Blog
/
Network
/
June 19, 2023

Darktrace Detection of 3CX Supply Chain Attack

Explore how the 3CX supply chain compromise was uncovered, revealing key insights into the detection of sophisticated cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
Jun 2023

Ever since the discovery of the SolarWinds hack that affected tens of thousands of organizations around the world in 2020, supply chain compromises have remained at the forefront of the minds of security teams and continue to pose a significant threat to their business operations. 

Supply chain compromises can have far-reaching implications, from disrupting an organization’s daily operations, incurring huge financial and reputational damage, to affecting the critical infrastructure of entire countries. As such, it is essential for organizations to have effective security measures in place able to identify and halt these attacks at the earliest possible stage.

In March 2023 the 3CX Desktop application became the latest victim of a supply chain compromise dubbed as the “SmoothOperator” by SentinelOne. This application is used by over 600,000 companies worldwide and the customer list contains high-profile customers across a variety of industries [2]. The 3CX Desktop application is a Voice over Internet Protocol (VoIP) communication software for enterprises that allows for chats, video calls, and voice calls. [3] The 3CX installers for both Windows and macOS systems were affected by information stealing malware. Researchers were able to discern that threat actors also known as UNC 4736 related to financially motivated North Korean operators also known as AppleJeus were responsible for the supply chain compromise.  Researchers have also linked it to another supply chain compromise that occurred prior on the Trading Technologies X_TRADER platform, making this the first known cascading software supply chain compromise used to distribute malware on a wide scale and still be able to align operator interests. [3] Customer reports following the compromise began to surface about the 3CX software being picked up as malicious by several cybersecurity vendors such as CrowdStrike, SentinelOne, and Palo Alto Networks. [6] 

By leveraging integrations with other security vendors like CrowdStrike and SentinelOne, Darktrace DETECT™ was able to identify activity from the “SmoothOperator” across the customer base at multiple stages of the kill chain in March 2023. Darktrace RESPOND™ was then able to autonomously intervene against these emerging threats, preventing significant disruption to customer networks. 

Background on the first known cascading supply chain attack 

Initial Access

In April 2023, security researchers identified the initial target in this story was not the 3CX desktop application, rather, it was another software application called X_TRADER by Trading Technologies. [3] Trading Technologies is a provider that offers high-performance financial trading packages, allowing financial professionals to analyze and trade assets within the stock market more efficiently. Unfortunately, a compromise already existed in the supply chain for this organization. The X_TRADER installer, which had been retired in 2020, still had its code signing certificate set to expire in October 2022. This code signing certificate was exploited by attackers to digitally sign the malicious software. [3] It also inopportunely led to 3CX when an employee unknowingly downloaded a trojanized installer for the X_TRADER software from Trading Technologies prior to the certificate’s expiration. [4]. This compromise of 3CX via X_TRADER was the first case of a cascading supply chain attack reported on within the wider threat landscape. 

Persistence and Privilege Escalation 

Following these findings, researchers were able to identify the likely kill chain that occurred on Windows systems, beginning with the download of the 3CX DesktopApp installer that executed an executable (.exe) file before dropping two trojanized Data Link Libraries (DLLs) alongside a benign executable that was used to sideload malicious DLLs. These DLLs contained and used SIGFLIP and DAVESHELL; both publicly available projects. [3] In this case, the DLLs were used to decrypt using an RC4 key and load a payload into the memory of a compromised system. [3] SIGFLIP and DAVESHELL also extract and decrypt the modular backdoor named VEILEDSIGNAL, which also contains a command and control (C2) configuration. This malware allowed the North Korean threat operators to gain administrative control to the 3CX employee’s device. [3] This was followed by access to the employee’s corporate credentials, ultimately leading to access to 3CX systems. [4] 

Lateral Movement and C2 activity

Security researchers were also able to identify other malware families that were mainly utilized in the supply chain attack to move laterally within the 3CX environment, and allow for C2 communication [3], these malware families are detailed below:

  • TaxHaul: when executed it decrypts shellcode payload, observed by Mandiant to persist via DLL search-order hijacking.
  • Coldcat: complex downloader, which also beacons to a C2 infrastructure.
  • PoolRat: collects system information and executes commands. This is the malware that was found to affect macOS systems.
  • IconicStealer: served as a third stage payload on 3CX systems to steal data or information.

Furthermore, it was also reported early on by Kaspersky that a backdoor named Gopuram, routinely used by the North Korean threat actors Lazarus and typically used against cryptocurrency companies, was also used as a second stage payload on a limited number of 3CX’s customers compromised systems. [5]

3CX detections observed by Darktrace

CrowdStrike and SentinelOne, two of the major detection platforms with which Darktrace partners through security integrations, initially revealed that their platforms had identified the campaign appeared to be targeting 3CXDesktopApp customers in March 2023. 

At this time, Darktrace was also observing this activity and alerting customers to unusual behavior on their networks. [1][7] Darktrace DETECT identified activity related to the supply chain compromise primarily through host-level alerts associated with CrowdStrike and SentinelOne integrations, as well as model breaches related to lateral movement and C2 activity. 

Some of the activity related to the 3CX supply chain compromise that Darktrace detected was observed solely via integration models picking up executable and Microsoft Software Installer (msi) file downloads for the 3CXDesktopApp, suggesting the compromise likely was stopped at the endpoint device. 

CrowdStrike integration model breach identifying 3CXDesktopApp[.]exe as possible malware
Figure 1: CrowdStrike integration model breach identifying 3CXDesktopApp[.]exe as possible malware on March 30, 2023.
showcases the Model Breach Event Log for the CrowdStrike integration model breach
Figure 2: The above figure, showcases the Model Breach Event Log for the CrowdStrike integration model breach shown in Figure 1.

In another case highlighted in Figure 3 and 4, security platforms were associating 3CX as malicious. The device in these figures was observed downloading a 3CXDesktopApp executable followed by an msi file about an hour later. This pattern of activity correlates with the compromise process that had been on reported, where the “SmoothOperator” malware that affected 3CX systems was able to persist through DLL side-loading of malicious DLL files delivered with benign executable files, making it difficult for traditional security tools to detect. [2][3][7]

The activity in this case was detected by the DETECT integration model, ‘High Severity Integration Malware Detection’ and was later blocked by the Darktrace RESPOND/Network model, ‘Antigena Significant Anomaly from Client Block’ which applied the “Enforce Pattern of Life” action to intercept the malicious download that was taking place. Darktrace RESPOND uses AI to learn every devices normal pattern of life and act autonomously to enforce its normal activity. In this event, RESPOND would not only intercept the malicious download that was taking place on the device, but also not allow the device to significantly deviate from its normal pattern of activity.

The Model Breach Event log for the device displays the moment in which the SentinelOne integration model breached for the 3CXDesktopApp.exe file
Figure 3: The Model Breach Event log for the device displays the moment in which the SentinelOne integration model breached for the 3CXDesktopApp.exe file followed subsequently by the RESPOND model, ‘Antigena Significant Anomaly from Client Block’, on March 29, 2023.
Another ‘High Severity Integration Malware Detection’ breached
Figure 4: Another ‘High Severity Integration Malware Detection’ breached for the same device in Figure 3 approximately one hour later because of the msi file, 3CXDesktopApp-18.12.416.msi, which also led to the Darktrace RESPOND model, ‘Antigena Significant Anomaly from Client Block’, on March 29, 2023.

In a separate case, Darktrace also detected a device performing unusual SMB drive writes for the file ‘3CXDesktopApp-18.10.461.msi’. This breached the DETECT model ‘SMB Drive Write’. This model detects when a device starts writing files to another internal device it does not usually communicate with via the SMB protocol using the admin$ or drive shares.

This Model Breach Event log highlights the moment Darktrace captured the msi application file for the 3CXDesktopApp being transferred internally on this customer’s network
Figure 5: This Model Breach Event log highlights the moment Darktrace captured the msi application file for the 3CXDesktopApp being transferred internally on this customer’s network, this was picked up as new activity for the device on March 28, 2023. 

In a couple of other cases observed by Darktrace, connections detected were made from affected devices to 3CX compromise related endpoints. In Figure 6, the device in question was detected connecting to the endpoint, journalide[.]org. This breached the model, ‘Suspicious Self-Signed SSL’, which looks for connections being made to an endpoint with a self-signed SSL certificate which is designed to look legitimate, as self-signed certificates are often used in malware communication.

Model Breach Event log for connections to the 3CX C2 related endpoint
Figure 6: Model Breach Event log for connections to the 3CX C2 related endpoint, journalide[.]org, these connections breached the model Suspicious Self-Signed SSL on April 24, 2023.

On another Darktrace customer environment, a 3CX C2 endpoint, pbxphonenetwork[.]com, had already been added to the Watched Domains list around the time reports of the 3CX application software being malicious had been reported. The Watched Domains list allows Darktrace to detect if any device on the network makes connections to these domains with more scrutiny and breach a model for further visibility of threats on the network. Activity in this case was detected and subsequently blocked by a Darktrace RESPOND action, “Block connections to 89.45.67[.]160 port 443 and pbxphonenetwork[.]com on port 443”, blocking the device from connecting to this 3CX C2 endpoints on the spot (see Figure 7). This activity subsequently breached the RESPOND model, ‘Antigena Watched Domain Block’. 

Figure 7: History log of the Darktrace RESPOND action applied to the device breaching the Darktrace RESPOND model, Antigena Watched Domain Block and applying the action, “Block connections to 89.45.67[.]160 port 443 and pbxphonenetwork[.]com on port 443” on March 31, 2023.

Darktrace Coverage 

Utilizing integrations with Darktrace such as those with CrowdStrike and SentinelOne, Darktrace was able to detect and respond to activity identified as malicious 3CX activity by CrowdStrike and SentinelOne as seen in Figures 1, 2, 3, and 4. This activity breached the following Darktrace DETECT models: 

  • Integration / CrowdStrike Alert
  • Security Integration / High Severity Integration Malware Detection

Darktrace was also able to identify lateral movement activity such as in the case illustrated in Figure 5.

  • Compliance / SMB Drive Write

Lastly, C2 beaconing activity from malicious endpoints associated with the 3CX compromise was also detected as seen in Figure 6, this activity breached the following Darktrace DETECT model:

  • Anomalous Connection / Suspicious Self-Signed SSL

For customers with Darktrace RESPOND configured in autonomous response mode, Darktrace RESPOND models also breached to activity related to the 3CX supply chain compromise as seen in Figures 3, 4, and 7. Below are the models that breached and the following autonomous actions that were applied:

  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block, “Enforce pattern of life”
  • Antigena / Network / External Threat / Antigena Watched Domain Block, “Block connections to 89.45.67[.]160 port 443 and pbxphonenetwork[.]com on port 443”

Conclusion 

The first known cascading supply chain compromise occurred inopportunely for 3CX but conveniently for UNC 4736 North Korean threat actors. This “SmoothOperator” compromise was detected by endpoint security platforms such as CrowdStrike who was at the cusp of this discovery when it became one of the first platforms to report on malicious activity related to the 3CX DesktopApp supply chain compromise.  

Although still novel at the time and largely without reported indicators of compromise, Darktrace was able to capture and identify activity related to the 3CX compromise across its customer base, as well as respond autonomously to contain it. Darktrace was able to amplify security integrations with CrowdStrike and SentinelOne, and via anomaly-based model breaches, contribute unique insights by highlighting activity in varied parts of the 3CX supply chain compromise kill chain. The “SmoothOperator” supply chain attack proves that the Darktrace suite of products, including DETECT and RESPOND, can not only act autonomously to identify and respond to novel threats, but also work with security integrations to further amplify intervention and prevent cyber disruption on customer networks. 

Credit to Nahisha Nobregas, SOC Analyst and Trent Kessler, SOC Analyst.

Appendices

MITRE ATT&CK Framework

Resource Development

  • T1588 Obtain Capabilities  
  • T1588.004 Digital Certificates
  • T1608 Stage Capabilities  
  • T1608.003 Install Digital Certificate

Initial Access

  • T1190 Exploit Public-Facing Application
  • T1195 Supply Chain Compromise  
  • T1195.002 Compromise Software Supply Chain

Persistence

  • T1574 Hijack Execution Flow
  • T1574.002 DLL Side-Loading

Privilege Escalation

  • T1055 Process Injection
  • T1574 Hijack Execution Flow  
  • T1574.002 DLL Side-Loading

Command and Control

  • T1071 Application Layer Protocol
  • T1071.001 Web Protocols
  • T1071.004 DNS  
  • T1105 Ingress Tool Transfer
  • T1573 Encrypted Channel

List of IOCs

C2 Hostnames

  • journalide[.]org
  • pbxphonenetwork[.]com

Likely C2 IP address

  • 89.45.67[.]160

References

  1. https://www.crowdstrike.com/blog/crowdstrike-detects-and-prevents-active-intrusion-campaign-targeting-3cxdesktopapp-customers/
  2. https://www.bleepingcomputer.com/news/security/3cx-confirms-north-korean-hackers-behind-supply-chain-attack/
  3. https://www.mandiant.com/resources/blog/3cx-software-supply-chain-compromise
  4. https://www.securityweek.com/cascading-supply-chain-attack-3cx-hacked-after-employee-downloaded-trojanized-app/
  5. https://securelist.com/gopuram-backdoor-deployed-through-3cx-supply-chain-attack/109344/
  6. https://www.bleepingcomputer.com/news/security/3cx-hack-caused-by-trading-software-supply-chain-attack/
  7. https://www.sentinelone.com/blog/smoothoperator-ongoing-campaign-trojanizes-3cx-software-in-software-supply-chain-attack/
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst

More in this series

No items found.

Blog

/

Email

/

September 30, 2025

Out of Character: Detecting Vendor Compromise and Trusted Relationship Abuse with Darktrace

vendor email compromiseDefault blog imageDefault blog image

What is Vendor Email Compromise?

Vendor Email Compromise (VEC) refers to an attack where actors breach a third-party provider to exploit their access, relationships, or systems for malicious purposes. The initially compromised entities are often the target’s existing partners, though this can extend to any organization or individual the target is likely to trust.

It sits at the intersection of supply chain attacks and business email compromise (BEC), blending technical exploitation with trust-based deception. Attackers often infiltrate existing conversations, leveraging AI to mimic tone and avoid common spelling and grammar pitfalls. Malicious content is typically hosted on otherwise reputable file sharing platforms, meaning any shared links initially seem harmless.

While techniques to achieve initial access may have evolved, the goals remain familiar. Threat actors harvest credentials, launch subsequent phishing campaigns, attempt to redirect invoice payments for financial gain, and exfiltrate sensitive corporate data.

Why traditional defenses fall short

These subtle and sophisticated email attacks pose unique challenges for defenders. Few busy people would treat an ongoing conversation with a trusted contact with the same level of suspicion as an email from the CEO requesting ‘URGENT ASSISTANCE!’ Unfortunately, many traditional secure email gateways (SEGs) struggle with this too. Detecting an out-of-character email, when it does not obviously appear out of character, is a complex challenge. It’s hardly surprising, then, that 83% of organizations have experienced a security incident involving third-party vendors [1].  

This article explores how Darktrace detected four different vendor compromise campaigns for a single customer, within a two-week period in 2025.  Darktrace / EMAIL successfully identified the subtle indicators that these seemingly benign emails from trusted senders were, in fact, malicious. Due to the configuration of Darktrace / EMAIL in this customer’s environment, it was unable to take action against the malicious emails. However, if fully enabled to take Autonomous Response, it would have held all offending emails identified.

How does Darktrace detect vendor compromise?

The answer lies at the core of how Darktrace operates: anomaly detection. Rather than relying on known malicious rules or signatures, Darktrace learns what ‘normal’ looks like for an environment, then looks for anomalies across a wide range of metrics. Despite the resourcefulness of the threat actors involved in this case, Darktrace identified many anomalies across these campaigns.

Different campaigns, common traits

A wide variety of approaches was observed. Individuals, shared mailboxes and external contractors were all targeted. Two emails originated from compromised current vendors, while two came from unknown compromised organizations - one in an associated industry. The sender organizations were either familiar or, at the very least, professional in appearance, with no unusual alphanumeric strings or suspicious top-level domains (TLDs). Subject line, such as “New Approved Statement From [REDACTED]” and “[REDACTED] - Proposal Document” appeared unremarkable and were not designed to provoke heightened emotions like typical social engineering or BEC attempts.

All emails had been given a Microsoft Spam Confidence Level of 1, indicating Microsoft did not consider them to be spam or malicious [2]. They also passed authentication checks (including SPF, and in some cases DKIM and DMARC), meaning they appeared to originate from an authentic source for the sender domain and had not been tampered with in transit.  

All observed phishing emails contained a link hosted on a legitimate and commonly used file-sharing site. These sites were often convincingly themed, frequently featuring the name of a trusted vendor either on the page or within the URL, to appear authentic and avoid raising suspicion. However, these links served only as the initial step in a more complex, multi-stage phishing process.

A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Figure 1: A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.
Figure 2: Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.

If followed, the recipient would be redirected, sometimes via CAPTCHA, to fake Microsoft login pages designed to capturing credentials, namely http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html and https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html#.

The latter made use of homoglyphs to deceive the user, with a link referencing ‘s3cure0line’, rather than ‘secureonline’. Post-incident investigation using open-source intelligence (OSINT) confirmed that the domains were linked to malicious phishing endpoints [3] [4].

Fake Microsoft login page designed to harvest credentials.
Figure 3: Fake Microsoft login page designed to harvest credentials.
Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.
Figure 4: Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.

Darktrace Anomaly Detection

Some senders were unknown to the network, with no previous outbound or inbound emails. Some had sent the email to multiple undisclosed recipients using BCC, an unusual behavior for a new sender.  

Where the sender organization was an existing vendor, Darktrace recognized out-of-character behavior, in this case it was the first time a link to a particular file-sharing site had been shared. Often the links themselves exhibited anomalies, either being unusually prominent or hidden altogether - masked by text or a clickable image.

Crucially, Darktrace / EMAIL is able to identify malicious links at the time of processing the emails, without needing to visit the URLs or analyze the destination endpoints, meaning even the most convincing phishing pages cannot evade detection – meaning even the most convincing phishing emails cannot evade detection. This sets it apart from many competitors who rely on crawling the endpoints present in emails. This, among other things, risks disruption to user experience, such as unsubscribing them from emails, for instance.

Darktrace was also able to determine that the malicious emails originated from a compromised mailbox, using a series of behavioral and contextual metrics to make the identification. Upon analysis of the emails, Darktrace autonomously assigned several contextual tags to highlight their concerning elements, indicating that the messages contained phishing links, were likely sent from a compromised account, and originated from a known correspondent exhibiting out-of-character behavior.

A summary of the anomalous email, confirming that it contained a highly suspicious link.
Figure 5: Tags assigned to offending emails by Darktrace / EMAIL.

Figure 6: A summary of the anomalous email, confirming that it contained a highly suspicious link.

Out-of-character behavior caught in real-time

In another customer environment around the same time Darktrace / EMAIL detected multiple emails with carefully crafted, contextually appropriate subject lines sent from an established correspondent being sent to 30 different recipients. In many cases, the attacker hijacked existing threads and inserted their malicious emails into an ongoing conversation in an effort to blend in and avoid detection. As in the previous, the attacker leveraged a well-known service, this time ClickFunnels, to host a document containing another malicious link. Once again, they were assigned a Microsoft Spam Confidence Level of 1, indicating that they were not considered malicious.

The legitimate ClickFunnels page used to host a malicious phishing link.
Figure 7: The legitimate ClickFunnels page used to host a malicious phishing link.

This time, however, the customer had Darktrace / EMAIL fully enabled to take Autonomous Response against suspicious emails. As a result, when Darktrace detected the out-of-character behavior, specifically, the sharing of a link to a previously unused file-sharing domain, and identified the likely malicious intent of the message, it held the email, preventing it from reaching recipients’ inboxes and effectively shutting down the attack.

Figure 8: Darktrace / EMAIL’s detection of malicious emails inserted into an existing thread.*

*To preserve anonymity, all real customer names, email addresses, and other identifying details have been redacted and replaced with fictitious placeholders.

Legitimate messages in the conversation were assigned an Anomaly Score of 0, while the newly inserted malicious emails identified and were flagged with the maximum score of 100.

Key takeaways for defenders

Phishing remains big business, and as the landscape evolves, today’s campaigns often look very different from earlier versions. As with network-based attacks, threat actors are increasingly leveraging legitimate tools and exploiting trusted relationships to carry out their malicious goals, often staying under the radar of security teams and traditional email defenses.

As attackers continue to exploit trusted relationships between organizations and their third-party associates, security teams must remain vigilant to unexpected or suspicious email activity. Protecting the digital estate requires an email solution capable of identifying malicious characteristics, even when they originate from otherwise trusted senders.

Credit to Jennifer Beckett (Cyber Analyst), Patrick Anjos (Senior Cyber Analyst), Ryan Traill (Analyst Content Lead), Kiri Addison (Director of Product)

Appendices

IoC - Type - Description + Confidence  

- http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html#p – fake Microsoft login page

- https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html# - link to domain used in homoglyph attack

MITRE ATT&CK Mapping  

Tactic – Technique – Sub-Technique  

Initial Access - Phishing – (T1566)  

References

1.     https://gitnux.org/third-party-risk-statistics/

2.     https://learn.microsoft.com/en-us/defender-office-365/anti-spam-spam-confidence-level-scl-about

3.     https://www.virustotal.com/gui/url/5df9aae8f78445a590f674d7b64c69630c1473c294ce5337d73732c03ab7fca2/detection

4.     https://www.virustotal.com/gui/url/695d0d173d1bd4755eb79952704e3f2f2b87d1a08e2ec660b98a4cc65f6b2577/details

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author
Jennifer Beckett
Cyber Analyst

Blog

/

OT

/

October 1, 2025

Announcing Unified OT Security with Dedicated OT Workflows, Segmentation-Aware Risk Insights, and Next-Gen Endpoint Visibility for Industrial Teams

Default blog imageDefault blog image

The challenge of convergence without clarity

Convergence is no longer a roadmap idea, it is the daily reality for industrial security teams. As Information Technology (IT) and Operational Technology (OT) environments merge, the line between a cyber incident and an operational disruption grows increasingly hard to define. A misconfigured firewall rule can lead to downtime. A protocol misuse might look like a glitch. And when a pump stalls but nothing appears in the Security Operations Center (SOC) dashboard, teams are left asking: is this operational or is this a threat?

The lack of shared context slows down response, creates friction between SOC analysts and plant engineers, and leaves organizations vulnerable at exactly the points where IT and OT converge. Defenders need more than alerts, they need clarity that both sides can trust.

The breakthrough with Darktrace / OT

This latest Darktrace / OT release was built to deliver exactly that. It introduces shared context between Security, IT, and OT operations, helping reduce friction and close the security gaps at the intersection of these domains.

With a dedicated dashboard built for operations teams, extended visibility into endpoints for new forms of detection and CVE collection, expanded protocol coverage, and smarter risk modeling aligned to segmentation policies, teams can now operate from a shared source of truth. These enhancements are not just incremental upgrades, they are foundational improvements designed to bring clarity, efficiency, and trust to converged environments.

A dashboard built for OT engineers

The new Operational Overview provides OT engineers with a workspace designed for them, not for SOC analysts. It brings asset management, risk insights and operational alerts into one place. Engineers can now see activity like firmware changes, controller reprograms or the sudden appearance of a new workstation on the network, providing a tailored view for critical insights and productivity gains without navigating IT-centric workflows. Each device view is now enriched with cross-linked intelligence, make, model, firmware version and the roles inferred by Self-Learning AI, making it easier to understand how each asset behaves, what function it serves, and where it fits within the broader industrial process. By suppressing IT-centric noise, the dashboard highlights only the anomalies that matter to operations, accelerating triage, enabling smoother IT/OT collaboration, and reducing time to root cause without jumping between tools.

This is usability with purpose, a view that matches OT workflows and accelerates response.

Figure 1: The Operational Overview provides an intuitive dashboard summarizing all OT Assets, Alerts, and Risk.

Full-spectrum coverage across endpoints, sensors and protocols

The release also extends visibility into areas that have traditionally been blind spots. Engineering workstations, Human-Machine Interfaces (HMIs), contractor laptops and field devices are often the entry points for attackers, yet the hardest to monitor.

Darktrace introduces Network Endpoint eXtended Telemetry (NEXT) for OT, a lightweight collector built for segmented and resource-constrained environments. NEXT for OT uses Endpoint sensors to capture localized network, and now process-level telemetry, placing it in context alongside other network and asset data to:

  1. Identify vulnerabilities and OS data, which is leveraged by OT Risk Management for risk scoring and patching prioritization, removing the need for third-party CVE collection.
  1. Surface novel threats using Self-Learning AI that standalone Endpoint Detection and Response (EDR) would miss.
  1. Extend Cyber AI Analyst investigations through to the endpoint root cause.

NEXT is part of our existing cSensor endpoint agent, can be deployed standalone or alongside existing EDR tools, and allows capabilities to be enabled or disabled depending on factors such as security or OT team objectives and resource utilization.

Figure 2: Darktrace / OT delivers CVE patch priority insights by combining threat intelligence with extended network and endpoint telemetry

The family of Darktrace Endpoint sensors also receive a boost in deployment flexibility, with on-prem server-based setups, as well as a Windows driver tailored for zero-trust and high-security environments.

Protocol coverage has been extended where it matters most. Darktrace now performs protocol analysis of a wider range of GE and Mitsubishi protocols, giving operators real-time visibility into commands and state changes on Programmable Logic Controllers (PLCs), robots and controllers. Backed by Self-Learning AI, this inspection does more than parse traffic, it understands what normal looks like and flags deviations that signal risk.

Integrated risk and governance workflows

Security data is only valuable when it drives action. Darktrace / OT delivers risk insights that go beyond patching, helping teams take meaningful steps even when remediation isn't possible. Risk is assessed not just by CVE presence, but by how network segmentation, firewall policies, and attack path logic neutralize or contain real-world exposure. This approach empowers defenders to deprioritize low-impact vulnerabilities and focus effort where risk truly exists. Building on the foundation introduced in release 6.3, such as KEV enrichment, endpoint OS data, and exploit mapping, this release introduces new integrations that bring Darktrace / OT intelligence directly into governance workflows.

Fortinet FortiGate firewall ingestion feeds segmentation rules into attack path modeling, revealing real exposure when policies fail and closing feeds into patching prioritization based on a policy to CVE exposure assessment.

  • ServiceNow Configuration Management Database (CMDB) sync ensures asset intelligence stays current across governance platforms, eliminating manual inventory work.

Risk modeling has also been made more operationally relevant. Scores are now contextualized by exploitability, asset criticality, firewall policy, and segmentation posture. Patch recommendations are modeled in terms of safety, uptime and compliance rather than just Common Vulnerability Scoring System (CVSS) numbers. And importantly, risk is prioritized across the Purdue Model, giving defenders visibility into whether vulnerabilities remain isolated to IT or extend into OT-critical layers.

Figure 3: Attack Path Modeling based on NetFlow and network topology reveals high risk points of IT/OT convergence.

The real-world impact for defenders

In today’s environments, attackers move fluidly between IT and OT. Without unified visibility and shared context, incidents cascade faster than teams can respond.

With this release, Darktrace / OT changes that reality. The Operational Overview gives Engineers a dashboard they can use daily, tailored to their workflows. SOC analysts can seamlessly investigate telemetry across endpoints, sensors and protocols that were once blind spots. Operators gain transparency into PLCs and controllers. Governance teams benefit from automated integrations with platforms like Fortinet and ServiceNow. And all stakeholders work from risk models that reflect what truly matters: safety, uptime and compliance.

This release is not about creating more alerts. It is about providing more clarity. By unifying context across IT and OT, Darktrace / OT enables defenders to see more, understand more and act faster.

Because in environments where safety and uptime are non-negotiable, clarity is what matters most.

Join us for our live event where we will discuss these product innovations in greater detail

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI