Blog
/
Network
/
December 9, 2024

Darktrace’s view on Operation Lunar Peek: Exploitation of Palo Alto firewall devices (CVE 2024-0012 and 2024-9474)

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Dec 2024
Darktrace’s Threat Research team investigated a major campaign exploiting vulnerabilities in Palo Alto firewall devices (CVE 2024-0012 and 2024-9474). Learn about the spike in post-exploitation activities and understand the need for anomaly-based detection to stay ahead of evolving threats.

Introduction: Spike in exploitation and post-exploitation activity affecting Palo Alto firewall devices

As the first line of defense for many organizations, perimeter devices such as firewalls are frequently targeted by threat actors. If compromised, these devices can serve as the initial point of entry to the network, providing access to vulnerable internal resources. This pattern of malicious behavior has become readily apparent within the Darktrace customer base. In 2024, Darktrace Threat Research analysts identified and investigated at least two major campaigns targeting internet-exposed perimeter devices. These included the exploitation of PAN-OS firewall exploitation via CVE 2024-3400 and FortiManager appliances via CVE 2024-47575.

More recently, at the end of November, Darktrace analysts observed a spike in exploitation and post-exploitation activity affecting, once again, Palo Alto firewall devices in the days following the disclosure of the CVE 2024-0012 and CVE-2024-9474 vulnerabilities.

Threat Research analysts had already been investigating potential exploitation of the firewalls’ management interface after Palo Alto published a security advisory (PAN-SA-2024-0015) on November 8. Subsequent analysis of data from Darktrace’s Security Operations Center (SOC) and external research uncovered multiple cases of Palo Alto firewalls being targeted via the likely exploitation of these vulnerabilities since November 13, through the end of the month. Although this spike in anomalous behavior may not be attributable to a single malicious actor, Darktrace Threat Research identified a clear increase in PAN-OS exploitation across the customer base by threat actors likely utilizing the recently disclosed vulnerabilities, resulting in broad patterns of post-exploitation activity.

How did exploitation occur?

CVE 2024-0012 is an authentication bypass vulnerability affecting unpatched versions of Palo Alto Networks Next-Generation Firewalls. The vulnerability resides in the management interface application on the firewalls specifically, which is written in PHP. When attempting to access highly privileged scripts, users are typically redirected to a login page. However, this can be bypassed by supplying an HTTP request where a Palo Alto related authentication header can be set to “off”.  Users can supply this header value to the Nginx reverse proxy server fronting the application which will then send it without any prior processing [1].

CVE-2024-9474 is a privilege escalation vulnerability that allows a PAN-OS administrator with access to the management web interface to execute root-level commands, granting full control over the affected device [2]. When combined, these vulnerabilities enable unauthenticated adversaries to execute arbitrary commands on the firewall with root privileges.

Post-Exploitation Patterns of Activity

Darktrace Threat Research analysts examined potential indicators of PAN-OS software exploitation via CVE 2024-0012 and CVE-2024-9474 during November 2024. The investigation identified three main groupings of post-exploitation activity:

  1. Exploit validation and initial payload retrieval
  2. Command and control (C2) connectivity, potentially featuring further binary downloads
  3. Potential reconnaissance and cryptomining activity

Exploit Validation

Across multiple investigated customers, Darktrace analysts identified likely vulnerable PAN-OS devices conducting external network connectivity to bin services. Specifically, several hosts performed DNS queries for, and HTTP requests to Out-of-Band Application Security Testing (OAST) domains, such as csv2im6eq58ujueonqs0iyq7dqpak311i.oast[.]pro. These endpoints are commonly used by network administrators to harden defenses, but they are increasingly used by threat actors to verify successful exploitation of targeted devices and assess their potential for further compromise. Although connectivity involving OAST domains were prevalent across investigated incidents, this activity was not necessarily the first indicator observed. In some cases, device behavior involving OAST domains also occurred shortly after an initial payload was downloaded.

Darktrace model alert logs detailing the HTTP request to an OAST domain immediately following PAN-OS device compromise.
Figure 1: Darktrace model alert logs detailing the HTTP request to an OAST domain immediately following PAN-OS device compromise.

Initial Payload Retrieval

Following successful exploitation, affected devices commonly performed behaviors indicative of initial payload download, likely in response to incoming remote command execution. Typically, the affected PAN-OS host would utilize the command line utilities curl and Wget, seen via use of user agents curl/7.61.1 and Wget/1.19.5 (linux-gnu), respectively.

In some cases, the use of these command line utilities by the infected devices was considered new behavior. Given the nature of the user agents, interaction with the host shell suggests remote command execution to achieve the outgoing payload requests.

While additional binaries and scripts were retrieved in later stages of the post-exploitation activity in some cases, this set of behaviors and payloads likely represent initial persistence and execution mechanisms that will enable additional functionality later in the kill chain. During the investigation, Darktrace analysts noted the prevalence of shell script payload requests. Devices analyzed would frequently make HTTP requests over the usual destination port 80 using the command line URL utility (curl), as seen in the user-agent field.

The observed URIs often featured requests for text files, such as “1.txt”, or shell scripts such as “y.sh”. Although packet capture (PCAP) samples were unavailable for review, external researchers have noted that the IP address hosting such “1.txt” files (46.8.226[.]75) serves malicious PHP payloads. When examining the contents of the “y.sh” shell script, Darktrace analysts noticed the execution of bash commands to upload a PHP-written web shell on the affected server.

PCAP showing the client request and server response associated with the download of the y.sh script from 45.76.141[.]166. The body content of the HTTP response highlights a shebang command to run subsequent code as bash script. The content is base64 encoded and details PHP script for what appears to be a webshell that will likely be written to the firewall device.
Figure 2: PCAP showing the client request and server response associated with the download of the y.sh script from 45.76.141[.]166. The body content of the HTTP response highlights a shebang command to run subsequent code as bash script. The content is base64 encoded and details PHP script for what appears to be a webshell that will likely be written to the firewall device.

While not all investigated cases saw initial shell script retrieval, affected systems would commonly make an external HTTP connection, almost always via Wget, for the Executable and Linkable Format (ELF) file “/palofd” from the rare external IP  38.180.147[.]18.

Such requests were frequently made without prior hostname lookups, suggesting that the process or script initiating the requests already contained the external IP address. Analysts noticed a consistent SHA1 hash present for all identified instances of “/palofd” downloads (90f6890fa94b25fbf4d5c49f1ea354a023e06510). Multiple open-source intelligence (OSINT) vendors have associated this hash sample with Spectre RAT, a remote access trojan with capabilities including remote command execution, payload delivery, process manipulation, file transfers, and data theft [3][4].

Figure 3: Advanced Search log metrics highlighting details of the “/palofd” file download over HTTP.

Several targeted customer devices were observed initiating TLS/SSL connections to rare external IPs with self-signed TLS certificates following exploitation. Model data from across the Darktrace fleet indicated some overlap in JA3 fingerprints utilized by affected PAN-OS devices engaging in the suspicious TLS activity. Although JA3 hashes alone cannot be used for process attribution, this evidence suggests some correlation of source process across instances of PAN-OS exploitation.

These TLS/SSL sessions were typically established without the specification of a Server Name Indication (SNI) within the TLS extensions. The SNI extension prevents servers from supplying an incorrect certificate to the requesting client when multiple sites are hosted on the same IP. SSL connectivity without SNI specification suggests a potentially malicious running process as most software establishing TLS sessions typically supply this information during the handshake. Although the encrypted nature of the connection prevented further analysis of the payload packets, external sources note that JavaScript content is transmitted during these sessions, serving as initial payloads for the Sliver C2 platform using Wget [5].

C2 Communication and Additional Payloads

Following validation and preliminary post-compromise actions, examined hosts would commonly initiate varying forms of C2 connectivity. During this time, devices were frequently detected making further payload downloads, likely in response to directives set within C2 communications.

Palo Alto firewalls likely exploited via the newly disclosed CVEs would commonly utilize the Sliver C2 platform for external communication. Sliver’s functionality allows for different styles and formatting for communication. An open-source alternative to Cobalt Strike, this framework has been increasingly popular among threat actors, enabling the generation of dynamic payloads (“slivers”) for multiple platforms, including Windows, MacOS, Linux.

These payloads allow operators to establish persistence, spawn new shells, and exfiltrate data. URI patterns and PCAPs analysis yielded evidence of both English word type encoding within Sliver and Gzip formatting.

For example, multiple devices contacted the Sliver-linked IP address 77.221.158[.]154 using HTTP to retrieve Gzip files. The URIs present for these requests follow known Sliver Gzip formatted communication patterns [6]. Investigations yielded evidence of both English word encoding within Sliver, identified through PCAP analysis, and Gzip formatting.

Sample of URIs observed in Advanced Searchhighlighting HTTP requests to 77.221.158[.]154 for Gzip content suggest of Sliver communication.
Figure 4: Sample of URIs observed in Advanced Searchhighlighting HTTP requests to 77.221.158[.]154 for Gzip content suggest of Sliver communication.
PCAP showing English word encoding for Sliver communication observed during post-exploitation C2 activity.
Figure 5: PCAP showing English word encoding for Sliver communication observed during post-exploitation C2 activity.

External connectivity during this phase also featured TCP connection attempts over uncommon ports for common application protocols. For both Sliver and non-Sliver related IP addresses, devices utilized destination ports such as 8089, 3939, 8880, 8084, and 9999 for the HTTP protocol. The use of uncommon destination ports may represent attempts to avoid detection of connectivity to rare external endpoints. Moreover, some external beaconing within included URIs referencing the likely IP of the affected device. Such behavior can suggest the registration of compromised devices with command servers.

Targeted devices also proceeded to download additional payloads from rare external endpoints as beaconing/C2 activity was ongoing. For example, the newly registered domain repositorylinux[.]org (IP: 103.217.145[.]112) received numerous HTTP GET requests from investigated devices throughout the investigation period for script files including “linux.sh” and “cron.sh”. Young domains, especially those that present as similar to known code repositories, tend to host harmful content. Packet captures of the cron.sh file reveal commands within the HTTP body content involving crontab operations, likely to schedule future downloads. Some hosts that engaged in connectivity to the fake repository domain were later seen conducting crypto-mining connections, potentially highlighting the download of miner applications from the domain.

Additional payloads observed during this time largely featured variations of shell scripts, PHP content, and/or executables. Typically, shell scripts direct the device to retrieve additional content from external servers or repositories or contain potential configuration details for subsequent binaries to run on the device. For example, the “service.sh” retrieves a tar-compressed archive, a configuration JSON file as well as a file with the name “solr” from GitHub, potentially associated with the Apache Solr tool used for enterprise search. These could be used for further enumeration of the host and/or the network environment. PHP scripts observed may involve similar web shell functionality and were retrieved from both rare external IPs identified as well by external researchers [7]. Darktrace also detected the download of octet-stream data occurring mid-compromise from an Amazon Web Services (AWS) S3 bucket. Although no outside research confirmed the functionality, additional executable downloads for files such as “/initd”(IP: 178.215.224[.]246) and “/x6” (IP: 223.165.4[.]175) may relate to tool ingress, further Trojan/backdoor functionality, or cryptocurrency mining.

Figure 7: PCAP specifying the HTTP response headers and body content for the service.sh file request. The body content shown includes variable declarations for URLs that will eventually be called by the device shell via bash command.

Reconnaissance and Cryptomining

Darktrace analysts also noticed additional elements of kill chain operations from affected devices after periods of initial exploit activity. Several devices initiated TCP connections to endpoints affiliated with cryptomining pools such as us[.]zephyr[.]herominers[.]com and  xmrig[.]com. Connectivity to these domains indicates likely successful installation of mining software during earlier stages of post-compromise activity. In a small number of instances, Darktrace observed reconnaissance and lateral movement within the time range of PAN-OS exploitation. Firewalls conducted large numbers of internal connectivity attempts across several critical ports related to privileged protocols, including SMB and SSH. Darktrace detected anonymous NTLM login attempts and new usage of potential PAN-related credentials. These behaviors likely constitute attempts at lateral movement to adjacent devices to further extend network compromise impact.

Model alert connection logs detailing the uncommon failed NTLM logins using an anonymous user account following PAN-OS exploitation.
Figure 8: Model alert connection logs detailing the uncommon failed NTLM logins using an anonymous user account following PAN-OS exploitation.

Conclusion

Darktrace Threat Research and SOC analysts increasingly detect spikes in malicious activity on internet-facing devices in the days following the publication of new vulnerabilities. The latest iteration of this trend highlighted how threat actors quickly exploited Palo Alto firewall using authentication bypass and remote command execution vulnerabilities to enable device compromise. A review of the post-exploitation activity during these events reveals consistent patterns of perimeter device exploitation, but also some distinct variations.

Prior campaigns targeting perimeter devices featured activity largely confined to the exfiltration of configuration data and some initial payload retrieval. Within the current campaign, analysts identified a broader scope post-compromise activity consisting not only of payloads downloads but also extensive C2 activity, reconnaissance, and coin mining operations. While the use of command line tools like curl featured prominently in prior investigations, devices were seen retrieving a generally wider array of payloads during the latest round of activity. The use of the Sliver C2 platform further differentiates the latest round of PAN-OS compromises, with evidence of Sliver activity in about half of the investigated cases.

Several of the endpoints contacted by the infected firewall devices did not have any OSINT associated with them at the time of the attack. However, these indicators were noted as unusual for the devices according to Darktrace based on normal network traffic patterns. This reality further highlights the need for anomaly-based detection that does not rely necessarily on known indicators of compromise (IoCs) associated with CVE exploitation for detection. Darktrace’s experience in 2024 of multiple rounds of perimeter device exploitation may foreshadow future increases in these types of comprise operations.  

Credit to Adam Potter (Senior Cyber Analyst), Alexandra Sentenac (Senior Cyber Analyst), Emma Foulger (Principal Cyber Analyst) and the Darktrace Threat Research team.

References

[1]: https://labs.watchtowr.com/pots-and-pans-aka-an-sslvpn-palo-alto-pan-os-cve-2024-0012-and-cve-2024-9474/

[2]: https://security.paloaltonetworks.com/CVE-2024-9474

[3]: https://threatfox.abuse[.]ch/ioc/1346254/

[4]:https://www.virustotal.com/gui/file/4911396d80baff80826b96d6ea7e54758847c93fdbcd3b86b00946cfd7d1145b/detection

[5]: https://arcticwolf.com/resources/blog/arctic-wolf-observes-threat-campaign-targeting-palo-alto-networks-firewall-devices/

[6] https://www.immersivelabs.com/blog/detecting-and-decrypting-sliver-c2-a-threat-hunters-guide

[7] https://arcticwolf.com/resources/blog/arctic-wolf-observes-threat-campaign-targeting-palo-alto-networks-firewall-devices/

Appendices

Darktrace Model Alerts

Anomalous Connection / Anomalous SSL without SNI to New External

Anomalous Connection / Application Protocol on Uncommon Port  

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Posting HTTP to IP Without Hostname

Anomalous Connection / Rare External SSL Self-Signed

Anomalous File / EXE from Rare External Location

Anomalous File / Incoming ELF File

Anomalous File / Mismatched MIME Type From Rare Endpoint

Anomalous File / Multiple EXE from Rare External Locations

Anomalous File / New User Agent Followed By Numeric File Download

Anomalous File / Script from Rare External Location

Anomalous File / Zip or Gzip from Rare External Location

Anomalous Server Activity / Rare External from Server

Compromise / Agent Beacon (Long Period)

Compromise / Agent Beacon (Medium Period)

Compromise / Agent Beacon to New Endpoint

Compromise / Beacon for 4 Days

Compromise / Beacon to Young Endpoint

Compromise / Beaconing Activity To External Rare

Compromise / High Priority Tunnelling to Bin Services

Compromise / High Volume of Connections with Beacon Score

Compromise / HTTP Beaconing to New IP

Compromise / HTTP Beaconing to Rare Destination

Compromise / Large Number of Suspicious Failed Connections

Compromise / Large Number of Suspicious Successful Connections

Compromise / Slow Beaconing Activity To External Rare

Compromise / SSL Beaconing to Rare Destination

Compromise / Suspicious Beaconing Behavior

Compromise / Suspicious File and C2

Compromise / Suspicious HTTP and Anomalous Activity

Compromise / Suspicious TLS Beaconing To Rare External

Compromise / Sustained SSL or HTTP Increase

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Device / Initial Attack Chain Activity

Device / New User Agent

MITRE ATT&CK Mapping

Tactic – Technique

INITIAL ACCESS – Exploit Public-Facing Application

RESOURCE DEVELOPMENT – Malware

EXECUTION – Scheduled Task/Job (Cron)

EXECUTION – Unix Shell

PERSISTENCE – Web Shell

DEFENSE EVASION – Masquerading (Masquerade File Type)

DEFENSE EVASION - Deobfuscate/Decode Files or Information

CREDENTIAL ACCESS – Brute Force

DISCOVERY – Remote System Discovery

COMMAND AND CONTROL – Ingress Tool Transfer

COMMAND AND CONTROL – Application Layer Protocol (Web Protocols)

COMMAND AND CONTROL – Encrypted Channel

COMMAND AND CONTROL – Non-Standard Port

COMMAND AND CONTROL – Data Obfuscation

IMPACT – Resource Hijacking (Compute)

List of IoCs

IoC         –          Type         –        Description

  • sys.traceroute[.]vip     – Hostname - C2 Endpoint
  • 77.221.158[.]154     – IP - C2 Endpoint
  • 185.174.137[.]26     – IP - C2 Endpoint
  • 93.113.25[.]46     – IP - C2 Endpoint
  • 104.131.69[.]106     – IP - C2 Endpoint
  • 95.164.5[.]41     – IP - C2 Endpoint
  • bristol-beacon-assets.s3.amazonaws[.]com     – Hostname - Payload Server
  • img.dxyjg[.]com     – Hostname - Payload Server
  • 38.180.147[.]18     – IP - Payload Server
  • 143.198.1[.]178     – IP - Payload Server
  • 185.208.156[.]46     – IP - Payload Server
  • 185.196.9[.]154     – IP - Payload Server
  • 46.8.226[.]75     – IP - Payload Server
  • 223.165.4[.]175     – IP - Payload Server
  • 188.166.244[.]81     – IP - Payload Server
  • bristol-beaconassets.s3[.]amazonaws[.]com/Y5bHaYxvd84sw     – URL - Payload
  • img[.]dxyjg[.]com/KjQfcPNzMrgV     – URL - Payload
  • 38.180.147[.]18/palofd     – URL - Payload
  • 90f6890fa94b25fbf4d5c49f1ea354a023e06510     – SHA1 - Associated to file /palofd
  • 143.198.1[.]178/7Z0THCJ     – URL - Payload
  • 8d82ccdb21425cf27b5feb47d9b7fb0c0454a9ca     – SHA1 - Associated to file /7Z0THCJ
  • fefd0f93dcd6215d9b8c80606327f5d3a8c89712     – SHA1 - Associated to file /7Z0THCJ
  • e5464f14556f6e1dd88b11d6b212999dd9aee1b1     – SHA1 - Associated to file /7Z0THCJ
  • 143.198.1[.]178/o4VWvQ5pxICPm     – URL - Payload
  • 185.208.156[.]46/lUuL095knXd62DdR6umDig     – URL - Payload
  • 185.196.9[.]154/ykKDzZ5o0AUSfkrzU5BY4w     – URL - Payload
  • 46.8.226[.]75/1.txt     – URL - Payload
  • 223.165.4[.]175/x6     – URL - Payload
  • 45.76.141[.]166/y.sh     – URL - Payload
  • repositorylinux[.]org/linux.sh     – URL - Payload
  • repositorylinux[.]org/cron.sh     – URL - Payload

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Adam Potter
Senior Cyber Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

Compliance

/

February 11, 2025

NIS2 Compliance: Interpreting 'State-of-the-Art' for Organisations

Default blog imageDefault blog image

NIS2 Background

17 October 2024 marked the deadline for European Union (EU) Member States to implement the NIS2 Directive into national law. The Directive aims to enhance the EU’s cybersecurity posture by establishing a high common level of cybersecurity for critical infrastructure and services. It builds on its predecessor, the 2018 NIS Directive, by expanding the number of sectors in scope, enforcing greater reporting requirements and encouraging Member States to ensure regulated organisations adopt ‘state-of-the-art' security measures to protect their networks, OT and IT systems.  

Timeline of NIS2
Figure 1: Timeline of NIS2

The challenge of NIS2 & 'state-of-the-art'

Preamble (51) - "Member States should encourage the use of any innovative technology, including artificial intelligence, the use of which could improve the detection and prevention of cyberattacks, enabling resources to be diverted towards cyberattacks more effectively."
Article 21 - calls on Member States to ensure that essential and important entities “take appropriate and proportionate” cyber security measures, and that they do so by “taking into account the state-of-the-art and, where applicable, relevant European and international standards, as well as the cost of implementation.”

Regulartory expectations and ambiguity of NIS2

While organisations in scope can rely on technical guidance provided by ENISA1 , the EU’s agency for cybersecurity, or individual guidelines provided by Member States or Public-Private Partnerships where they have been published,2 the mention of ‘state-of-the-art' remains up to interpretation in most Member States. The use of the phrase implies that cybersecurity measures must evolve continuously to keep pace with emerging threats and technological advancements without specifying what ‘state-of-the-art’ actually means for a given context and risk.3  

This ambiguity makes it difficult for organisations to determine what constitutes compliance at any given time and could lead to potential inconsistencies in implementation and enforcement. Moreover, the rapid pace of technological change means that what is considered "state-of-the-art" today will become outdated, further complicating compliance efforts.

However, this is not unique to NIS regulation. As EU scholars have noted, while “state-of-the-art" is widely referred to in legal text relating to technology, there is no standardised legal definition of what it actually constitutes.4

Defining state-of-the-art cybersecurity

In this blog, we outline technical considerations for state-of-the-art cybersecurity. We draw from expertise within our own business and in academia as well as guidelines and security standards set by national agencies, such as Germany’s Federal Office for Information Security (BSI) or Spain’s National Security Framework (ENS), to put forward five criteria to define state-of-the-art cybersecurity.

The five core criteria include:

  • Continuous monitoring
  • Incident correlation
  • Detection of anomalous activity
  • Autonomous response
  • Proactive cyber resilience

These principles build on long-standing security considerations, such as business continuity, vulnerability management and basic security hygiene practices.  

Although these considerations are written in the context of the NIS2 Directive, they are likely to also be relevant for other jurisdictions. We hope these criteria help organisations understand how to best meet their responsibilities under the NIS2 Directive and assist Competent Authorities in defining compliance expectations for the organisations they regulate.  

Ultimately, adopting state-of-the-art cyber defences is crucial for ensuring that organisations are equipped with the best tools to combat new and fast-growing threats. Leading technical authorities, such as the UK National Cyber Security Centre (NCSC), recognise that adoption of AI-powered cyber defences will offset the increased volume and impact of AI on cyber threats.5

State of the art cybersecurity in the context of NIS2

1. Continuous monitoring

Continuous monitoring is required to protect an increasingly complex attack surface from attackers.

First, organisations' attack surfaces have expanded following the widespread adoption of hybrid or cloud infrastructures and the increased adoption of connected Internet of Things (IoT) devices.6 This exponential growth creates a complex digital environment for organisations, making it difficult for security teams to track all internet-facing assets and identify potential vulnerabilities.

Second, with the significant increase in the speed and sophistication of cyber-attacks, organisations face a greater need to detect security threats and non-compliance issues in real-time.  

Continuous monitoring, defined by the U.S. National Institute of Standards and Technology (NIST) as the ability to maintain “ongoing awareness of information security, vulnerabilities, and threats to support organizational risk management decisions,”7 has therefore become a cornerstone of an effective cybersecurity strategy. By implementing continuous monitoring, organisations can ensure a real-time understanding of their attack surface and that new external assets are promptly accounted for. For instance, Spain’s technical guidelines for regulation, as set forth by the National Security Framework (Royal Decree 311/2022), highlight the importance of adopting continuous monitoring to detect anomalous activities or behaviours and to ensure timely responses to potential threats (article 10).8  

This can be achieved through the following means:  

All assets that form part of an organisation's estate, both known and unknown, must be identified and continuously monitored for current and emerging risks. Germany’s BSI mandates the continuous monitoring of all protocol and logging data in real-time (requirement #110).9 This should be conducted alongside any regular scans to detect unknown devices or cases of shadow IT, or the use of unauthorised or unmanaged applications and devices within an organisation, which can expose internet-facing assets to unmonitored risks. Continuous monitoring can therefore help identify potential risks and high-impact vulnerabilities within an organisation's digital estate and eliminate potential gaps and blind spots.

Organisations looking to implement more efficient continuous monitoring strategies may turn to automation, but, as the BSI notes, it is important for responsible parties to be immediately warned if an alert is raised (reference 110).10 Following the BSI’s recommendations, the alert must be examined and, if necessary, contained within a short period of time corresponding with the analysis of the risk at hand.

Finally, risk scoring and vulnerability mapping are also essential parts of this process. Looking across the Atlantic, the US’ National Institute of Standards and Technology (NIST) defines continuous monitoring as “maintaining ongoing awareness of information security, vulnerabilities, and threats to support organizational risk management decisions”.11 Continuous monitoring helps identify potential risks and significant vulnerabilities within an organisation's digital assets, fostering a dynamic understanding of risk. By doing so, risk scoring and vulnerability mapping allows organisations to prioritise the risks associated with their most critically exposed assets.

2. Correlation of incidents across your entire environment

Viewing and correlating incident alerts when working with different platforms and tools poses significant challenges to SecOps teams. Security professionals often struggle to cross-reference alerts efficiently, which can lead to potential delays in identifying and responding to threats. The complexity of managing multiple sources of information can overwhelm teams, making it difficult to maintain a cohesive understanding of the security landscape.

This fragmentation underscores the need for a centralised approach that provides a "single pane of glass" view of all cybersecurity alerts. These systems streamline the process of monitoring and responding to incidents, enabling security teams to act more swiftly and effectively. By consolidating alerts into a unified interface, organisations can enhance their ability to detect and mitigate threats, ultimately improving their overall security posture.  

To achieve consolidation, organisations should consider the role automation can play when reviewing and correlating incidents. This is reflected in Spain’s technical guidelines for national security regulations regarding the requirements for the “recording of activity” (reinforcement R5).12 Specifically, the guidelines state that:  

"The system shall implement tools to analyses and review system activity and audit information, in search of possible or actual security compromises. An automatic system for collection of records, correlation of events and automatic response to them shall be available”.13  

Similarly, the German guidelines stress that automated central analysis is essential not only for recording all protocol and logging data generated within the system environment but also to ensure that the data is correlated to ensure that security-relevant processes are visible (article 115).14

Correlating disparate incidents and alerts is especially important when considering the increased connectivity between IT and OT environments driven by business and functional requirements. Indeed, organisations that believe they have air-gapped systems are now becoming aware of points of IT/OT convergence within their systems. It is therefore crucial for organisations managing both IT and OT environments to be able to visualise and secure devices across all IT and OT protocols in real-time to identify potential spillovers.  

By consolidating data into a centralised system, organisations can achieve a more resilient posture. This approach exposes and eliminates gaps between people, processes, and technology before they can be exploited by malicious actors. As seen in the German and Spanish guidelines, a unified view of security alerts not only enhances the efficacy of threat detection and response but also ensures comprehensive visibility and control over the organisation's cybersecurity posture.

3. Detection of anomalous activity  

Recent research highlights the emergence of a "new normal" in cybersecurity, marked by an increase in zero-day vulnerabilities. Indeed, for the first time since sharing their annual list, the Five Eyes intelligence alliance reported that in 2023, the majority of the most routinely exploited vulnerabilities were initially exploited as zero-days.15  

To effectively combat these advanced threats, policymakers, industry and academic stakeholders alike recognise the importance of anomaly-based techniques to detect both known and unknown attacks.

As AI-enabled threats become more prevalent,16 traditional cybersecurity methods that depend on lists of "known bads" are proving inadequate against rapidly evolving and sophisticated attacks. These legacy approaches are limited because they can only identify threats that have been previously encountered and cataloged. However, cybercriminals are constantly developing new, never-before-seen threats, such as signatureless ransomware or living off the land techniques, which can easily bypass these outdated defences.

The importance of anomaly detection in cybersecurity can be found in Spain’s technical guidelines, which states that “tools shall be available to automate the prevention and response process by detecting and identifying anomalies17” (reinforcement R4 prevention and automatic response to "incident management”).  

Similarly, the UK NCSC’s Cyber Assessment Framework (CAF) highlights how anomaly-based detection systems are capable of detecting threats that “evade standard signature-based security solutions” (Principle C2 - Proactive Security Event Discovery18). The CAF’s C2 principle further outlines:  

“The science of anomaly detection, which goes beyond using pre-defined or prescriptive pattern matching, is a challenging area. Capabilities like machine learning are increasingly being shown to have applicability and potential in the field of intrusion detection.”19

By leveraging machine learning and multi-layered AI techniques, organisations can move away from static rules and signatures, adopting a more behavioural approach to identifying and containing risks. This shift not only enhances the detection of emerging threats but also provides a more robust defence mechanism.

A key component of this strategy is behavioral zero trust, which focuses on identifying unauthorized and out-of-character attempts by users, devices, or systems. Implementing a robust procedure to verify each user and issuing the minimum required access rights based on their role and established patterns of activity is essential. Organisations should therefore be encouraged to follow a robust procedure to verify each user and issue the minimum required access rights based on their role and expected or established patterns of activity. By doing so, organisations can stay ahead of emerging threats and embrace a more dynamic and resilient cybersecurity strategy.  

4. Autonomous response

The speed at which cyber-attacks occur means that defenders must be equipped with tools that match the sophistication and agility of those used by attackers. Autonomous response tools are thus essential for modern cyber defence, as they enable organisations to respond to both known and novel threats in real time.  

These tools leverage a deep contextual and behavioral understanding of the organisation to take precise actions, effectively containing threats without disrupting business operations.

To avoid unnecessary business disruptions and maintain robust security, especially in more sensitive networks such as OT environments, it is crucial for organisations to determine the appropriate response depending on their environment. This can range from taking autonomous and native actions, such as isolating or blocking devices, or integrating their autonomous response tool with firewalls or other security tools to taking customized actions.  

Autonomous response solutions should also use a contextual understanding of the business environment to make informed decisions, allowing them to contain threats swiftly and accurately. This means that even as cyber-attacks evolve and become more sophisticated, organisations can maintain continuous protection without compromising operational efficiency.  

Indeed, research into the adoption of autonomous cyber defences points to the importance of implementing “organisation-specific" and “context-informed” approaches.20  To decide the appropriate level of autonomy for each network action, it is argued, it is essential to use evidence-based risk prioritisation that is customised to the specific operations, assets, and data of individual enterprises.21

By adopting autonomous response solutions, organisations can ensure their defences are as dynamic and effective as the threats they face, significantly enhancing their overall security posture.

5. Proactive cyber resilience  

Adopting a proactive approach to cybersecurity is crucial for organisations aiming to safeguard their operations and reputation. By hardening their defences enough so attackers are unable to target them effectively, organisations can save significant time and money. This proactive stance helps reduce business disruption, reputational damage, and the need for lengthy, resource-intensive incident responses.

Proactive cybersecurity incorporates many of the strategies outlined above. This can be seen in a recent survey of information technology practitioners, which outlines four components of a proactive cybersecurity culture: (1) visibility of corporate assets, (2) leveraging intelligent and modern technology, (3) adopting consistent and comprehensive training methods and (4) implementing risk response procedures.22 To this, we may also add continuous monitoring which allows organisations to understand the most vulnerable and high-value paths across their architectures, allowing them to secure their critical assets more effectively.  

Alongside these components, a proactive cyber strategy should be based on a combined business context and knowledge, ensuring that security measures are aligned with the organisation's specific needs and priorities.  

This proactive approach to cyber resilience is reflected in Spain’s technical guidance (article 8.2): “Prevention measures, which may incorporate components geared towards deterrence or reduction of the exposure surface, should eliminate or reduce the likelihood of threats materializing.”23 It can also be found in the NCSC’s CAF, which outlines how organisations can achieve “proactive attack discovery” (see Principle C2).24 Likewise, Belgium’s NIS2 transposition guidelines mandate the use of preventive measures to ensure the continued availability of services in the event of exceptional network failures (article 30).25  

Ultimately, a proactive approach to cybersecurity not only enhances protection but also lowers regulatory risk and supports the overall resilience and stability of the organisation.

Looking forward

The NIS2 Directive marked a significant regulatory milestone in strengthening cybersecurity across the EU.26 Given the impact of emerging technologies, such as AI, on cybersecurity, it is to see that Member States are encouraged to promote the adoption of ‘state-of-the-art' cybersecurity across regulated entities.  

In this blog, we have sought to translate what state-of-the-art cybersecurity may look like for organisations looking to enhance their cybersecurity posture. To do so, we have built on existing cybersecurity guidance, research and our own experience as an AI-cybersecurity company to outline five criteria: continuous monitoring, incident correlation, detection of anomalous activity, autonomous response, and proactive cyber resilience.

By embracing these principles and evolving cybersecurity practices in line with the state-of-the-art, organisations can comply with the NIS2 Directive while building a resilient cybersecurity posture capable of withstanding evolutions in the cyber threat landscape. Looking forward, it will be interesting to see how other jurisdictions embrace new technologies, such as AI, in solving the cybersecurity problem.

NIS2 white paper

Get ahead with the NIS2 White Paper

Get a clear roadmap for meeting NIS2 requirements and strengthening your cybersecurity posture. Learn how to ensure compliance, mitigate risks, and protect your organization from evolving threats.

Download Here!

References

[1] https://www.enisa.europa.eu/publications/implementation-guidance-on-nis-2-security-measures

[2] https://www.teletrust.de/fileadmin/user_upload/2023-05_TeleTrusT_Guideline_State_of_the_art_in_IT_security_EN.pdf

[3] https://kpmg.com/uk/en/home/insights/2024/04/what-does-nis2-mean-for-energy-businesses.html

[4] https://orbilu.uni.lu/bitstream/10993/50878/1/SCHMITZ_IFIP_workshop_sota_author-pre-print.pdf

[5]https://www.ncsc.gov.uk/report/impact-of-ai-on-cyber-threat

[6] https://www.sciencedirect.com/science/article/pii/S2949715923000793

[7] https://csrc.nist.gov/glossary/term/information_security_continuous_monitoring

[8] https://ens.ccn.cni.es/es/docman/documentos-publicos/39-boe-a-2022-7191-national-security-framework-ens/file

[10] https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/KRITIS/Konkretisierung_Anforderungen_Massnahmen_KRITIS.html

[11] https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-137.pdf

[12] https://ens.ccn.cni.es/es/docman/documentos-publicos/39-boe-a-2022-7191-national-security-framework-ens/file

[13] https://ens.ccn.cni.es/es/docman/documentos-publicos/39-boe-a-2022-7191-national-security-framework-ens/file

[14] https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/KRITIS/Konkretisierung_Anforderungen_Massnahmen_KRITIS.html

[15] https://therecord.media/surge-zero-day-exploits-five-eyes-report

[16] https://www.ncsc.gov.uk/report/impact-of-ai-on-cyber-threat

[17] https://ens.ccn.cni.es/es/docman/documentos-publicos/39-boe-a-2022-7191-national-security-framework-ens/file

[18] https://www.ncsc.gov.uk/collection/cyber-assessment-framework/caf-objective-c-detecting-cyber-security-events/principle-c2-proactive-security-event-discovery

[19] https://www.ncsc.gov.uk/collection/cyber-assessment-framework/caf-objective-c-detecting-cyber-security-events/principle-c2-proactive-security-event-discovery

[20] https://cetas.turing.ac.uk/publications/autonomous-cyber-defence-autonomous-agents

[21] https://cetas.turing.ac.uk/publications/autonomous-cyber-defence-autonomous-agents

[22] https://www.researchgate.net/publication/376170443_Cultivating_Proactive_Cybersecurity_Culture_among_IT_Professional_to_Combat_Evolving_Threats

[23] https://ens.ccn.cni.es/es/docman/documentos-publicos/39-boe-a-2022-7191-national-security-framework-ens/file

[24] https://www.ncsc.gov.uk/collection/cyber-assessment-framework/caf-objective-c-detecting-cyber-security-events/principle-c2-proactive-security-event-discovery

[25] https://www.ejustice.just.fgov.be/mopdf/2024/05/17_1.pdf#page=49

[26] ENISA, NIS Directive 2

Continue reading
About the author
Livia Fries
Public Policy Manager, EMEA

Blog

/

Network

/

February 11, 2025

Defending Against Living-off-the-Land Attacks: Anomaly Detection in Action

Default blog imageDefault blog image

What is living-off-the-land?

Threat actors employ a variety of techniques to compromise target networks, including exploiting unpatched vulnerabilities, abusing misconfigurations, deploying backdoors, and creating custom malware. However, these methods generate a lot of noise and are relatively easy for network and host-based monitoring tools to detect, especially once indicators of compromise (IoCs) and tactics, techniques, and procedures (TTPs) are published by the cybersecurity community.

Living-off-the-Land (LOTL) techniques, however, allow attacks to remain nearly invisible to Endpoint Detection and Response (EDR) tools – leveraging trusted protocols, applications and native systems to carry out malicious activity. While mitigations exist, they are often poorly implemented. The Cybersecurity and Infrastructure Security Agency (CISA) found that some organizations “lacked security baselines, allowing [Living-off-the-Land binaries (LOLBins)] to execute and leaving analysts unable to identify anomalous activity” and “organizations did not appropriately tune their detection tools to reduce alert noise, leading to an unmanageable level of alerts to sift through and action" [1].

Darktrace / NETWORK addresses this challenge across Information Technology (IT), Operational Technology (OT), and cloud environments by continuously analyzing network traffic and identifying deviations from normal behavior with its multi-layered AI – helping organizations detect and respond to LOTL attacks in real time.

Darktrace’s detection of LOTL attacks

This blog will review two separate attacks detected by Darktrace that leveraged LOTL techniques at several stages of the intrusion.

Case A

Reconnaissance

In September 2024, a malicious actor gained access to a customer network via their Virtual Private Network (VPN) from two desktop devices that had no prior connection history. Over two days, the attacker conducted multiple network scans, targeting ports associated with Remote Desktop Protocol (RDP) and NTLM authentication. Darktrace detected this unusual activity, triggering multiple alerts for scanning and enumeration activity.

Unusual NTLM authentication attempts using default accounts like “Guest” and “Administrator” were detected. Two days after the initial intrusion, suspicious DRSGetNCChanges requests were observed on multiple domain controllers (DCs), targeting the Directory Replication Service RPC interface (i.e., drsuapi) – a technique used to extract account hashes from DCs. This process can be automated using tools like Mimikatz's DcSync and DCShadow

Around the same time, attacker-controlled devices were seen presenting an admin credential and another credential potentially granting access to Cisco Firewall systems, suggesting successful privilege escalation. Due to the severity of this activity, Darktrace’s Autonomous Response was triggered to prevent the device from further deviation from its normal behavior. However, because Autonomous Response was configured in Human Confirmation mode, the response actions had to be manually applied by the customer.

Cyber AI Analyst Critical Incident showing the unusual DRSGetNCChanges requests following unusual scanning activity.
Figure 1: Cyber AI Analyst Critical Incident showing the unusual DRSGetNCChanges requests following unusual scanning activity.

Lateral movement

Darktrace also detected anomalous RDP connections to domain controllers, originating from an attacker-controlled device using admin and service credentials. The attacker then successfully pivoted to a likely RDP server, leveraging the RDP protocol – one of the most commonly used for lateral movement in network compromises observed by Darktrace.

Cyber Analyst Incident displaying unusual RDP lateral movement connections
Figure 2: Cyber Analyst Incident displaying unusual RDP lateral movement connections.

Tooling

Following an incoming RDP connection, one of the DCs made a successful GET request to the URI '/download/122.dll' on the 100% rare IP, 146.70.145[.]189. The request returned an executable file, which open-source intelligence (OSINT) suggests is likely a CobaltStrike C2 sever payload [2] [3]. Had Autonomous Response been enabled here, it would have blocked all outgoing traffic from the DC allowing the customer to investigate and remediate.

Additionally, Darktrace detected a suspicious CreateServiceW request to the Service Control (SVCCTL) RPC interface on a server. The request executed commands using ‘cmd.exe’ to perform the following actions

  1. Used ‘tasklist’ to filter processes named ”lsass.exe” (Local Security Authority Subsystem Service) to find its specific process ID.
  2. Used “rundll32.exe” to execute the MiniDump function from the “comsvcs.dll” library, creating a memory dump of the “lsass.exe” process.
  3. Saved the output to a PNG file in a temporary folder,

Notably, “cmd.exe” was referenced as “CMd.EXE” within the script, likely an attempt to evade detection by security tools monitoring for specific keywords and patterns.

Model Alert Log showing the unusual SVCCTL create request.
Figure 3: Model Alert Log showing the unusual SVCCTL create request.

Over the course of three days, this activity triggered around 125 Darktrace / NETWORK alerts across 11 internal devices. In addition, Cyber AI Analyst launched an autonomous investigation into the activity, analyzing and connecting 16 separate events spanning multiple stages of the cyber kill chain - from initial reconnaissance to payload retrieval and lateral movement.

Darktrace’s comprehensive detection enabled the customer’s security team to remediate the compromise before any further escalation was observed.

Case B

Between late 2023 and early 2024, Darktrace identified a widespread attack that combined insider and external threats, leveraging multiple LOTL tools for reconnaissance and lateral movement within a customer's network.

Reconnaissance

Initially, Darktrace detected the use of a new administrative credential by a device, which then made unusual RDP connections to multiple internal systems, including a 30-minute connection to a DC. Throughout the attack, multiple unusual RDP connections using the new administrative credential “%admin!!!” were observed, indicating that this protocol was leveraged for lateral movement.

The next day, a Microsoft Defender Security Integration alert was triggered on the device due to suspicious Windows Local Security Authority Subsystem Service (LSASS) credential dump behavior. Since the LSASS process memory can store operating system and domain admin credentials, obtaining this sensitive information can greatly facilitate lateral movement within a network using legitimate tools such as PsExec or Windows Management Instrumentation (WMI) [4]. Security integrations with other security vendors like this one can provide insights into host-based processes, which are typically outside of Darktrace’s coverage. Darktrace’s anomaly detection and network activity monitoring help prioritize the investigation of these alerts.

Three days later, the attacker was observed logging into the DC and querying tickets for the Lightweight Directory Access Protocol (LDAP) service using the default credential “Administrator.” This activity, considered new by Darktrace, triggered an Autonomous Response action that blocked further connections on Kerberos port 88 to the DC. LDAP provides a central location to access and manage data about computers, servers, users, groups, and policies within a network. LDAP enumeration can provide valuable Active Directory (AD) object information to an attacker, which can be used to identify critical attack paths or accounts with high privileges.

Lateral movement

Following the incoming RDP connection, the DC began scanning activities, including RDP and Server Block Message (SMB) services, suggesting the attacker was using remote access for additional reconnaissance. Outgoing RDP connection attempts to over 100 internal devices were observed, with around 5% being successful, highlighting the importance of this protocol for the threat actor’s lateral movement.

Around the same time, the DC made WMI, PsExec, and service control connections to two other DCs, indicating further lateral movement using native administrative protocols and tools. These functions can be leveraged by attackers to query system information, run malicious code, and maintain persistent access to compromised devices while avoiding traditional security tool alarms. In this case, requested services included the IWbemServices (used to access WMI services) and IWbemFetchSmartEnum (used to retrieve a network-optimized enumerator interface) interfaces, with ExecQuery operations detected for the former. This method returns an enumerable collection of IWbemClassObject interface objects based on a query.

Additionally, unusual Windows Remote Management (WinRM) connections to another domain controller were observed. WinRM is a Microsoft protocol that allows systems to exchange and access management information over HTTP(S) across a network, such as running executables or modifying the registry and services.

Cyber AI Analyst Incident showing unusual WMI activity between the two DCs.
Figure 4: Cyber AI Analyst Incident showing unusual WMI activity between the two DCs.

The DC was also detected writing the file “PSEXESVC.exe” to the “ADMIN$” share of another internal device over the SMB file transfer network protocol. This activity was flagged as highly unusual by Darktrace, as these two devices had not previously engaged in this type of SMB connectivity.

It is rare for an attacker to immediately find the information or systems they are after, making it likely they will need to move around the network before achieving their objectives. Tools such as PsExec enable attackers to do this while largely remaining under the radar. With PsExec, attackers who gain access to a single system can connect to and execute commands remotely on other internal systems, access sensitive information, and spread their attack further into the environment.

Model Alert Event Log showing the new write of the file “PSEXESVC.exe” by one of the compromised devices over an SMB connection initiated at an unusual time.
Figure 5. Model Alert Event Log showing the new write of the file “PSEXESVC.exe” by one of the compromised devices over an SMB connection initiated at an unusual time.

Darktrace further observed the DC connecting to the SVCCTL endpoint on a remote device and performing the CreateServiceW operation, which was flagged as highly unusual based on previous behavior patterns between the two devices. Additionally, new ChangeServiceConfigW operations were observed from another device.

Aside from IWbemServices requests seen on multiple devices, Darktrace also detected multiple internal devices connecting to the ITaskSchedulerService interface over DCE-RPC and performing new SchRpcRegisterTask operations, which register a task on the destination system. Attackers can exploit the task scheduler to facilitate the initial or recurring execution of malicious code by a trusted system process, often with elevated permissions. The creation of these tasks was considered new or highly unusual and triggered several anomalous ITaskScheduler activity alerts.

Conclusion

As pointed out by CISA, threat actors frequently exploit the lack of implemented controls on their target networks, as demonstrated in the incidents discussed here. In the first case, VPN access was granted to all domain users, providing the attacker with a point of entry. In the second case, there were no restrictions on the use of RDP within the targeted network segment, allowing the attackers to pivot from device to device.

Darktrace assists security teams in monitoring for unusual use of LOTL tools and protocols that can be leveraged by threat actors to achieve a wide range of objectives. Darktrace’s Self-Learning AI sifts through the network traffic noise generated by these trusted tools, which are essential to administrators and developers in their daily tasks, and highlights any anomalous and potentially unexpected use.

Credit to Alexandra Sentenac (Senior Cyber Analyst) and Ryan Traill (Analyst Content Lead)

References

[1] https://www.cisa.gov/sites/default/files/2024-02/Joint-Guidance-Identifying-and-Mitigating-LOTL_V3508c.pdf

[2] https://www.virustotal.com/gui/ip-address/146.70.145.189/community

[3] https://www.virustotal.com/gui/file/cc9a670b549d84084618267fdeea13f196e43ae5df0d88e2e18bf5aa91b97318

[4]https://www.microsoft.com/en-us/security/blog/2022/10/05/detecting-and-preventing-lsass-credential-dumping-attacks

MITRE Mapping

INITIAL ACCESS - External Remote Services

DISCOVERY - Remote System Discovery

DISCOVERY - Network Service Discovery

DISCOVERY - File and Directory Discovery

CREDENTIAL ACCESS – OS Credential Dumping: LSASS Memory

LATERAL MOVEMENT - Remote Services: Remote Desktop Protocol

LATERAL MOVEMENT - Remote Services: SMB/Windows Admin Shares

EXECUTION - System Services: Service Execution

PERSISTENCE - Scheduled Task

COMMAND AND CONTROL - Ingress Tool Transfer

Darktrace Model Detections

Case A

Device / Suspicious Network Scan Activity

Device / Network Scan

Device / ICMP Address Scan

Device / Reverse DNS Sweep

Device / Suspicious SMB Scanning Activity

Device / Possible SMB/NTLM Reconnaissance

Anomalous Connection / Unusual Admin SMB Session

Device / SMB Session Brute Force (Admin)

Device / Possible SMB/NTLM Brute Force

Device / SMB Lateral Movement

Device / Anomalous NTLM Brute Force

Anomalous Connection / SMB Enumeration

Device / SMB Session Brute Force (Non-Admin)

Device / Anomalous SMB Followed By Multiple Model Breaches

Anomalous Connection / Possible Share Enumeration Activity

Device / RDP Scan

Device / Anomalous RDP Followed By Multiple Model Breaches

Anomalous Connection / Unusual Admin RDP Session

Anomalous Connection / Active Remote Desktop Tunnel

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Anomalous Connection / High Priority DRSGetNCChanges

Compliance / Default Credential Usage

User / New Admin Credentials on Client

User / New Admin Credentials on Server

Device / Large Number of Model Breaches from Critical Network Device

User / New Admin Credential Ticket Request

Compromise / Unusual SVCCTL Activity

Anomalous Connection / New or Uncommon Service Control

Anomalous File / Script from Rare External Location

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous File / EXE from Rare External Location

Anomalous File / Numeric File Download

Device / Initial Breach Chain Compromise

Device / Multiple Lateral Movement Model Breaches

Device / Large Number of Model Breaches

Compromise / Multiple Kill Chain Indicators

Case B

User / New Admin Credentials on Client

Compliance / Default Credential Usage

Anomalous Connection / SMB Enumeration

Device / Suspicious SMB Scanning Activity

Device / RDP Scan

Device / New or Uncommon WMI Activity

Device / Anomaly Indicators / New or Uncommon WMI Activity Indicator

Device / New or Unusual Remote Command Execution

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Active Remote Desktop Tunnel

Compliance / SMB Drive Write

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Device / Multiple Lateral Movement Model Breaches

Device / Anomalous ITaskScheduler Activity

Anomalous Connection / Unusual Admin RDP Session

Device / Large Number of Model Breaches from Critical Network Device

Compliance / Default Credential Usage

IOC - Type - Description/Probability

146.70.145[.]189 - IP Address - Likely C2 Infrastructure

Continue reading
About the author
Alexandra Sentenac
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI