Blog
/
Network
/
June 23, 2023

How Darktrace Quickly Foiled An Information Stealer

Discover how Darktrace thwarted the CryptBot malware in just 2 seconds. Learn about this fast-moving threat and the defense strategies employed.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Jun 2023

The recent trend of threat actors using information stealer malware, designed to gather and exfiltrate confidential data, shows no sign of slowing. With new or updated info-stealer strains appearing in the wild on a regular basis, it came as no surprise to see a surge in yet another prolific variant in late 2022, CryptBot.

What is CryptBot?

CryptBot is a Windows-based trojan malware that was first discovered in the wild in December 2019. It belongs to the prolific category of information stealers whose primary objective, as the name suggests, is to gather information from infected devices and send it to the threat actor.

ZeuS was reportedly the first info-stealer to be discovered, back in 2006. After its code was leaked, many other variants came to light and have been gaining popularity amongst cyber criminals [1] [2] [3]. Indeed, Inside the SOC has discussed multiple infections across its customer base associated with several types of stealers in the past months [4] [5] [6] [7]. 

The Darktrace Threat Research team investigated CryptBot infections on the digital environments of more than 40 different Darktrace customers between October 2022 and January 2023. Darktrace DETECT™ and its anomaly-based approach to threat detection allowed it to successfully identify the unusual activity surrounding these info-stealer infections on customer networks. Meanwhile, Darktrace RESPOND™, when enabled in autonomous response mode, was able to quickly intervene and prevent the exfiltration of sensitive company data.

Why is info-stealer malware popular?

It comes as no surprise that info-stealers have “become one of the most discussed malware types on the cybercriminal underground in 2022”, according to Accenture’s Cyber Threat Intelligence team [10]. This is likely in part due to the fact that:

More sensitive data on devices

Due to the digitization of many aspects of our lives, such as banking and social interactions, a trend accelerated by the COVID-19 pandemic.

Cost effective

Info-stealers provide a great return on investment (ROI) for threat actors looking to exfiltrate data without having to do the traditional internal reconnaissance and data transfer associated with data theft. Info-stealers are usually cheap to purchase and are available through Malware-as-a-Service (MaaS) offerings, allowing less technical and resourceful threat actors in on the stealing action. This makes them a prevalent threat in the malware landscape. 

How does CryptBot work?

The techniques employed by info-stealers to gather and exfiltrate data as well as the type of data targeted vary from malware to malware, but the data targeted typically includes login credentials for a variety of applications, financial information, cookies and global information about the infected computer [8]. Given its variety and sensitivity, threat actors can leverage the stolen data in several ways to make a profit. In the case of CryptBot, the data obtained is sold on forums or underground data marketplaces and can be later employed in higher profile attacks [9]. For example, stolen login information has previously been leveraged in credential-based attacks, which can successfully bypass authentication-based security measures, including multi-factor authentication (MFA). 

CryptBot functionalities

Like many information stealers, CryptBot is designed to steal a variety of sensitive personal and financial information such as browser credentials, cookies and history information and social media accounts login information, as well as cryptocurrency wallets and stored credit card information [11]. General information (e.g., OS, installed applications) about the infected computer is also retrieved. Browsers targeted by CryptBot include Chrome, Firefox, and Edge. In early 2022, CryptBot’s code was revamped in order to streamline its data extraction capabilities and improve its overall efficiency, an update that coincided with a rise in the number of infections [11] [12].

Some of CryptBot's functionalities were removed and its exfiltration process was streamlined, which resulted in a leaner payload, around half its original size and a quicker infection process [11]. Some of the features removed included sandbox detection and evasion functionalities, the collection of desktop text files and screen captures, which were deemed unnecessary. At the same time, the code was improved in order to include new Chrome versions released after CryptBot’s first appearance in 2019. Finally, its exfiltration process was simplified: prior to its 2022 update, the malware saved stolen data in two separate folders before sending it to two separate command and control (C2) domains. Post update, the data is only saved in one location and sent to one C2 domain, which is hardcoded in the C2 transmission function of the code. This makes the infection process much more streamlined, taking only a few minutes from start to finish. 

Aside from the update to its malware code, CryptBot regularly updates and refreshes its C2 domains and dropper websites, making it a highly fluctuating malware with constantly new indicators of compromise and distribution sites. 

Even though CryptBot is less known than other info-stealers, it was reportedly infecting thousands of devices daily in the first months of 2020 [13] and its continued prevalence resulted in Google taking legal action against its distribution infrastructure at the end of April 2023 [14].  

How is CryptBot obtained?

CryptBot is primarily distributed through malicious websites offering free and illegally modified software (i.e., cracked software) for common commercial programs (e.g., Microsoft Windows and Office, Adobe Photoshop, Google Chrome, Nitro PDF Pro) and video games. From these ‘malvertising’ pages, the user is redirected through multiple sites to the actual payload dropper page [15]. This distribution method has seen a gain in popularity amongst info-stealers in recent months and is also used by other malware families such as Raccoon Stealer and Vidar [16] [17].

A same network of cracked software websites can be used to download different malware strains, which can result in multiple simultaneous infections. Additionally, these networks often use search engine optimization (SEO) in order to make adverts for their malware distributing sites appear at the top of the Google search results page, thus increasing the chances of the malicious payloads being downloaded.

Furthermore, CryptBot leverages Pay-Per-Install (PPI) services such as 360Installer and PrivateLoader, a downloader malware family used to deliver payloads of multiple malware families operated by different threat actors [18] [19] [20]. The use of this distribution method for CryptBot payloads appears to have stemmed from its 2022 update. According to Google, 161 active domains were associated with 360Installer, of which 90 were associated with malware delivery activities and 29 with the delivery of CryptBot malware specifically. Google further identified hundreds of domains used by CryptBot as C2 sites, all of which appear to be hosted on the .top top-level domain [21].

This simple yet effective distribution tactic, combined with the MaaS model and the lucrative prospects of selling the stolen data resulted in numerous infections. Indeed, CryptBot was estimated to have infected over 670,000 computers in 2022 [14]. Even though the distribution method chosen means that most of the infected devices are likely to be personal computers, bring your own device (BYOD) policies and users’ tendency to reuse passwords means that corporate environments are also at risk. 

CryptBot Attack Overview

In some cases observed by Darktrace, after connecting to malvertising websites, devices were seen making encrypted SSL connections to file hosting services such as MediaFire or Mega, while in others devices were observed connecting to an endpoint associated with a content delivery network. This is likely the location from where the malware payload was downloaded alongside cracked software, which is executed by the unsuspecting user. As the user expects to run an executable file to install their desired software, the malware installation often happens without the user noticing.

Some of the malvertising sites observed by Darktrace on customer deployments were crackful[.]com, modcrack[.]net, windows-7-activator[.]com and office-activator[.]com. However, in many cases detected by Darktrace, CryptBot was propagated via websites offering trojanized KMSPico software (e.g., official-kmspico[.]com, kmspicoofficial[.]com). KMSPico is a popular Microsoft Windows and Office product activator that emulates a Windows Key Management Services (KMS) server to activate licenses fraudulently. 

Once it has been downloaded and executed, CryptBot will search the system for confidential information and create a folder with a seemingly randomly generated name, matching the regex [a-zA-Z]{10}, to store the gathered sensitive data, ready for exfiltration. 

Figure 1: Packet capture (PCAP) of an HTTP POST request showing the file with the stolen data being sent over the connection.
Figure 1: Packet capture (PCAP) of an HTTP POST request showing the file with the stolen data being sent over the connection.

This data is then sent to the C2 domain via HTTP POST requests on port 80 to the URI /gate.php. As previously stated, CryptBot C2 infrastructure is changed frequently and many of the domains seen by Darktrace had been registered within the previous 30 days. The domain names detected appeared to have been generated by an algorithm, following the regex patterns [a-z]{6}[0-9]{2,3}.top or [a-z]{6}[0-9]{2,3}.cfd. In several cases, the C2 domain had not been flagged as malicious by other security vendors or had just one detection. This is likely because of the frequent changes in the C2 infrastructure operated by the threat actors behind CryptBot, with new malicious domains being created periodically to avoid detection. This makes signature-based security solutions much less efficient to detect and block connections to malicious domains. Additionally, the fact that the stolen data is sent over regular HTTP POST requests, which are used daily as part of a multitude of legitimate processes such as file uploads or web form submissions, allows the exfiltration connections to blend in with normal and legitimate traffic making it difficult to isolate and detect as malicious activity. 

In this context, anomaly-based security detections such as Darktrace DETECT are the best way to pick out these anomalous connections amidst legitimate Internet traffic. In the case of CryptBot, two DETECT models were seen consistently breaching for CryptBot-related activity: ‘Device / Suspicious Domain’, breaching for connections to 100% rare C2 .top domains, and ‘Anomalous Connection / POST to PHP on New External Host’, breaching on the data exfiltration HTTP POST request. 

In deployments where Darktrace RESPOND was deployed, a RESPOND model breached within two seconds of the first HTTP POST request. If enabled in autonomous mode, RESPOND would block the data exfiltration connections, thus preventing the data safe from being sold in underground forums to other threat actors. In one of the cases investigated by Darktrace’s Threat Research team, DETECT was able to successfully identify and alert the customer about CryptBot-related malicious activity on a device that Darktrace had only begun to monitor one day before, showcasing how fast Darktrace’s Self-Learning AI learns every nuance of customer networks and the devices within it.

In most cases investigated by Darktrace, fewer than 5 minutes elapsed between the first connection to the endpoint offering free cracked software and the data being exfiltrated to the C2 domain. For example, in one of the attack chains observed in a university’s network, a device was seen connecting to the 100% rare endpoint official-kmspico[.]com at 16:53:47 (UTC).

Device Event Log showing SSL connections to the official-kmspico[.]com malvertising website.
Figure 2: Device Event Log showing SSL connections to the official-kmspico[.]com malvertising website.

One minute later, at 16:54:19 (UTC), the same device was seen connecting to two mega[.]co[.]nz subdomains and downloading around 13 MB of data from them. As mentioned previously, these connections likely represent the CryptBot payload and cracked software download.

Device Event Log showing SSL connections to mega[.]com endpoints following the connection to the malvertising site.
Figure 3: Device Event Log showing SSL connections to mega[.]com endpoints following the connection to the malvertising site.

At 16:56:01 (UTC), Darktrace detected the device making a first HTTP POST request to the 100% rare endpoint, avomyj24[.]top, which has been associated with CryptBot’s C2 infrastructure [22]. This initial HTTP POST connection likely represents the transfer of confidential data to the attacker’s infrastructure.

Device Event Log showing HTTP connections made by the infected device to the C2 domain. 
Figure 4: Device Event Log showing HTTP connections made by the infected device to the C2 domain. 

The full attack chain, from visiting the malvertising website to the malicious data egress, took less than three minutes to complete. In this circumstance, the machine-speed detection and response capabilities offered by Darktrace DETECT and RESPOND are paramount in order to stop CryptBot before it can successfully exfiltrates sensitive data. This is an incredibly quick infection timeline, with no lateral movement nor privilege escalation required to carry out the malware’s objective. 

Device Event Log showing the DETECT and RESPOND models breached during the attack. 
Figure 5: Device Event Log showing the DETECT and RESPOND models breached during the attack. 

Darktrace Cyber AI Analyst incidents were also generated as a result of this activity, displaying all relevant information in one panel for easy review by customer security teams.

Cyber AI Analyst event log showing the HTTP connections made by the breach device to the C2 endpoint.
Figure 6: Cyber AI Analyst event log showing the HTTP connections made by the breach device to the C2 endpoint.

Conclusion 

CryptBot info-stealer is fast, efficient, and apt at evading detection given its small size and swift process of data gathering and exfiltration via legitimate channels. Its constantly changing C2 infrastructure further makes it difficult for traditional security tools that really on rules and signatures or known indicators of compromise (IoCs) to detect these infections. 

In the face of such a threat, Darktrace’s anomaly-based detection allows it to recognize subtle deviations in a device’s pattern of behavior that may signal an evolving threat and instantly bring it to the attention of security teams. Darktrace DETECT is able to distinguish between benign activity and malicious behavior, even from newly monitored devices, while Darktrace RESPOND can move at machine-speed to prevent even the fastest moving threat actors from stealing confidential company data, as it demonstrated here by stopping CryptBot infections in as little as 2 seconds.

Credit to Alexandra Sentenac, Cyber Analyst, Roberto Romeu, Senior SOC Analyst

Darktrace Model Detections  

AI Analyst Coverage 

  • Possible HTTP Command and Control  

DETECT Model Breaches  

  • Device / Suspicious Domain 
  • Anomalous Connection / POST to PHP on New External Host 
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname 
  • Compromise / Multiple SSL to Rare DGA Domains

List of IOCs

Indicator Type Description
luaigz34[.]top Hostname CryptBot C2 endpoint
watibt04[.]top Hostname CryptBot C2 endpoint
avolsq14[.]top Hostname CryptBot C2 endpoint

MITRE ATT&CK Mapping

Category Technique Tactic
INITIAL ACCESS Drive-by Compromise - T1189 N/A
COMMAND AND CONTROL Web Protocols - T1071.001 N/A
COMMAND AND CONTROL Domain Generation Algorithm - T1568.002 N/A

References

[1] https://www.malwarebytes.com/blog/threats/info-stealers

[2] https://cybelangel.com/what-are-infostealers/

[3] https://ke-la.com/information-stealers-a-new-landscape/

[4] https://darktrace.com/blog/vidar-info-stealer-malware-distributed-via-malvertising-on-google

[5] https://darktrace.com/blog/a-surge-of-vidar-network-based-details-of-a-prolific-info-stealer 

[6] https://darktrace.com/blog/laplas-clipper-defending-against-crypto-currency-thieves-with-detect-respond

[7] https://darktrace.com/blog/amadey-info-stealer-exploiting-n-day-vulnerabilities 

[8] https://cybelangel.com/what-are-infostealers/

[9] https://webz.io/dwp/the-top-10-dark-web-marketplaces-in-2022/

[10] https://www.accenture.com/us-en/blogs/security/information-stealer-malware-on-dark-web

[11] https://www.bleepingcomputer.com/news/security/revamped-cryptbot-malware-spread-by-pirated-software-sites/

[12] https://blogs.blackberry.com/en/2022/03/threat-thursday-cryptbot-infostealer

[13] https://www.deepinstinct.com/blog/cryptbot-how-free-becomes-a-high-price-to-pay

[14] https://blog.google/technology/safety-security/continuing-our-work-to-hold-cybercriminal-ecosystems-accountable/

[15] https://asec.ahnlab.com/en/31802/

[16] https://darktrace.com/blog/the-last-of-its-kind-analysis-of-a-raccoon-stealer-v1-infection-part-1

[17] https://www.trendmicro.com/pt_br/research/21/c/websites-hosting-cracks-spread-malware-adware.html

[18] https://intel471.com/blog/privateloader-malware

[19] https://cyware.com/news/watch-out-pay-per-install-privateloader-malware-distribution-service-is-flourishing-888273be 

[20] https://regmedia.co.uk/2023/04/28/handout_google_cryptbot_complaint.pdf

[21] https://www.bankinfosecurity.com/google-wins-court-order-to-block-cryptbot-infrastructure-a-21905

[22] https://github.com/stamparm/maltrail/blob/master/trails/static/malware/cryptbot.txt

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

/

Introducing Darktrace / SECURE AI: Complete AI Security Across Your Enterprise

Darktrace Secure AIDefault blog imageDefault blog image

Why securing AI can’t wait

AI is entering the enterprise faster than IT and security teams can keep up, appearing in SaaS tools, embedded in core platforms, and spun up by teams eager to move faster.  

As this adoption accelerates, it introduces unpredictable behaviors and expands the attack surface in ways existing security tools can’t see or control, startup or platform, they all lack one trait. These new types of risks command the attention of security teams and boardrooms, touching everything from business integrity to regulatory exposure.

Securing AI demands a fundamentally different approach, one that understands how AI behaves, how it interacts with data and users, and how risk emerges in real time. That shift is at the core of how organizations should be thinking about securing AI across the enterprise.

What is the current state of securing AI?

In Darktrace’s latest State of AI in Cybersecurity Report research across 1,500 cybersecurity professionals shows that the percentage of organizations without an AI adoption policy grew from 55% last year to 63% this year.

More troubling, the percentage of organizations without any plan to create an AI policy nearly tripled from 3% to 8%. Without clear policies, businesses are effectively accelerating blindfolded.

When we analyzed activity across our own customer base, we saw the same patterns playing out in their environments. Last October alone, we saw a 39% month-over-month increase in anomalous data uploads to generative AI services, with the average upload being 75MB. Given the size and frequency of these uploads, it's almost certain that much of this data should never be leaving the enterprise.

Many security teams still lack visibility into how AI is being used across their business; how it’s behaving, what it’s accessing, and most importantly, whether it’s operating safely. This unsanctioned usage quietly expands, creating pockets of AI activity that fall completely outside established security controls. The result is real organizational exposure with almost no visibility, underscoring just how widespread AI use has already become given the absence of formal policies.

This challenge doesn’t stop internally. Shadow AI extends into third-party tools, vendor platforms, and partner systems, where AI features are embedded without clear oversight.

Meanwhile, attackers are now learning to exploit AI’s unique characteristics, compounding the risks organizations are already struggling to manage.

The leader in AI cybersecurity now secures AI

Darktrace brings more than a decade of behavioral AI expertise built on an enterprise‑wide platform designed to operate in the complex, ambiguous environments where today’s AI now lives.  

Other cybersecurity technologies try to predict each new attack based on historical attacks. The problem is AI operates like humans do. Every action introduces new information that changes how AI behaves, its unpredictable, and historical attack tactics are now only a small part of the equation, forcing vendors to retrofit unproven acquisitions to secure AI.  

Darktrace is fundamentally different. Our Self‑Learning AI learns what “normal” looks like for your unique business: how your users, systems, applications, and now AI agents behave, how they communicate, and how data flows. This allows us to spot even the smallest shifts when something changes in meaningful ways. Long before AI agents were introduced, our technology was already interpreting nuance, detecting drift, uncovering hidden relationships, and making sense of ambiguous activity across networks, cloud, SaaS, email, OT, identities, and endpoints.

As AI introduces new behaviors, unstructured interactions, invisible pathways, and the rise of Shadow AI, these challenges have only intensified. But this is exactly the environment our platform was built for. Securing AI isn’t a new direction for Darktrace — it’s the natural evolution of the behavioral intelligence we’ve delivered to thousands of organizations worldwide.

Introducing Darktrace / SECURE AI – Complete AI security across your enterprise

We are proud to introduce Darktrace / SECURE AI, the newest product in the Darktrace ActiveAI Security Platform designed to secure AI across the whole enterprise.

This marks the next chapter in our mission to secure organizations from cyber threats and emerging risks. By combining full visibility, intelligent behavioral oversight, and real-time control, Darktrace is enabling enterprises to safely adopt, manage, and build AI within their business. This ensures that AI usage, data access, and behavior remain aligned to security baselines, compliance, and business goals.

Darktrace / SECURE AI can bring every AI interaction into a single view, helping teams understand intent, assess risk, protect sensitive data, and enforce policy across both human and AI Agent activity. Now organizations can embrace AI with confidence, with visibility to ensure it is operating safely, responsibly, and in alignment with their security and compliance needs.  

Because securing AI spans multiple areas and layers of complexity, Darktrace / SECURE AI is built around four foundational use cases that ensure your whole enterprise and every AI use affecting your business, whether owned or through third parties, is protected, they are:

  • Monitoring the prompts driving GenAI agents and assistants
  • Securing business AI agent identities in real time
  • Evaluating AI risks in development and deployment
  • Discovering and controlling Shadow AI

Monitoring the prompts driving GenAI agents and assistants

For AI systems, prompts are one of the most active and sensitive points of interaction—spanning human‑AI exchanges where users express intent and AI‑AI interactions where agents generate internal prompts to reason and coordinate. Because prompt language effectively is behavior, and because it relies on natural language rather than a fixed, finite syntax, the attack surface is open‑ended. This makes prompt‑driven risks far more complex than traditional API‑based vulnerabilities tied to CVEs.

Whether an attacker is probing for weaknesses, an employee inadvertently exposes sensitive data, or agents generate their own sub‑tasks to drive complex workflows, security teams must understand how prompt behavior shapes model behavior—and where that behavior can go wrong. Without that behavioral understanding, organizations face heightened risks of exploitation, drift, and cascading failures within their AI systems.

Darktrace / SECURE AI brings together all prompt activity across enterprise AI systems, including Microsoft Copilot and ChatGPT Enterprise, low‑code environments like Microsoft Copilot Studio, SaaS providers like Salesforce and Microsoft 365, and high‑code platforms such as AWS Bedrock and SageMaker, into a single, unified layer of visibility.  

Beyond visibility, Darktrace applies behavioral analytics to understand whether a prompt is unusual or risky in the context of the user, their peers, and the broader organization. Because AI attacks are far more complex and conversational than traditional exploits against fixed APIs – sharing more in common with email and Teams/Slack interactions, —this behavioral understanding is essential. By treating prompts as behavioral signals, Darktrace can detect conversational attacks, malicious chaining, and subtle prompt‑injection attempts, and where integrations allow, intervene in real time to block unsafe prompts or prevent harmful model actions as they occur.

Securing business AI agent identities in real time

As organizations adopt more AI‑driven workflows, we’re seeing a rapid rise in autonomous and semi‑autonomous agents operating across the business. These agents operate within existing identities, with the capability to access systems, read and write data, and trigger actions across cloud platforms, internal infrastructure, applications, APIs, and third‑party services. Some identities are controlled, like users, others like the ones mentioned, can appear anywhere, with organizations having limited visibility into how they’re configured or how their permissions evolve over time.  

Darktrace / SECURE AI gives organizations a real‑time, identity‑centric understanding of what their AI agents are doing, not just what they were designed to do. It automatically discovers live agent identities operating across SaaS, cloud, network, endpoints, OT, and email, including those running inside third‑party environments.  

The platform maps how each agent is configured, what systems it accesses, and how it communicates, including activity such as MCP usage or interactions with storage services where sensitive data may reside.  

By continuously observing agent behavior across all domains, Darktrace / SECURE AI highlights when unnecessary or risky permissions are granted, when activity patterns deviate, or when agents begin chaining together actions in unintended ways. This real‑time audit trail allows organizations to evaluate whether agent actions align with intended operational parameters and catch anomalous or risky behavior early.    

Evaluating AI risks in development and deployment

In the build phase, new identities are created, entitlements accumulate, components are stitched together across SaaS, cloud, and internal environments, and logic starts taking shape through prompts and configurations.  

It’s a highly dynamic and often fragmented process, and even small missteps here, such as a misconfiguration in a created agent identity, can become major security issues once the system is deployed. This is why evaluating AI risk during development and deployment is critical.

Darktrace / SECURE AI brings clarity and control across this entire lifecycle — from the moment an AI system starts taking shape to the moment it goes live. It allows you to gain visibility into created identities and their access across hyperscalers, low‑code SaaS, and internal labs, supported by AI security posture management that surfaces misconfigurations, over‑entitlement, and anomalous building events. Darktrace/ SECURE AI then connects these development insights directly to prompt oversight, connecting how AI is being built to how it will behave once deployed.  The result is a safer, more predictable AI lifecycle where risks are discovered early, guardrails are applied consistently, and innovations move forward with confidence rather than guesswork.

Discovering and controlling Shadow AI

Shadow AI has now appeared across every corner of the enterprise. It’s not just an employee pasting internal data into an external chatbot; it includes unsanctioned agent builders, hidden MCP servers, rogue model deployments, and AI‑driven workflows running on devices or services no one expected to be using AI.  

Darktrace / SECURE AI brings this frontier into view by continuously analyzing interactions across cloud, networks, endpoints, OT, and SASE environments. It surfaces unapproved AI usage wherever it appears and distinguishes legitimate activity in sanctioned tools from misuse or high‑risk behavior. The system identifies hidden AI components and rogue agents, reveals unauthorized deployments and unexpected connections to external AI systems, and highlights risky data flows that deviate from business norms.

When the behavior warrants a response, Darktrace / SECURE AI enables policy enforcement that guides users back toward sanctioned options while containing unsafe or ungoverned adoption. This closes one of the fastest‑expanding security gaps in modern enterprises and significantly reduces the attack surface created by shadow AI.

Conclusion

What’s needed now along with policies and frameworks for AI adoption is the right tooling to detect threats based on AI behavior across shadow use, prompt risks, identity misuse, and AI development.  

Darktrace is uniquely positioned to secure AI, we’ve spent over a decade building AI that learns your business – understanding subtle behavior across the entire enterprise long before AI agents arrived. With over 10,000 customers relying on Darktrace as the last line of defense to capture threats others cannot, Securing AI isn’t a pivot for us, it's not an acquisition; it’s the natural extension of the behavioral expertise and enterprise‑wide intelligence our platform was built on from the start.  

To learn more about how to secure AI at your organization we curated a readiness program that brings together IT and security leaders navigating this responsibility, providing a forum to prepare for high-impact decisions, explore guardrails, and guide the business amid growing uncertainty and pressure.

Sign up for the Secure AI Readiness Program here: This gives you exclusive access to the latest news on the latest AI threats, updates on emerging approaches shaping AI security, and insights into the latest innovations, including Darktrace’s ongoing work in this area.

Ready to talk with a Darktrace expert on securing AI? Register here to receive practical guidance on the AI risks that matter most to your business, paired with clarity on where to focus first across governance, visibility, risk reduction, and long-term readiness.  

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI

Blog

/

Endpoint

/

February 1, 2026

ClearFake: From Fake CAPTCHAs to Blockchain-Driven Payload Retrieval

fake captcha to blockchain driven palyload retrievalDefault blog imageDefault blog image

What is ClearFake?

As threat actors evolve their techniques to exploit victims and breach target networks, the ClearFake campaign has emerged as a significant illustration of this continued adaptation. ClearFake is a campaign observed using a malicious JavaScript framework deployed on compromised websites, impacting sectors such as e‑commerce, travel, and automotive. First identified in mid‑2023, ClearFake is frequently leveraged to socially engineer victims into installing fake web browser updates.

In ClearFake compromises, victims are steered toward compromised WordPress sites, often positioned by attackers through search engine optimization (SEO) poisoning. Once on the site, users are presented with a fake CAPTCHA. This counterfeit challenge is designed to appear legitimate while enabling the execution of malicious code. When a victim interacts with the CAPTCHA, a PowerShell command containing a download string is retrieved and executed.

Attackers commonly abuse the legitimate Microsoft HTML Application Host (MSHTA) in these operations. Recent campaigns have also incorporated Smart Chain endpoints, such as “bsc-dataseed.binance[.]org,” to obtain configuration code. The primary payload delivered through ClearFake is typically an information stealer, such as Lumma Stealer, enabling credential theft, data exfiltration, and persistent access [1].

Darktrace’s Coverage of ClearFake

Darktrace / ENDPOINT first detected activity likely associated with ClearFake on a single device on over the course of one day on November 18, 2025. The system observed the execution of “mshta.exe,” the legitimate Microsoft HTML Application Host utility. It also noted a repeated process command referencing “weiss.neighb0rrol1[.]ru”, indicating suspicious external activity. Subsequent analysis of this endpoint using open‑source intelligence (OSINT) indicated that it was a malicious, domain generation algorithm (DGA) endpoint [2].

The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.
Figure 1: The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.

This activity indicates that mshta.exe was used to contact a remote server, “weiss.neighb0rrol1[.]ru/rpxacc64mshta,” and execute the associated HTA file to initiate the next stage of the attack. OSINT sources have since heavily flagged this server as potentially malicious [3].

The first argument in this process uses the MSHTA utility to execute the HTA file hosted on the remote server. If successful, MSHTA would then run JavaScript or VBScript to launch PowerShell commands used to retrieve malicious payloads, a technique observed in previous ClearFake campaigns. Darktrace also detected unusual activity involving additional Microsoft executables, including “winlogon.exe,” “userinit.exe,” and “explorer.exe.” Although these binaries are legitimate components of the Windows operating system, threat actors can abuse their normal behavior within the Windows login sequence to gain control over user sessions, similar to the misuse of mshta.exe.

EtherHiding cover

Darktrace also identified additional ClearFake‑related activity, specifically a connection to bsc-testnet.drpc[.]org, a legitimate BNB Smart Chain endpoint. This activity was triggered by injected JavaScript on the compromised site www.allstarsuae[.]com, where the script initiated an eth_call POST request to the Smart Chain endpoint.

Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.
Figure 2: Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.

EtherHiding is a technique in which threat actors leverage blockchain technology, specifically smart contracts, as part of their malicious infrastructure. Because blockchain is anonymous, decentralized, and highly persistent, it provides threat actors with advantages in evading defensive measures and traditional tracking [4].

In this case, when a user visits a compromised WordPress site, injected base64‑encoded JavaScript retrieved an ABI string, which was then used to load and execute a contract hosted on the BNB Smart Chain.

JavaScript hosted on the compromised site www.allstaruae[.]com.
Figure 3: JavaScript hosted on the compromised site www.allstaruae[.]com.

Conducting malware analysis on this instance, the Base64 decoded into a JavaScript loader. A POST request to bsc-testnet.drpc[.]org was then used to retrieve a hex‑encoded ABI string that loads and executes the contract. The JavaScript also contained hex and Base64‑encoded functions that decoded into additional JavaScript, which attempted to retrieve a payload hosted on GitHub at “github[.]com/PrivateC0de/obf/main/payload.txt.” However, this payload was unavailable at the time of analysis.

Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 4: Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 5: Darktrace’s detection of the executable file and the malicious hostname.

Autonomous Response

As Darktrace’s Autonomous Response capability was enabled on this customer’s network, Darktrace was able to take swift mitigative action to contain the ClearFake‑related activity early, before it could lead to potential payload delivery. The affected device was blocked from making external connections to a number of suspicious endpoints, including 188.114.96[.]6, *.neighb0rrol1[.]ru, and neighb0rrol1[.]ru, ensuring that no further malicious connections could be made and no payloads could be retrieved.

Autonomous Response also acted to prevent the executable mshta.exe from initiating HTA file execution over HTTPS from this endpoint by blocking the attempted connections. Had these files executed successfully, the attack would likely have resulted in the retrieval of an information stealer, such as Lumma Stealer.

Autonomous Response’s intervention against the suspicious connectivity observed.
Figure 6: Autonomous Response’s intervention against the suspicious connectivity observed.

Conclusion

ClearFake continues to be observed across multiple sectors, but Darktrace remains well‑positioned to counter such threats. Because ClearFake’s end goal is often to deliver malware such as information stealers and malware loaders, early disruption is critical to preventing compromise. Users should remain aware of this activity and vigilant regarding fake CAPTCHA pop‑ups. They should also monitor unusual usage of MSHTA and outbound connections to domains that mimic formats such as “bsc-dataseed.binance[.]org” [1].

In this case, Darktrace was able to contain the attack before it could successfully escalate and execute. The attempted execution of HTA files was detected early, allowing Autonomous Response to intervene, stopping the activity from progressing. As soon as the device began communicating with weiss.neighb0rrol1[.]ru, an Autonomous Response inhibitor triggered and interrupted the connections.

As ClearFake continues to rise, users should stay alert to social engineering techniques, including ClickFix, that rely on deceptive security prompts.

Credit to Vivek Rajan (Senior Cyber Analyst) and Tara Gould (Malware Research Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

Process / New Executable Launched

Endpoint / Anomalous Use of Scripting Process

Endpoint / New Suspicious Executable Launched

Endpoint / Process Connection::Unusual Connection from New Process

Autonomous Response Models

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

List of Indicators of Compromise (IoCs)

  • weiss.neighb0rrol1[.]ru – URL - Malicious Domain
  • 188.114.96[.]6 – IP – Suspicious Domain
  • *.neighb0rrol1[.]ru – URL – Malicious Domain

MITRE Tactics

Initial Access, Drive-by Compromise, T1189

User Execution, Execution, T1204

Software Deployment Tools, Execution and Lateral Movement, T1072

Command and Scripting Interpreter, T1059

System Binary Proxy Execution: MSHTA, T1218.005

References

1.        https://www.kroll.com/en/publications/cyber/rapid-evolution-of-clearfake-delivery

2.        https://www.virustotal.com/gui/domain/weiss.neighb0rrol1.ru

3.        https://www.virustotal.com/gui/file/1f1aabe87e5e93a8fff769bf3614dd559c51c80fc045e11868f3843d9a004d1e/community

4.        https://www.packetlabs.net/posts/etherhiding-a-new-tactic-for-hiding-malware-on-the-blockchain/

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI