These events suggest that the threat actor was looking to create new cloud resources within the environment.

Around ten minutes later, Darktrace detected the threat actor creating or modifying an Azure disk associated with a virtual machine (VM), suggesting an attempt to create a rogue VM within the environment.

Threat actors can leverage such rogue VMs to hijack computing resources (e.g., by running cryptomining malware), maintain persistent access, move laterally within the cloud environment, communicate with command-and-control (C2) infrastructure, and stealthily deliver and deploy malware.

Persistence

Several weeks later, the compromised account was observed sending an invitation to collaborate to an external free mail (Google Mail) address.

Darktrace deemed this activity as highly anomalous, triggering a compliance alert for the customer to review and investigate further.

The next day, the threat actor further registered new multi-factor authentication (MFA) information. These actions were likely intended to maintain access to the compromised user account. The customer later confirmed this activity by reviewing the corresponding event logs within Darktrace.

Case 2 – Amazon Web Services

Simplified timeline of the attack on a customer’s AWS environment
Figure 5: Simplified timeline of the attack on a customer’s AWS environment

In February 2025, another cloud-based compromised was observed on a UK-based customer subscribed to Darktrace’s Managed Detection and Response (MDR) service.

How the attacker gained access

The threat actor was observed leveraging likely previously compromised credential to access several AWS instances within customer’s Private Cloud environment and collecting and exfiltrating data, likely with the intention of deploying ransomware and holding the data for ransom.

Darktrace alerting to malicious activity

This observed activity triggered a number of alerts in Darktrace, including several high-priority Enhanced Monitoring alerts, which were promptly investigated by Darktrace’s Security Operations Centre (SOC) and raised to the customer’s security team.

The earliest signs of attack observed by Darktrace involved the use of two likely compromised credentials to connect to the customer’s Virtual Private Network (VPN) environment.

Internal reconnaissance

Once inside, the threat actor performed internal reconnaissance activities and staged the Rclone tool “ProgramData\rclone-v1.69.0-windows-amd64.zip”, a command-line program to sync files and directories to and from different cloud storage providers, to an AWS instance whose hostname is associated with a public key infrastructure (PKI) service.

The threat actor was further observed accessing and downloading multiple files hosted on an AWS file server instance, notably finance and investment-related files. This likely represented data gathering prior to exfiltration.

Shortly after, the PKI-related EC2 instance started making SSH connections with the Rclone SSH client “SSH-2.0-rclone/v1.69.0” to a RockHoster Virtual Private Server (VPS) endpoint (193.242.184[.]178), suggesting the threat actor was exfiltrating the gathered data using the Rclone utility they had previously installed. The PKI instance continued to make repeated SSH connections attempts to transfer data to this external destination.

Darktrace’s Autonomous Response

In response to this activity, Darktrace’s Autonomous Response capability intervened, blocking unusual external connectivity to the C2 server via SSH, effectively stopping the exfiltration of data.

This activity was further investigated by Darktrace’s SOC analysts as part of the MDR service. The team elected to extend the autonomously applied actions to ensure the compromise remained contained until the customer could fully remediate the incident.

Continued reconissance

Around the same time, the threat actor continued to conduct network scans using the Nmap tool, operating from both a separate AWS domain controller instance and a newly joined device on the network. These actions were accompanied by further internal data gathering activities, with around 5 GB of data downloaded from an AWS file server.

The two devices involved in reconnaissance activities were investigated and actioned by Darktrace SOC analysts after additional Enhanced Monitoring alerts had triggered.

Lateral movement attempts via RDP connections

Unusual internal RDP connections to a likely AWS printer instance indicated that the threat actor was looking to strengthen their foothold within the environment and/or attempting to pivot to other devices, likely in response to being hindered by Autonomous Response actions.

This triggered multiple scanning, internal data transfer and unusual RDP alerts in Darktrace, as well as additional Autonomous Response actions to block the suspicious activity.

Suspicious outbound SSH communication to known threat infrastructure

Darktrace subsequently observed the AWS printer instance initiating SSH communication with a rare external endpoint associated with the web hosting and VPS provider Host Department (67.217.57[.]252), suggesting that the threat actor was attempting to exfiltrate data to an alternative endpoint after connections to the original destination had been blocked.

Further investigation using open-source intelligence (OSINT) revealed that this IP address had previously been observed in connection with SSH-based data exfiltration activity during an Akira ransomware intrusion [1].

Once again, connections to this IP were blocked by Darktrace’s Autonomous Response and subsequently these blocks were extended by Darktrace’s SOC team.

The above behavior generated multiple Enhanced Monitoring alerts that were investigated by Darktrace SOC analysts as part of the Managed Threat Detection service.

Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.
Figure 5: Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.

Final containment and collaborative response

Upon investigating the unusual scanning activity, outbound SSH connections, and internal data transfers, Darktrace analysts extended the Autonomous Response actions previously triggered on the compromised devices.

As the threat actor was leveraging these systems for data exfiltration, all outgoing traffic from the affected devices was blocked for an additional 24 hours to provide the customer’s security team with time to investigate and remediate the compromise.

Additional investigative support was provided by Darktrace analysts through the Security Operations Service, after the customer's opened of a ticket related to the unfolding incident.

Simplified timeline of the attack
Figure 8: Simplified timeline of the attack

Around the same time of the compromise in Case 2, Darktrace observed a similar incident on the cloud environment of a different customer.

Initial access

On this occasion, the threat actor appeared to have gained entry into the AWS-based Virtual Private Cloud (VPC) network via a SonicWall SMA 500v EC2 instance allowing inbound traffic on any port.

The instance received HTTPS connections from three rare Vultr VPS endpoints (i.e., 45.32.205[.]52, 207.246.74[.]166, 45.32.90[.]176).

Lateral movement and exfiltration

Around the same time, the EC2 instance started scanning the environment and attempted to pivot to other internal systems via RDP, notably a DC EC2 instance, which also started scanning the network, and another EC2 instance.  

The latter then proceeded to transfer more than 230 GB of data to the rare external GTHost VPS endpoint 23.150.248[.]189, while downloading hundreds of GBs of data over SMB from another EC2 instance.

Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.
Figure 7: Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.

The same behavior was replicated across multiple EC2 instances, whereby compromised instances uploaded data over internal RDP connections to other instances, which then started transferring data to the same GTHost VPS endpoint over port 5000, which is typically used for Universal Plug and Play (UPnP).

What Darktrace detected

Darktrace observed the threat actor uploading a total of 718 GB to the external endpoint, after which they detonated ransomware within the compromised VPC networks.

This activity generated nine Enhanced Monitoring alerts in Darktrace, focusing on the scanning and external data activity, with the earliest of those alerts triggering around one hour after the initial intrusion.

Darktrace’s Autonomous Response capability was not configured to act on these devices. Therefore, the malicious activity was not autonomously blocked and escalated to the point of ransomware detonation.

Conclusion

This blog examined three real-world compromises in customer cloud environments each illustrating different stages in the attack lifecycle.

The first case showcased a notable progression from a SaaS compromise to a full cloud intrusion, emphasizing the critical role of anomaly detection when legitimate credentials are abused.

The latter two incidents demonstrated that while early detection is vital, the ability to autonomously block malicious activity at machine speed is often the most effective way to contain threats before they escalate.

Together, these incidents underscore the need for continuous visibility, behavioral analysis, and machine-speed intervention across hybrid environments. Darktrace's AI-driven detection and Autonomous Response capabilities, combined with expert oversight from its Security Operations Center, give defenders the speed and clarity they need to contain threats and reduce operational disruption, before the situation spirals.

Credit to Alexandra Sentenac (Senior Cyber Analyst) and Dylan Evans (Security Research Lead)

References

[1] https://www.virustotal.com/gui/ip-address/67.217.57.252/community

Case 1

Darktrace / IDENTITY model alerts

IaaS / Compliance / Uncommon Azure External User Invite

SaaS / Resource / Repeated Unusual SaaS Resource Creation

IaaS / Compute / Azure Compute Resource Update

Cyber AI Analyst incidents

Possible Unsecured AzureActiveDirectory Resource

Possible Hijack of Office365 Account

Case 2

Darktrace / NETWORK model alerts

Compromise / SSH Beacon

Device / Multiple Lateral Movement Model Alerts

Device / Suspicious SMB Scanning Activity

Device / SMB Lateral Movement

Compliance / SSH to Rare External Destination

Device / Anomalous SMB Followed By Multiple Model Alerts

Device / Anonymous NTLM Logins

Anomalous Connection / SMB Enumeration

Device / New or Uncommon SMB Named Pipe Device / Network Scan

Device / Suspicious Network Scan Activity

Device / New Device with Attack Tools

Device / RDP Scan Device / Attack and Recon Tools

Compliance / High Priority Compliance Model Alert

Compliance / Outgoing NTLM Request from DC

Compromise / Large Number of Suspicious Successful Connections

Device / Large Number of Model Alerts

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Unusual Activity / Internal Data Transfer

Anomalous Connection / Unusual Internal Connections

Device / Anomalous RDP Followed By Multiple Model Alerts

Unusual Activity / Unusual External Activity

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Unusual External Data to New Endpoint

Anomalous Connection / Multiple Connections to New External TCP Port

Darktrace / Autonomous Response model alerts

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Manual / Quarantine Device

Antigena / MDR / MDR-Quarantined Device

Antigena / MDR / Model Alert on MDR-Actioned Device

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / Insider Threat / Antigena Internal Data Transfer Block

Cyber AI Analyst incidents

Possible Application Layer Reconnaissance Activity

Scanning of Multiple Devices

Unusual Repeated Connections

Unusual External Data Transfer

Case 3

Darktrace / NETWORK model alerts

Unusual Activity / Unusual Large Internal Transfer

Compliance / Incoming Remote Desktop

Unusual Activity / High Volume Server Data Transfer

Unusual Activity / Internal Data Transfer

Anomalous Connection / Unusual Internal Remote Desktop

Anomalous Connection / Unusual Incoming Data Volume

Anomalous Server Activity / Domain Controller Initiated to Client

Device / Large Number of Model Alerts

Anomalous Connection / Possible Flow Device Brute Force

Device / RDP Scan

Device / Suspicious Network Scan Activity

Device / Network Scan

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Connection / Download and Upload

Unusual Activity / Unusual External Data Transfer

Unusual Activity / High Volume Client Data Transfer

Unusual Activity / Unusual External Activity

Anomalous Connection / Uncommon 1 GiB Outbound

Device / Increased External Connectivity

Compromise / Large Number of Suspicious Successful Connections

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Low and Slow Exfiltration to IP

Unusual Activity / Enhanced Unusual External Data Transfer

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Multiple Connections to New External UDP Port

Anomalous Connection / Possible Data Staging and External Upload

Unusual Activity / Unusual External Data to New Endpoint

Device / Large Number of Model Alerts from Critical Network Device

Compliance / External Windows Communications

Anomalous Connection / Unusual Internal Connections

Cyber AI Analyst incidents

Scanning of Multiple Devices

Extensive Unusual RDP Connections

MITRE ATT&CK mapping

(Technique name – Tactic ID)

Case 1

Defense Evasion - Modify Cloud Compute Infrastructure: Create Cloud Instance

Persistence – Account Manipulation

Case 2

Initial Access - External Remote Services

Execution - Inter-Process Communication

Persistence - External Remote Services

Discovery - System Network Connections Discovery

Discovery - Network Service Discovery

Discovery - Network Share Discovery

Lateral Movement - Remote Desktop Protocol

Lateral Movement - Remote Services: SMB/Windows Admin Shares

Collection - Data from Network Shared Drive

Command and Control - Protocol Tunneling

Exfiltration - Exfiltration Over Asymmetric Encrypted Non-C2 Protocol

Case 3

Initial Access - Exploit Public-Facing Application

Discovery - Remote System Discovery

Discovery - Network Service Discovery

Lateral Movement - Remote Services

Lateral Movement - Remote Desktop Protocol  

Collection - Data from Network Shared Drive

Collection - Data Staged: Remote Data Staging

Exfiltration - Exfiltration Over C2 Channel

Command and Control - Non-Standard Port

Command and Control – Web Service

Impact - Data Encrypted for Impact

List of IoCs

IoC         Type      Description + Probability

193.242.184[.]178 - IP Address - Possible Exfiltration Server  

45.32.205[.]52  - IP Address  - Possible C2 Infrastructure

45.32.90[.]176 - IP Address - Possible C2 Infrastructure

207.246.74[.]166 - IP Address - Likely C2 Infrastructure

67.217.57[.]252 - IP Address - Likely C2 Infrastructure

23.150.248[.]189 - IP Address - Possible Exfiltration Server

Continue reading
About the author
Alexandra Sentenac
Cyber Analyst

Blog

/

Identity

/

July 7, 2025

Top Eight Threats to SaaS Security and How to Combat Them

login screen for mutli factor authentication Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI