Blog
/
Network
/
June 23, 2023

How Darktrace Quickly Foiled An Information Stealer

Discover how Darktrace thwarted the CryptBot malware in just 2 seconds. Learn about this fast-moving threat and the defense strategies employed.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Jun 2023

The recent trend of threat actors using information stealer malware, designed to gather and exfiltrate confidential data, shows no sign of slowing. With new or updated info-stealer strains appearing in the wild on a regular basis, it came as no surprise to see a surge in yet another prolific variant in late 2022, CryptBot.

What is CryptBot?

CryptBot is a Windows-based trojan malware that was first discovered in the wild in December 2019. It belongs to the prolific category of information stealers whose primary objective, as the name suggests, is to gather information from infected devices and send it to the threat actor.

ZeuS was reportedly the first info-stealer to be discovered, back in 2006. After its code was leaked, many other variants came to light and have been gaining popularity amongst cyber criminals [1] [2] [3]. Indeed, Inside the SOC has discussed multiple infections across its customer base associated with several types of stealers in the past months [4] [5] [6] [7]. 

The Darktrace Threat Research team investigated CryptBot infections on the digital environments of more than 40 different Darktrace customers between October 2022 and January 2023. Darktrace DETECT™ and its anomaly-based approach to threat detection allowed it to successfully identify the unusual activity surrounding these info-stealer infections on customer networks. Meanwhile, Darktrace RESPOND™, when enabled in autonomous response mode, was able to quickly intervene and prevent the exfiltration of sensitive company data.

Why is info-stealer malware popular?

It comes as no surprise that info-stealers have “become one of the most discussed malware types on the cybercriminal underground in 2022”, according to Accenture’s Cyber Threat Intelligence team [10]. This is likely in part due to the fact that:

More sensitive data on devices

Due to the digitization of many aspects of our lives, such as banking and social interactions, a trend accelerated by the COVID-19 pandemic.

Cost effective

Info-stealers provide a great return on investment (ROI) for threat actors looking to exfiltrate data without having to do the traditional internal reconnaissance and data transfer associated with data theft. Info-stealers are usually cheap to purchase and are available through Malware-as-a-Service (MaaS) offerings, allowing less technical and resourceful threat actors in on the stealing action. This makes them a prevalent threat in the malware landscape. 

How does CryptBot work?

The techniques employed by info-stealers to gather and exfiltrate data as well as the type of data targeted vary from malware to malware, but the data targeted typically includes login credentials for a variety of applications, financial information, cookies and global information about the infected computer [8]. Given its variety and sensitivity, threat actors can leverage the stolen data in several ways to make a profit. In the case of CryptBot, the data obtained is sold on forums or underground data marketplaces and can be later employed in higher profile attacks [9]. For example, stolen login information has previously been leveraged in credential-based attacks, which can successfully bypass authentication-based security measures, including multi-factor authentication (MFA). 

CryptBot functionalities

Like many information stealers, CryptBot is designed to steal a variety of sensitive personal and financial information such as browser credentials, cookies and history information and social media accounts login information, as well as cryptocurrency wallets and stored credit card information [11]. General information (e.g., OS, installed applications) about the infected computer is also retrieved. Browsers targeted by CryptBot include Chrome, Firefox, and Edge. In early 2022, CryptBot’s code was revamped in order to streamline its data extraction capabilities and improve its overall efficiency, an update that coincided with a rise in the number of infections [11] [12].

Some of CryptBot's functionalities were removed and its exfiltration process was streamlined, which resulted in a leaner payload, around half its original size and a quicker infection process [11]. Some of the features removed included sandbox detection and evasion functionalities, the collection of desktop text files and screen captures, which were deemed unnecessary. At the same time, the code was improved in order to include new Chrome versions released after CryptBot’s first appearance in 2019. Finally, its exfiltration process was simplified: prior to its 2022 update, the malware saved stolen data in two separate folders before sending it to two separate command and control (C2) domains. Post update, the data is only saved in one location and sent to one C2 domain, which is hardcoded in the C2 transmission function of the code. This makes the infection process much more streamlined, taking only a few minutes from start to finish. 

Aside from the update to its malware code, CryptBot regularly updates and refreshes its C2 domains and dropper websites, making it a highly fluctuating malware with constantly new indicators of compromise and distribution sites. 

Even though CryptBot is less known than other info-stealers, it was reportedly infecting thousands of devices daily in the first months of 2020 [13] and its continued prevalence resulted in Google taking legal action against its distribution infrastructure at the end of April 2023 [14].  

How is CryptBot obtained?

CryptBot is primarily distributed through malicious websites offering free and illegally modified software (i.e., cracked software) for common commercial programs (e.g., Microsoft Windows and Office, Adobe Photoshop, Google Chrome, Nitro PDF Pro) and video games. From these ‘malvertising’ pages, the user is redirected through multiple sites to the actual payload dropper page [15]. This distribution method has seen a gain in popularity amongst info-stealers in recent months and is also used by other malware families such as Raccoon Stealer and Vidar [16] [17].

A same network of cracked software websites can be used to download different malware strains, which can result in multiple simultaneous infections. Additionally, these networks often use search engine optimization (SEO) in order to make adverts for their malware distributing sites appear at the top of the Google search results page, thus increasing the chances of the malicious payloads being downloaded.

Furthermore, CryptBot leverages Pay-Per-Install (PPI) services such as 360Installer and PrivateLoader, a downloader malware family used to deliver payloads of multiple malware families operated by different threat actors [18] [19] [20]. The use of this distribution method for CryptBot payloads appears to have stemmed from its 2022 update. According to Google, 161 active domains were associated with 360Installer, of which 90 were associated with malware delivery activities and 29 with the delivery of CryptBot malware specifically. Google further identified hundreds of domains used by CryptBot as C2 sites, all of which appear to be hosted on the .top top-level domain [21].

This simple yet effective distribution tactic, combined with the MaaS model and the lucrative prospects of selling the stolen data resulted in numerous infections. Indeed, CryptBot was estimated to have infected over 670,000 computers in 2022 [14]. Even though the distribution method chosen means that most of the infected devices are likely to be personal computers, bring your own device (BYOD) policies and users’ tendency to reuse passwords means that corporate environments are also at risk. 

CryptBot Attack Overview

In some cases observed by Darktrace, after connecting to malvertising websites, devices were seen making encrypted SSL connections to file hosting services such as MediaFire or Mega, while in others devices were observed connecting to an endpoint associated with a content delivery network. This is likely the location from where the malware payload was downloaded alongside cracked software, which is executed by the unsuspecting user. As the user expects to run an executable file to install their desired software, the malware installation often happens without the user noticing.

Some of the malvertising sites observed by Darktrace on customer deployments were crackful[.]com, modcrack[.]net, windows-7-activator[.]com and office-activator[.]com. However, in many cases detected by Darktrace, CryptBot was propagated via websites offering trojanized KMSPico software (e.g., official-kmspico[.]com, kmspicoofficial[.]com). KMSPico is a popular Microsoft Windows and Office product activator that emulates a Windows Key Management Services (KMS) server to activate licenses fraudulently. 

Once it has been downloaded and executed, CryptBot will search the system for confidential information and create a folder with a seemingly randomly generated name, matching the regex [a-zA-Z]{10}, to store the gathered sensitive data, ready for exfiltration. 

Figure 1: Packet capture (PCAP) of an HTTP POST request showing the file with the stolen data being sent over the connection.
Figure 1: Packet capture (PCAP) of an HTTP POST request showing the file with the stolen data being sent over the connection.

This data is then sent to the C2 domain via HTTP POST requests on port 80 to the URI /gate.php. As previously stated, CryptBot C2 infrastructure is changed frequently and many of the domains seen by Darktrace had been registered within the previous 30 days. The domain names detected appeared to have been generated by an algorithm, following the regex patterns [a-z]{6}[0-9]{2,3}.top or [a-z]{6}[0-9]{2,3}.cfd. In several cases, the C2 domain had not been flagged as malicious by other security vendors or had just one detection. This is likely because of the frequent changes in the C2 infrastructure operated by the threat actors behind CryptBot, with new malicious domains being created periodically to avoid detection. This makes signature-based security solutions much less efficient to detect and block connections to malicious domains. Additionally, the fact that the stolen data is sent over regular HTTP POST requests, which are used daily as part of a multitude of legitimate processes such as file uploads or web form submissions, allows the exfiltration connections to blend in with normal and legitimate traffic making it difficult to isolate and detect as malicious activity. 

In this context, anomaly-based security detections such as Darktrace DETECT are the best way to pick out these anomalous connections amidst legitimate Internet traffic. In the case of CryptBot, two DETECT models were seen consistently breaching for CryptBot-related activity: ‘Device / Suspicious Domain’, breaching for connections to 100% rare C2 .top domains, and ‘Anomalous Connection / POST to PHP on New External Host’, breaching on the data exfiltration HTTP POST request. 

In deployments where Darktrace RESPOND was deployed, a RESPOND model breached within two seconds of the first HTTP POST request. If enabled in autonomous mode, RESPOND would block the data exfiltration connections, thus preventing the data safe from being sold in underground forums to other threat actors. In one of the cases investigated by Darktrace’s Threat Research team, DETECT was able to successfully identify and alert the customer about CryptBot-related malicious activity on a device that Darktrace had only begun to monitor one day before, showcasing how fast Darktrace’s Self-Learning AI learns every nuance of customer networks and the devices within it.

In most cases investigated by Darktrace, fewer than 5 minutes elapsed between the first connection to the endpoint offering free cracked software and the data being exfiltrated to the C2 domain. For example, in one of the attack chains observed in a university’s network, a device was seen connecting to the 100% rare endpoint official-kmspico[.]com at 16:53:47 (UTC).

Device Event Log showing SSL connections to the official-kmspico[.]com malvertising website.
Figure 2: Device Event Log showing SSL connections to the official-kmspico[.]com malvertising website.

One minute later, at 16:54:19 (UTC), the same device was seen connecting to two mega[.]co[.]nz subdomains and downloading around 13 MB of data from them. As mentioned previously, these connections likely represent the CryptBot payload and cracked software download.

Device Event Log showing SSL connections to mega[.]com endpoints following the connection to the malvertising site.
Figure 3: Device Event Log showing SSL connections to mega[.]com endpoints following the connection to the malvertising site.

At 16:56:01 (UTC), Darktrace detected the device making a first HTTP POST request to the 100% rare endpoint, avomyj24[.]top, which has been associated with CryptBot’s C2 infrastructure [22]. This initial HTTP POST connection likely represents the transfer of confidential data to the attacker’s infrastructure.

Device Event Log showing HTTP connections made by the infected device to the C2 domain. 
Figure 4: Device Event Log showing HTTP connections made by the infected device to the C2 domain. 

The full attack chain, from visiting the malvertising website to the malicious data egress, took less than three minutes to complete. In this circumstance, the machine-speed detection and response capabilities offered by Darktrace DETECT and RESPOND are paramount in order to stop CryptBot before it can successfully exfiltrates sensitive data. This is an incredibly quick infection timeline, with no lateral movement nor privilege escalation required to carry out the malware’s objective. 

Device Event Log showing the DETECT and RESPOND models breached during the attack. 
Figure 5: Device Event Log showing the DETECT and RESPOND models breached during the attack. 

Darktrace Cyber AI Analyst incidents were also generated as a result of this activity, displaying all relevant information in one panel for easy review by customer security teams.

Cyber AI Analyst event log showing the HTTP connections made by the breach device to the C2 endpoint.
Figure 6: Cyber AI Analyst event log showing the HTTP connections made by the breach device to the C2 endpoint.

Conclusion 

CryptBot info-stealer is fast, efficient, and apt at evading detection given its small size and swift process of data gathering and exfiltration via legitimate channels. Its constantly changing C2 infrastructure further makes it difficult for traditional security tools that really on rules and signatures or known indicators of compromise (IoCs) to detect these infections. 

In the face of such a threat, Darktrace’s anomaly-based detection allows it to recognize subtle deviations in a device’s pattern of behavior that may signal an evolving threat and instantly bring it to the attention of security teams. Darktrace DETECT is able to distinguish between benign activity and malicious behavior, even from newly monitored devices, while Darktrace RESPOND can move at machine-speed to prevent even the fastest moving threat actors from stealing confidential company data, as it demonstrated here by stopping CryptBot infections in as little as 2 seconds.

Credit to Alexandra Sentenac, Cyber Analyst, Roberto Romeu, Senior SOC Analyst

Darktrace Model Detections  

AI Analyst Coverage 

  • Possible HTTP Command and Control  

DETECT Model Breaches  

  • Device / Suspicious Domain 
  • Anomalous Connection / POST to PHP on New External Host 
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname 
  • Compromise / Multiple SSL to Rare DGA Domains

List of IOCs

Indicator Type Description
luaigz34[.]top Hostname CryptBot C2 endpoint
watibt04[.]top Hostname CryptBot C2 endpoint
avolsq14[.]top Hostname CryptBot C2 endpoint

MITRE ATT&CK Mapping

Category Technique Tactic
INITIAL ACCESS Drive-by Compromise - T1189 N/A
COMMAND AND CONTROL Web Protocols - T1071.001 N/A
COMMAND AND CONTROL Domain Generation Algorithm - T1568.002 N/A

References

[1] https://www.malwarebytes.com/blog/threats/info-stealers

[2] https://cybelangel.com/what-are-infostealers/

[3] https://ke-la.com/information-stealers-a-new-landscape/

[4] https://darktrace.com/blog/vidar-info-stealer-malware-distributed-via-malvertising-on-google

[5] https://darktrace.com/blog/a-surge-of-vidar-network-based-details-of-a-prolific-info-stealer 

[6] https://darktrace.com/blog/laplas-clipper-defending-against-crypto-currency-thieves-with-detect-respond

[7] https://darktrace.com/blog/amadey-info-stealer-exploiting-n-day-vulnerabilities 

[8] https://cybelangel.com/what-are-infostealers/

[9] https://webz.io/dwp/the-top-10-dark-web-marketplaces-in-2022/

[10] https://www.accenture.com/us-en/blogs/security/information-stealer-malware-on-dark-web

[11] https://www.bleepingcomputer.com/news/security/revamped-cryptbot-malware-spread-by-pirated-software-sites/

[12] https://blogs.blackberry.com/en/2022/03/threat-thursday-cryptbot-infostealer

[13] https://www.deepinstinct.com/blog/cryptbot-how-free-becomes-a-high-price-to-pay

[14] https://blog.google/technology/safety-security/continuing-our-work-to-hold-cybercriminal-ecosystems-accountable/

[15] https://asec.ahnlab.com/en/31802/

[16] https://darktrace.com/blog/the-last-of-its-kind-analysis-of-a-raccoon-stealer-v1-infection-part-1

[17] https://www.trendmicro.com/pt_br/research/21/c/websites-hosting-cracks-spread-malware-adware.html

[18] https://intel471.com/blog/privateloader-malware

[19] https://cyware.com/news/watch-out-pay-per-install-privateloader-malware-distribution-service-is-flourishing-888273be 

[20] https://regmedia.co.uk/2023/04/28/handout_google_cryptbot_complaint.pdf

[21] https://www.bankinfosecurity.com/google-wins-court-order-to-block-cryptbot-infrastructure-a-21905

[22] https://github.com/stamparm/maltrail/blob/master/trails/static/malware/cryptbot.txt

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

November 5, 2025

Tracking a Dragon: Investigating a DragonForce-affiliated ransomware attack with Darktrace

Tracking a Dragon: Investigating a DragonForce-affiliated ransomware attack with Darktrace Default blog imageDefault blog image

What is DragonForce?

DragonForce is a Ransomware-as-a-Service (RaaS) platform that emerged in late 2023, offering broad-scale capabilities and infrastructure to threat actors. Recently, DragonForce has been linked to attacks targeting the UK retail sector, resulting in several high-profile cases [1][2]. Moreover, the group launched an affiliate program offering a revenue share of roughly 20%, significantly lower than commissions reported across other RaaS platforms [3].

This Darktrace case study examines a DragonForce-linked RaaS infection within the manufacturing industry. The earliest signs of compromise were observed during working hours in August 2025, where an infected device started performing network scans and attempted to brute-force administrative credentials. After eight days of inactivity, threat actors returned and multiple devices began encrypting files via the SMB protocol using a DragonForce-associated file extension. Ransom notes referencing the group were also dropped, suggesting the threat actor is claiming affiliation with DragonForce, though this has not been confirmed.

Despite Darktrace’s detection of the attack in its early stages, the customer’s deployment did not have Darktrace’s Autonomous Response capability configured, allowing the threat to progress to data exfiltration and file encryption.

Darktrace's Observations

While the initial access vector was not clearly defined in this case study, it was likely achieved through common methods previously employed out by DragonForce affiliates. These include phishing emails leveraging social engineering tactics, exploitation of public-facing applications with known vulnerabilities, web shells, and/or the abuse of remote management tools.

Darktrace’s analysis identified internal devices performing internal network scanning, brute-forcing credentials, and executing unusual Windows Registry operations. Notably, Windows Registry events involving "Schedule\Taskcache\Tasks" contain subkeys for individual tasks, storing GUIDs that can be used to locate and analyze scheduled tasks. Additionally, Control\WMI\Security holds security descriptors for WMI providers and Event Tracing loggers that use non-default security settings respectively.

Furthermore, Darktrace identified data exfiltration activity over SSH, including connections to an ASN associated with a malicious hosting service geolocated in Russia.

1. Network Scan & Brute Force

Darktrace identified anomalous behavior in late August to early September 2025, originating from a source device engaging in internal network scanning followed by brute-force attempts targeting administrator credential, including “administrator”, “Admin”, “rdpadmin”, “ftpadmin”.

Upon further analysis, one of the HTTP connections seen in this activity revealed the use of the user agent string “OpenVAS-VT”, suggesting that the device was using the OpenVAS vulnerability scanner. Subsequently, additional devices began exhibiting network scanning behavior. During this phase, a file named “delete.me” was deleted by multiple devices using SMB protocol. This file is commonly associated with network scanning and penetration testing tool NetScan.

2. Windows Registry Key Update

Following the scanning phase, Darktrace observed the initial device then performing suspicious Winreg operations. This included the use of the ”BaseRegOpenKey” function across multiple registry paths.

Additional operations such as “BaseRegOpenKey” and “BaseRegQueryValue” were also seen around this time. These operations are typically used to retrieve specific registry key values and allow write operations to registry keys.

The registry keys observed included “SYSTEM\CurrentControlSet\Control\WMI\Security” and “Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tasks”. These keys can be leveraged by malicious actors to update WMI access controls and schedule malicious tasks, respectively, both of which are common techniques for establishing persistence within a compromised system.

3. New Administrator Credential Usage

Darktrace subsequently detected the device using a highly privileged credential, “administrator”, via a successful Kerberos login for the first time. Shortly after, the same credential was used again for a successful SMB session.

These marked the first instances of authentication using the “administrator” credential across the customer’s environment, suggesting potential malicious use of the credential following the earlier brute-force activity.

Darktrace’s detection of administrator credentials being used in Kerberos login events by an infected device.
Figure 1: Darktrace’s detection of administrator credentials being used in Kerberos login events by an infected device.
Darktrace’s detection of administrator credentials being used in SMB sessions by an infected device.
Figure 2: Darktrace’s detection of administrator credentials being used in SMB sessions by an infected device.

4. Data Exfiltration

Prior to ransomware deployment, several infected devices were observed exfiltrating data to the malicious IP 45.135.232[.]229 via SSH connections [7][8]. This was followed by the device downloading data from other internal devices and transferring an unusually large volume of data to the same external endpoint.

The IP address was first seen on the network on September 2, 2025 - the same date as the observed data exfiltration activity preceding ransomware deployment and encryption.

Further analysis revealed that the endpoint was geolocated in Russia and registered to the malicious hosting provider Proton66. Multiple external researchers have reported malicious activity involving the same Proton66 ASN (AS198953 Proton66 OOO) as far back as April 2025. These activities notably included vulnerability scanning, exploitation attempts, and phishing campaigns, which ultimately led to malware [4][5][6].

Data Exfiltration Endpoint details.

  • Endpoint: 45.135.232[.]229
  • ASN: AS198953 Proton66 OOO
  • Transport protocol: TCP
  • Application protocol: SSH
  • Destination port: 22
Darktrace’s summary of the external IP 45.135.232[.]229, first detected on September 2, 2025. The right-hand side showcases model alerts triggered related to this endpoint including multiple data exfiltration related model alerts.
Figure 3: Darktrace’s summary of the external IP 45.135.232[.]229, first detected on September 2, 2025. The right-hand side showcases model alerts triggered related to this endpoint including multiple data exfiltration related model alerts.

Further investigation into the endpoint using open-source intelligence (OSINT) revealed that it led to a Microsoft Internet Information Services (IIS) Manager console webpage. This interface is typically used to configure and manage web servers. However, threat actors have been known to exploit similar setups, using fake certificate warnings to trick users into downloading malware, or deploying malicious IIS modules to steal credentials.

Live screenshot of the destination (45.135.232[.]229), captured via OSINT sources, displaying a Microsoft IIS Manager console webpage.
Figure 4: Live screenshot of the destination (45.135.232[.]229), captured via OSINT sources, displaying a Microsoft IIS Manager console webpage.

5. Ransomware Encryption & Ransom Note

Multiple devices were later observed connecting to internal devices via SMB and performing a range of actions indicative of file encryption. This suspicious activity prompted Darktrace’s Cyber AI Analyst to launch an autonomous investigation, during which it pieced together associated activity and provided concrete timestamps of events for the customer’s visibility.

During this activity, several devices were seen writing a file named “readme.txt” to multiple locations, including network-accessible webroot paths such as inetpub\ and wwwroot\. This “readme.txt” file, later confirmed to be the ransom note, claimed the threat actors were affiliated with DragonForce.

At the same time, devices were seen performing SMB Move, Write and ReadWrite actions involving files with the “.df_win” extension across other internal devices, suggesting that file encryption was actively occurring.

Darktrace’s detection of SMB events (excluding Read events) where the device was seen moving or writing files with the “.df_win” extension.
Figure 5: Darktrace’s detection of SMB events (excluding Read events) where the device was seen moving or writing files with the “.df_win” extension.
Darktrace’s detection of a spike in SMB Write events with the filename “readme.txt” on September 9, indicating the start of file encryption.
Figure 6: Darktrace’s detection of a spike in SMB Write events with the filename “readme.txt” on September 9, indicating the start of file encryption.

Conclusion

The rise of Ransomware-as-a-Service (RaaS) and increased attacker customization is fragmenting tactics, techniques, and procedures (TTPs), making it increasingly difficult for security teams to prepare for and defend against each unique intrusion. RaaS providers like DragonForce further complicate this challenge by enabling a wide range of affiliates, each with varying levels of sophistication [9].

In this instance, Darktrace was able to identify several stages of the attack kill chain, including network scanning, the first-time use of privileged credentials, data exfiltration, and ultimately ransomware encryption. Had the customer enabled Darktrace’s Autonomous Response capability, it would have taken timely action to interrupt the attack in its early stages, preventing the eventual data exfiltration and ransomware detonation.

Credit to Justin Torres, Senior Cyber Analyst, Nathaniel Jones, VP, Security & AI Strategy, FCISO, & Emma Foulger, Global Threat Research Operations Lead.

Edited by Ryan Traill (Analyst Content Lead)

Appendices

References:

1. https://www.infosecurity-magazine.com/news/dragonforce-goup-ms-coop-harrods/

2. https://www.picussecurity.com/resource/blog/dragonforce-ransomware-attacks-retail-giants

3. https://blog.checkpoint.com/security/dragonforce-ransomware-redefining-hybrid-extortion-in-2025/

4. https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/proton66-part-1-mass-scanning-and-exploit-campaigns/

5. https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/proton66-part-2-compromised-wordpress-pages-and-malware-campaigns/

6. https://www.broadcom.com/support/security-center/protection-bulletin/proton66-infrastructure-tied-to-expanding-malware-campaigns-and-c2-operations

7. https://www.virustotal.com/gui/ip-address/45.135.232.229

8. https://spur.us/context/45.135.232.229

9. https://www.group-ib.com/blog/dragonforce-ransomware/

IoC - Type - Description + Confidence

·      45.135.232[.]229 - Endpoint Associated with Data Exfiltration

·      .readme.txt – Ransom Note File Extension

·      .df_win – File Encryption Extension Observed

MITRE ATT&CK Mapping

DragonForce TTPs vs Darktrace Models

Initial Access:

·      Anomalous Connection::Callback on Web Facing Device

Command and Control:

·      Compromise::SSL or HTTP Beacon

·      Compromise::Beacon to Young Endpoint

·      Compromise::Beaconing on Uncommon Port

·      Compromise::Suspicious SSL Activity

·      Anomalous Connection::Devices Beaconing to New Rare IP

·      Compromise::Suspicious HTTP and Anomalous Activity

·      DNS Tunnel with TXT Records

Tooling:

·      Anomalous File::EXE from Rare External Location

·      Anomalous File::Masqueraded File Transfer

·      Anomalous File::Numeric File Download

·      Anomalous File::Script from Rare External Location

·      Anomalous File::Uncommon Microsoft File then Exe

·      Anomalous File::Zip or Gzip from Rare External Location

·      Anomalous File::Uncommon Microsoft File then Exe

·      Anomalous File::Internet Facing System File Download

Reconnaissance:

·      Device::Suspicious SMB Query

·      Device::ICMP Address Scan

·      Anomalous Connection::SMB Enumeration

·      Device::Possible SMB/NTLM Reconnaissance

·      Anomalous Connection::Possible Share Enumeration Activity

·      Device::Possible Active Directory Enumeration

·      Anomalous Connection::Large Volume of LDAP Download

·      Device::Suspicious LDAP Search Operation

Lateral Movement:

·      User::Suspicious Admin SMB Session

·      Anomalous Connection::Unusual Internal Remote Desktop

·      Anomalous Connection::Unusual Long Remote Desktop Session

·      Anomalous Connection::Unusual Admin RDP Session

·      User::New Admin Credentials on Client

·      User::New Admin Credentials on Server

·      Multiple Device Correlations::Spreading New Admin Credentials

·      Anomalous Connection::Powershell to Rare External

·      Device::New PowerShell User Agent

·      Anomalous Active Directory Web Services

·      Compromise::Unusual SVCCTL Activity

Evasion:

·      Unusual Activity::Anomalous SMB Delete Volume

·      Persistence

·      Device::Anomalous ITaskScheduler Activity

·      Device::AT Service Scheduled Task

·      Actions on Objectives

·      Compromise::Ransomware::Suspicious SMB Activity (EM)

·      Anomalous Connection::Sustained MIME Type Conversion

·      Compromise::Ransomware::SMB Reads then Writes with Additional Extensions

·      Compromise::Ransomware::Possible Ransom Note Write

·      Data Sent to Rare Domain

·      Uncommon 1 GiB Outbound

·      Enhanced Unusual External Data Transfer

Darktrace Cyber AI Analyst Coverage/Investigation Events:

·      Web Application Vulnerability Scanning of Multiple Devices

·      Port Scanning

·      Large Volume of SMB Login Failures

·      Unusual RDP Connections

·      Widespread Web Application Vulnerability Scanning

·      Unusual SSH Connections

·      Unusual Repeated Connections

·      Possible Application Layer Reconnaissance Activity

·      Unusual Administrative Connections

·      Suspicious Remote WMI Activity

·      Extensive Unusual Administrative Connections

·      Suspicious Directory Replication Service Activity

·      Scanning of Multiple Devices

·      Unusual External Data Transfer

·      SMB Write of Suspicious File

·      Suspicious Remote Service Control Activity

·      Access of Probable Unencrypted Password Files

·      Internal Download and External Upload

·      Possible Encryption of Files over SMB

·      SMB Writes of Suspicious Files to Multiple Devices

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Justin Torres
Cyber Analyst

Blog

/

Network

/

November 5, 2025

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287Default blog imageDefault blog image

Introduction

On October 14, 2025, Microsoft disclosed a new critical vulnerability affecting the Windows Server Update Service (WSUS), CVE-2025-59287.  Exploitation of the vulnerability could allow an unauthenticated attacker to remotely execute code [1][6].

WSUS allows for centralized distribution of Microsoft product updates [3]; a server running WSUS is likely to have significant privileges within a network making it a valuable target for threat actors. While WSUS servers are not necessarily expected to be open to the internet, open-source intelligence (OSINT) has reported  thousands of publicly exposed instances that may be vulnerable to exploitation [2].

Microsoft’s initial ‘Patch Tuesday’ update for this vulnerability did not fully mitigate the risk, and so an out-of-band update followed on October 23 [4][5] . Widespread exploitation of this vulnerability started to be observed shortly after the security update [6], prompting CISA to add CVE-2025-59287 to its Known Exploited Vulnerability Catalog (KEV) on October 24 [7].

Attack Overview

The Darktrace Threat Research team have recently identified multiple potential cases of CVE-2025-59287 exploitation, with two detailed here. While the likely initial access method is consistent across the cases, the follow-up activities differed, demonstrating the variety in which such a CVE can be exploited to fulfil each attacker’s specific goals.

The first signs of suspicious activity across both customers were detected by Darktrace on October 24, the same day this vulnerability was added to CISA’s KEV. Both cases discussed here involve customers based in the United States.

Case Study 1

The first case, involving a customer in the Information and Communication sector, began with an internet-facing device making an outbound connection to the hostname webhook[.]site. Observed network traffic indicates the device was a WSUS server.

OSINT has reported abuse of the workers[.]dev service in exploitation of CVE-2025-59287, where enumerated network information gathered through running a script on the compromised device was exfiltrated using this service [8].

In this case, the majority of connectivity seen to webhook[.]site involved a PowerShell user agent; however, cURL user agents were also seen with some connections taking the form of HTTP POSTs. This connectivity appears to align closely with OSINT reports of CVE-2025-59287 post-exploitation behaviour [8][9].

Connections to webhook[.]site continued until October 26. A single URI was seen consistently until October 25, after which the connections used a second URI with a similar format.

Later on October 26, an escalation in command-and-control (C2) communication appears to have occurred, with the device starting to make repeated connections to two rare workers[.]dev subdomains (royal-boat-bf05.qgtxtebl.workers[.]dev & chat.hcqhajfv.workers[.]dev), consistent with C2 beaconing. While workers[.]dev is associated with the legitimate Cloudflare Workers service, the service is commonly abused by malicious actors for C2 infrastructure. The unusual connections to both webhook[.]site and workers[.]dev triggered multiple alerts in Darktrace, including high-fidelity Enhanced Monitoring alerts and Autonomous Response actions.

Infrastructure insight

Hosted on royal-boat-bf05.qgtxtebl.workers[.]dev is a Microsoft Installer file (MSI) named v3.msi.

Screenshot of v3.msi content.
Figure 1: Screenshot of v3.msi content.

Contained in the MSI file is two Cabinet files named “Sample.cab” and “part2.cab”. After extracting the contents of the cab files, a file named “Config” and a binary named “ServiceEXE”. ServiceEXE is the legitimate DFIR tool Velociraptor, and “Config” contains the configuration details, which include chat.hcqhajfv.workers[.]dev as the server_url, suggesting that Velociraptor is being used as a tunnel to the C2. Additionally, the configuration points to version 0.73.4, a version of Velociraptor that is vulnerable to CVE-2025-6264, a privilege escalation vulnerability.

 Screenshot of Config file.
Figure 2: Screenshot of Config file.

Velociraptor, a legitimate security tool maintained by Rapid7, has been used recently in malicious campaigns. A vulnerable version of tool has been used by threat actors for command execution and endpoint takeover, while other campaigns have used Velociraptor to create a tunnel to the C2, similar to what was observed in this case [10] .

The workers[.]dev communication continued into the early hours of October 27. The most recent suspicious behavior observed on the device involved an outbound connection to a new IP for the network - 185.69.24[.]18/singapure - potentially indicating payload retrieval.

The payload retrieved from “/singapure” is a UPX packed Windows binary. After unpacking the binary, it is an open-source Golang stealer named “Skuld Stealer”. Skuld Stealer has the capabilities to steal crypto wallets, files, system information, browser data and tokens. Additionally, it contains anti-debugging and anti-VM logic, along with a UAC bypass [11].

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 3: A timeline outlining suspicious activity on the device alerted by Darktrace.

Case Study 2

The second case involved a customer within the Education sector. The affected device was also internet-facing, with network traffic indicating it was a WSUS server

Suspicious activity in this case once again began on October 24, notably only a few seconds after initial signs of compromise were observed in the first case. Initial anomalous behaviour also closely aligned, with outbound PowerShell connections to webhook[.]site, and then later connections, including HTTP POSTs, to the same endpoint with a cURL user agent.

While Darktrace did not observe any anomalous network activity on the device after October 24, the customer’s security integration resulted in an additional alert on October 27 for malicious activity, suggesting that the compromise may have continued locally.

By leveraging Darktrace’s security integrations, customers can investigate activity across different sources in a seamless manner, gaining additional insight and context to an attack.

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 4: A timeline outlining suspicious activity on the device alerted by Darktrace.

Conclusion

Exploitation of a CVE can lead to a wide range of outcomes. In some cases, it may be limited to just a single device with a focused objective, such as exfiltration of sensitive data. In others, it could lead to lateral movement and a full network compromise, including ransomware deployment. As the threat of internet-facing exploitation continues to grow, security teams must be prepared to defend against such a possibility, regardless of the attack type or scale.

By focussing on detection of anomalous behaviour rather than relying on signatures associated with a specific CVE exploit, Darktrace is able to alert on post-exploitation activity regardless of the kind of behaviour seen. In addition, leveraging security integrations provides further context on activities beyond the visibility of Darktrace / NETWORKTM, enabling defenders to investigate and respond to attacks more effectively.

With adversaries weaponizing even trusted incident response tools, maintaining broad visibility and rapid response capabilities becomes critical to mitigating post-exploitation risk.

Credit to Emma Foulger (Global Threat Research Operations Lead), Tara Gould (Threat Research Lead), Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),

Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.        https://nvd.nist.gov/vuln/detail/CVE-2025-59287

2.    https://www.bleepingcomputer.com/news/security/hackers-now-exploiting-critical-windows-server-wsus-flaw-in-attacks/

3.    https://learn.microsoft.com/en-us/windows-server/administration/windows-server-update-services/get-started/windows-server-update-services-wsus

4.    https://www.cisa.gov/news-events/alerts/2025/10/24/microsoft-releases-out-band-security-update-mitigate-windows-server-update-service-vulnerability-cve

5.    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-59287

6.    https://thehackernews.com/2025/10/microsoft-issues-emergency-patch-for.html

7.    https://www.cisa.gov/known-exploited-vulnerabilities-catalog

8.    https://www.huntress.com/blog/exploitation-of-windows-server-update-services-remote-code-execution-vulnerability

9.    https://unit42.paloaltonetworks.com/microsoft-cve-2025-59287/

10. https://blog.talosintelligence.com/velociraptor-leveraged-in-ransomware-attacks/

11. https://github.com/hackirby/skuld

Darktrace Model Detections

·       Device / New PowerShell User Agent

·       Anomalous Connection / Powershell to Rare External

·       Compromise / Possible Tunnelling to Bin Services

·       Compromise / High Priority Tunnelling to Bin Services

·       Anomalous Server Activity / New User Agent from Internet Facing System

·       Device / New User Agent

·       Device / Internet Facing Device with High Priority Alert

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

·       Anomalous Server Activity / Rare External from Server

·       Compromise / Agent Beacon (Long Period)

·       Device / Large Number of Model Alerts

·       Compromise / Agent Beacon (Medium Period)

·       Device / Long Agent Connection to New Endpoint

·       Compromise / Slow Beaconing Activity To External Rare

·       Security Integration / Low Severity Integration Detection

·       Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

·       Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

·       Antigena / Network / External Threat / Antigena Suspicious Activity Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

o   royal-boat-bf05.qgtxtebl.workers[.]dev – Hostname – Likely C2 Infrastructure

o   royal-boat-bf05.qgtxtebl.workers[.]dev/v3.msi - URI – Likely payload

o   chat.hcqhajfv.workers[.]dev – Hostname – Possible C2 Infrastructure

o   185.69.24[.]18 – IP address – Possible C2 Infrastructure

o   185.69.24[.]18/bin.msi - URI – Likely payload

o   185.69.24[.]18/singapure - URI – Likely payload

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI