Blog

PREVENT

Disinformation: a certainty in uncertain times

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Jun 2022
06
Jun 2022
Disinformation gives cyber-attackers opportunities to mislead and exploit organizations. Learn how Attack Surface Management provides the clarity needed to sort fact from fiction.

Since the beginning of the internet, we have seen a near, if not an exponential, surge of information sharing amongst users in cyberspace. Not long after, we saw how the emergence of social media ushered an access to public online platforms where other internet users worldwide could share, discuss, promote, and consume information, whether by deliberate choice or not.

These platforms, which are now wealthy in users, enabled the effectual sharing of a wide range of information and has facilitated the emergence of online communities, forums, webpages, and blogs - where everyone could create content and share it with other users leading to near infinite number of sources.

Public and private organisations have been able to leverage these platforms to communicate directly with the public, share relevant knowledge with their audiences, and expand users’ exposure to their organisation’s online presence – often by providing the users a direct link to websites and domains containing supplementary information on their organisations. However, there are some issues that organisations and users face when using such platforms.

Misinformation vs Disinformation

The ever-growing catalogue of informational sources and contributing users has introduced an old challenge with a more complex twist: distinguishing which information is truth and which is not. Two terms are used to describe inaccurate information – misinformation and disinformation.

Misinformation is “false information that is spread, regardless of whether there is intent or mislead”. For example, someone can read a compelling story on social media and share it with others without checking whether this story is, in fact, true.

During the COVID-19 pandemic, many people were rightfully concerned and anxious about their health, so they wanted to inform themselves as much as possible on the looming health risk. However, when they went looking for answers – they were overloaded with varying opinions and ‘fake facts’ that it became increasingly difficult to distinguish true facts from fiction.

Subsequently, at times a social media post - or two - that contained false information was shared by a friend, relative, or acquaintance who initially had good intentions in sharing what they had learned, but unfortunately, they were misinformed.

Disinformation instead means “deliberately misleading or biased information; manipulated narrative or facts; propaganda”, which can be interpreted as the intentional spreading of misinformation.

The main difference between misinformation and disinformation is the presence of clear intent in the latter. For example, during political conflict – or even wars – it is not uncommon for one, or both, opposing parties to broadcast news narratives to their own domestic audiences in the way that portrays them as either the righteous liberator or the unsuspecting victim.

Disinformation and Geopolitics

During turbulent times – such as (geo)political conflicts, national strife, digital revolutions, and pandemics – one can see the prevalence of massive disinformation campaigns being arranged by nation-state actors, independent threat actors and other ideologically driven actors. The likes of such campaigns are targeting businesses, governments, and individuals alike.

One of the most common channels used to spread disinformation would be social media platforms. In essence, any piece of information shared on social media can spread rapidly to all kinds of audiences across the globe. This is amplified by maliciously motivated actors’ use of “bots” to speed up the momentum of which disinformation is spread.

A bot is a “computer program that operates as an agent for a user or other program to stimulate a human activity. It is used to perform specific tasks repeatedly and autonomously. There is a plethora of these bots actively used to spread disinformation throughout the most popular social platforms including Facebook, Twitter and Instagram.

Impact of Disinformation on Organizations

When organisations are targeted by disinformation campaigns, malicious actors aim to leverage the discord and uncertainty on topics that are shrouded in controversy. Malicious actors like online scammers aim to exploit this induced discord by e.g., creating phishing emails that are more compelling to recipients – who are just trying to navigate between what is real and not real.

For example, a campaign stating that data held by a big telecommunication company was breached is used to craft emails in which scammers would prompt the recipients to check whether their personal data was also affected by this ‘breach’.

Regardless of whether this information is correct or not, the flux of news floating around the internet makes it increasingly difficult for a person to decide whether this information is accurate.

In parallel, the recipient may be experiencing feelings of anxiety and uncertainty regarding the breach – and the news about the breach – which often affects the recipients' decision to immediately react to new information on the topic. Since scammers use domains that are carefully crafted to seem legitimate to an untrained eye – e.g., domains containing near uncanny resemblance to the official organisation’s domain – it further increases the recipient’s susceptibility to trusting dubious sources. Thus, increasing the likelihood that recipients of phishing emails would be more compelled to e.g., click on a link attached to an email to verify whether their data was also leaked, or not.

The Future of Disinformation

Organisations who are already dealing with the social strains created by disinformation campaigns are now facing an additional risk: their audiences may be more susceptible to phishing campaigns in times of widespread uncertainty. To make a convincing phishing campaign, malign actors often use compromised domains, or attempt to mimic legitimate domains through a method called ‘typo squatting’.

Typo squatting is the act of registering domains with intentionally misspelled names of popular or official web presences and often filling these with untrustworthy content – to give their victims a false sense of legitimacy surrounding the source.

Once this false sense of legitimacy has been established between the attacker’s source and the victim’s susceptibility in trusting that source, it will be nearly entirely up to the victim to avoid being misled. Consequently, this means the attack surface of an organisation is growing as fast as disinformation and false domains can be created and shared to its audience.

Combatting Disinformation with Attack Surface Management

Organisations trying to protect their audiences from being misled by false domains will need get better visibility on domains associated with their brand. A brand-centric approach to discovering domains can shine light on:

  • The state of existing domains that are currently managed by your organisation – if they are being well maintained and properly secured.
  • The influx of ‘new’ domains that are attempting to impersonate your organisation’s brand.

Visibility on these types of domains and how your audience often interact with these domains enables an organisation to be more vigilant and responsive to the malign actors attempting to manipulate, hijack or impersonate your brand. Since an organisation’s brand pervades all sorts of publicly accessible assets – like domains – it has become of significant importance to include them in your organisation’s attack surface management regimen. Utilising a brand-centric approach to attack surface management will give your organisation a clearer view of your attack surface from a reputation risk perspective.

An attack surface management solution bolstered by such an approach will help your organisation’s security team to efficiently determine which domains – or other external facing digital assets – are posing a risk to your audience and reputation. It will help remove the repetitive work needed to identify these domains (and other assets), detect the risks associated with them, and help you manage any changes or actions required to protect both your audience and your organisation.

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Taisiia Garkava
Security Analyst
Justin Frank
Security Analyst
Book a 1-1 meeting with one of our experts
share this article

More in this series

No items found.

Blog

Inside the SOC

Detecting Attacks Across Email, SaaS, and Network Environments with Darktrace’s AI Platform Approach

Default blog imageDefault blog image
30
Apr 2024

The State of AI in Cybersecurity

In a recent survey outlined in Darktrace’s State of AI Cyber Security whitepaper, 95% of cyber security professionals agree that AI-powered security solutions will improve their organization’s detection of cyber-threats [1]. Crucially, a combination of multiple AI methods is the most effective to improve cybersecurity; improving threat detection, accelerating threat investigation and response, and providing visibility across an organization’s digital environment.

In March 2024, Darktrace’s AI-led security platform was able to detect suspicious activity affecting a customer’s email, Software-as-a-Service (SaaS), and network environments, whilst its applied supervised learning capability, Cyber AI Analyst, autonomously correlated and connected all of these events together in one single incident, explained concisely using natural language processing.

Attack Overview

Following an initial email attack vector, an attacker logged into a compromised SaaS user account from the Netherlands, changed inbox rules, and leveraged the account to send thousands of phishing emails to internal and external users. Internal users fell victim to the emails by clicking on contained suspicious links that redirected them to newly registered suspicious domains hosted on same IP address as the hijacked SaaS account login. This activity triggered multiple alerts in Darktrace DETECT™ on both the network and SaaS side, all of which were correlated into one Cyber AI Analyst incident.

In this instance, Darktrace RESPOND™ was not active on any of the customer’s environments, meaning the compromise was able to escalate until their security team acted on the alerts raised by DETECT. Had RESPOND been enabled at the time of the attack, it would have been able to apply swift actions to contain the attack by blocking connections to suspicious endpoints on the network side and disabling users deviating from their normal behavior on the customer’s SaaS environment.

Nevertheless, thanks to DETECT and Cyber AI Analyst, Darktrace was able to provide comprehensive visibility across the customer’s three digital estate environments, decreasing both investigation and response time which enabled them to quickly enact remediation during the attack. This highlights the crucial role that Darktrace’s combined AI approach can play in anomaly detection cyber defense

Attack Details & Darktrace Coverage

Attack timeline

1. Email: the initial attack vector  

The initial attack vector was likely email, as on March 18, 2024, Darktrace observed a user device making several connections to the email provider “zixmail[.]net”, shortly before it connected to the first suspicious domain. Darktrace/Email identified multiple unusual inbound emails from an unknown sender that contained a suspicious link. Darktrace recognized these emails as potentially malicious and locked the link, ensuring that recipients could not directly click it.

Suspected initial compromise email from an unknown sender, containing a suspicious link, which was locked by Darktrace/Email.
Figure 1: Suspected initial compromise email from an unknown sender, containing a suspicious link, which was locked by Darktrace/Email.

2. Escalation to Network

Later that day, despite Darktrace/Email having locked the link in the suspicious email, the user proceeded to click on it and was directed to a suspicious external location, namely “rz8js7sjbef[.]latovafineart[.]life”, which triggered the Darktrace/Network DETECT model “Suspicious Domain”. Darktrace was able to identify that this domain had only been registered 4 days before this activity and was hosted on an IP address based in the Netherlands, 193.222.96[.]9.

3. SaaS Account Hijack

Just one minute later, Darktrace/Apps observed the user’s Microsoft 365 account logging into the network from the same IP address. Darktrace understood that this represented unusual SaaS activity for this user, who had only previously logged into the customer’s SaaS environment from the US, triggering the “Unusual External Source for SaaS Credential Use” model.

4. SaaS Account Updates

A day later, Darktrace identified an unusual administrative change on the user’s Microsoft 365 account. After logging into the account, the threat actor was observed setting up a new multi-factor authentication (MFA) method on Microsoft Authenticator, namely requiring a 6-digit code to authenticate. Darktrace understood that this authentication method was different to the methods previously used on this account; this, coupled with the unusual login location, triggered the “Unusual Login and Account Update” DETECT model.

5. Obfuscation Email Rule

On March 20, Darktrace detected the threat actor creating a new email rule, named “…”, on the affected account. Attackers are typically known to use ambiguous or obscure names when creating new email rules in order to evade the detection of security teams and endpoints users.

The parameters for the email rule were:

“AlwaysDeleteOutlookRulesBlob: False, Force: False, MoveToFolder: RSS Feeds, Name: ..., MarkAsRead: True, StopProcessingRules: True.”

This rule was seemingly created with the intention of obfuscating the sending of malicious emails, as the rule would move sent emails to the "RSS Feeds” folder, a commonly used tactic by attackers as the folder is often left unchecked by endpoint users. Interestingly, Darktrace identified that, despite the initial unusual login coming from the Netherlands, the email rule was created from a different destination IP, indicating that the attacker was using a Virtual Private Network (VPN) after gaining a foothold in the network.

Hijacked SaaS account making an anomalous login from the unusual Netherlands-based IP, before creating a new email rule.
Figure 2: Hijacked SaaS account making an anomalous login from the unusual Netherlands-based IP, before creating a new email rule.

6. Outbound Phishing Emails Sent

Later that day, the attacker was observed using the compromised customer account to send out numerous phishing emails to both internal and external recipients. Darktrace/Email detected a significant spike in inbound emails on the compromised account, with the account receiving bounce back emails or replies in response to the phishing emails. Darktrace further identified that the phishing emails contained a malicious DocSend link hidden behind the text “Click Here”, falsely claiming to be a link to the presentation platform Prezi.

Figure 3: Darktrace/Email detected that the DocSend link displayed via text “Click Here”, was embedded in a Prezi link.
Figure 3: Darktrace/Email detected that the DocSend link displayed via text “Click Here”, was embedded in a Prezi link.

7. Suspicious Domains and Redirects

After the phishing emails were sent, multiple other internal users accessed the DocSend link, which directed them to another suspicious domain, “thecalebgroup[.]top”, which had been registered on the same day and was hosted on the aforementioned Netherlands-based IP, 193.222.96[.]91. At the time of the attack, this domain had not been reported by any open-source intelligence (OSINT), but it has since been flagged as malicious by multiple vendors [2].

External Sites Summary showing the suspicious domain that had never previously been seen on the network. A total of 11 “Suspicious Domain” models were triggered in response to this activity.
Figure 4: External Sites Summary showing the suspicious domain that had never previously been seen on the network. A total of 11 “Suspicious Domain” models were triggered in response to this activity.  

8. Cyber AI Analyst’s Investigation

As this attack was unfolding, Darktrace’s Cyber AI Analyst was able to autonomously investigate the events, correlating them into one wider incident and continually adding a total of 14 new events to the incident as more users fell victim to the phishing links.

Cyber AI Analyst successfully weaved together the initial suspicious domain accessed in the initial email attack vector (Figure 5), the hijack of the SaaS account from the Netherlands IP (Figure 6), and the connection to the suspicious redirect link (Figure 7). Cyber AI Analyst was also able to uncover other related activity that took place at the time, including a potential attempt to exfiltrate data out of the customer’s network.

By autonomously analyzing the thousands of connections taking place on a network at any given time, Darktrace’s Cyber AI Analyst is able to detect seemingly separate anomalous events and link them together in one incident. This not only provides organizations with full visibility over potential compromises on their networks, but also saves their security teams precious time ensuring they can quickly scope out the ongoing incident and begin remediation.

Figure 5: Cyber AI Analyst correlated the attack’s sequence, starting with the initial suspicious domain accessed in the initial email attack vector.
Figure 5: Cyber AI Analyst correlated the attack’s sequence, starting with the initial suspicious domain accessed in the initial email attack vector.
Figure 6: As the attack progressed, Cyber AI Analyst correlated and appended additional events to the same incident, including the SaaS account hijack from the Netherlands-based IP.
Figure 6: As the attack progressed, Cyber AI Analyst correlated and appended additional events to the same incident, including the SaaS account hijack from the Netherlands-based IP.
Cyber AI Analyst correlated and appended additional events to the same incident, including additional users connecting to the suspicious redirect link following the outbound phishing emails being sent.
Figure 7: Cyber AI Analyst correlated and appended additional events to the same incident, including additional users connecting to the suspicious redirect link following the outbound phishing emails being sent.

Conclusion

In this scenario, Darktrace demonstrated its ability to detect and correlate suspicious activities across three critical areas of a customer’s digital environment: email, SaaS, and network.

It is essential that cyber defenders not only adopt AI but use a combination of AI technology capable of learning and understanding the context of an organization’s entire digital infrastructure. Darktrace’s anomaly-based approach to threat detection allows it to identify subtle deviations from the expected behavior in network devices and SaaS users, indicating potential compromise. Meanwhile, Cyber AI Analyst dynamically correlates related events during an ongoing attack, providing organizations and their security teams with the information needed to respond and remediate effectively.

Credit to Zoe Tilsiter, Analyst Consulting Lead (EMEA), Brianna Leddy, Director of Analysis

Appendices

References

[1] https://darktrace.com/state-of-ai-cyber-security

[2] https://www.virustotal.com/gui/domain/thecalebgroup.top

Darktrace DETECT Model Coverage

SaaS Models

- SaaS / Access / Unusual External Source for SaaS Credential Use

- SaaS / Compromise / Unusual Login and Account Update

- SaaS / Compliance / Anomalous New Email Rule

- SaaS / Compromise / Unusual Login and New Email Rule

Network Models

- Device / Suspicious Domain

- Multiple Device Correlations / Multiple Devices Breaching Same Model

Cyber AI Analyst Incidents

- Possible Hijack of Office365 Account

- Possible SSL Command and Control

Indicators of Compromise (IoCs)

IoC – Type – Description

193.222.96[.]91 – IP – Unusual Login Source

thecalebgroup[.]top – Domain – Possible C2 Endpoint

rz8js7sjbef[.]latovafineart[.]life – Domain – Possible C2 Endpoint

https://docsend[.]com/view/vcdmsmjcskw69jh9 - Domain - Phishing Link

Continue reading
About the author
Zoe Tilsiter
Cyber Analyst

Blog

No items found.

Attack trends: Cloud-Based Cyber-Attacks and the Rise of Alternative Initial Access Methods

Default blog imageDefault blog image
29
Apr 2024

What is the primary entry point for malware attacks?

Phishing attacks targeting employee inboxes are the most common initial access method used by malicious threat actors to deliver malware.

Because email remains the lifeblood of how organizations operate attackers continue to develop new techniques for creating more convincing and sophisticated phishing messages at scale.

What are new entry points cyber attackers are using?

While traditional phishing attacks are very common for attackers, they are not the only method threat actors are using to initiate malware delivery and other malicious campaigns of cyber disruption.

For its End of Year Threat Report, Darktrace analyzed attacks targeting customer environments. While email remains the most common means of attempted initial compromise, the second half of 2023 saw a significant rise in alternative initial access methods.

Much of this is taking advantage of cloud-base applications and collaboration tools including Dropbox, Microsoft Teams, and SharePoint which have become fundamental to how organizations operate in the era of hybrid work.

DarkGate exploits Microsoft Teams

Darktrace analysts have seen threat actors attempting to infect target networks with malware by leveraging Microsoft Teams and SharePoint.  

In one example, Darktrace detected an attacker delivering DarkGate a trojan used to download other malware, by sending messages and attachments in Microsoft Teams and SharePoint.

The External Access functionality in Microsoft Teams allows users to contact people who aren’t in their organization. It’s designed as a tool to aid collaboration, but threat actors have realized they can abuse it for their own gain.  

Users are told to lookout for suspicious email phishing messages, but often this thinking isn’t applied to Microsoft Teams and other collaboration platforms.  

Messages from outside the organization are marked with a note that they are coming from an external source, but a well-designed phishing message with an urgent call to action can persuade the target to ignore this, driving them towards an external SharePoint URL, which tricks the user into downloading and installing malware.

Because this happens outside of the inbox, the activity can be missed by traditional email security solutions. Fortunately, in this case, it was detected by Darktrace DETECT and the activity was contained by Darktrace RESPOND before it could drop any additional malware.  

Dropbox has established itself as a leading cloud storage service by allowing users to share and access files, no matter where they are in the world or what device they’re using. But while this is legitimate and useful for organizations, it has also opened a new avenue for threat actors to exploit.

Dropbox as an attack vector

Darktrace recently detected attackers attempting to leverage Dropbox as an initial access method. Emails from ‘no-reply@dropbox[.]com’ – a legitimate email address – were sent to employees at a Darktrace customer.

The emails contained a link to push users towards to a PDF file hosted on Dropbox, which in turn contained a phishing link which if followed, took users to a convincing looking spoof of a Microsoft 365 login page designed to steal usernames and passwords.

A user fell victim to this campaign, unwittingly entering their Microsoft 365 credentials. Shortly after that, Darktrace/Apps started to see suspicious activity relating to the account, with multiple logins from unusual locations which had never been associated with the account previously.  

While many traditional security solutions successfully detect and disrupt email-based attacks, many struggle with cloud-based apps and services like Dropbox, Microsoft 365 and others.  

There are several reasons for this, including the way in which the use of multiple different cloud services fragments the attack surface, making it hard for network administrators to keep track of everything, alongside the way in which some security solutions don’t take behavior into account in a system which can be accessed from anywhere. That means even from the other side of the world, attackers who have the right cloud credentials could access the network, potentially without being disrupted.  

Why are attackers turning to alternative access methods?

Attackers are turning to alternative methods because delivering malicious links and payloads via cloud-based services potentially bypasses traditional cybersecurity protections. That, combined with how attackers can take legitimate login credentials to access system means attackers actions can’t be easily traced.  

This rise in alternative initial access methods is likely a result of the continued development and enhancement of traditional email security solutions. But in the cat and mouse game of cybersecurity, threat actors continue to evolve new techniques to get by defenses.  

Darktrace’s Self-Learning AI learns the unique digital environment and patterns of each business, meaning it can recognize subtle deviations in activity, even within cloud services, helping to mitigate and neutralize attacks and helping to keep your organization safe from cyber disruption.

Learn more about Darktrace

Join Darktrace LIVE half-day event to understand the reality versus the hype surrounding AI and how to achieve cyber resilience.

For more information on emerging threats read the Darktrace End of Year Threat Report 2023 here.

To learn more about Darktrace’s latest innovations watch the Darktrace Virtual Innovation Launch video here.  

Continue reading
About the author
The Darktrace Community
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.