Blog
/

Inside the SOC

/
June 19, 2023

3CX Supply Chain Attack: Darktrace's Analysis

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
Jun 2023
Explore Darktrace's detection of the 3CX supply chain attack. Understand the tactics used and gain insights to safeguard your network from similar threats.

Ever since the discovery of the SolarWinds hack that affected tens of thousands of organizations around the world in 2020, supply chain compromises have remained at the forefront of the minds of security teams and continue to pose a significant threat to their business operations. 

Supply chain compromises can have far-reaching implications, from disrupting an organization’s daily operations, incurring huge financial and reputational damage, to affecting the critical infrastructure of entire countries. As such, it is essential for organizations to have effective security measures in place able to identify and halt these attacks at the earliest possible stage.

In March 2023 the 3CX Desktop application became the latest victim of a supply chain compromise dubbed as the “SmoothOperator” by SentinelOne. This application is used by over 600,000 companies worldwide and the customer list contains high-profile customers across a variety of industries [2]. The 3CX Desktop application is a Voice over Internet Protocol (VoIP) communication software for enterprises that allows for chats, video calls, and voice calls. [3] The 3CX installers for both Windows and macOS systems were affected by information stealing malware. Researchers were able to discern that threat actors also known as UNC 4736 related to financially motivated North Korean operators also known as AppleJeus were responsible for the supply chain compromise.  Researchers have also linked it to another supply chain compromise that occurred prior on the Trading Technologies X_TRADER platform, making this the first known cascading software supply chain compromise used to distribute malware on a wide scale and still be able to align operator interests. [3] Customer reports following the compromise began to surface about the 3CX software being picked up as malicious by several cybersecurity vendors such as CrowdStrike, SentinelOne, and Palo Alto Networks. [6] 

By leveraging integrations with other security vendors like CrowdStrike and SentinelOne, Darktrace DETECT™ was able to identify activity from the “SmoothOperator” across the customer base at multiple stages of the kill chain in March 2023. Darktrace RESPOND™ was then able to autonomously intervene against these emerging threats, preventing significant disruption to customer networks. 

Background on the first known cascading supply chain attack 

Initial Access

In April 2023, security researchers identified the initial target in this story was not the 3CX desktop application, rather, it was another software application called X_TRADER by Trading Technologies. [3] Trading Technologies is a provider that offers high-performance financial trading packages, allowing financial professionals to analyze and trade assets within the stock market more efficiently. Unfortunately, a compromise already existed in the supply chain for this organization. The X_TRADER installer, which had been retired in 2020, still had its code signing certificate set to expire in October 2022. This code signing certificate was exploited by attackers to digitally sign the malicious software. [3] It also inopportunely led to 3CX when an employee unknowingly downloaded a trojanized installer for the X_TRADER software from Trading Technologies prior to the certificate’s expiration. [4]. This compromise of 3CX via X_TRADER was the first case of a cascading supply chain attack reported on within the wider threat landscape. 

Persistence and Privilege Escalation 

Following these findings, researchers were able to identify the likely kill chain that occurred on Windows systems, beginning with the download of the 3CX DesktopApp installer that executed an executable (.exe) file before dropping two trojanized Data Link Libraries (DLLs) alongside a benign executable that was used to sideload malicious DLLs. These DLLs contained and used SIGFLIP and DAVESHELL; both publicly available projects. [3] In this case, the DLLs were used to decrypt using an RC4 key and load a payload into the memory of a compromised system. [3] SIGFLIP and DAVESHELL also extract and decrypt the modular backdoor named VEILEDSIGNAL, which also contains a command and control (C2) configuration. This malware allowed the North Korean threat operators to gain administrative control to the 3CX employee’s device. [3] This was followed by access to the employee’s corporate credentials, ultimately leading to access to 3CX systems. [4] 

Lateral Movement and C2 activity

Security researchers were also able to identify other malware families that were mainly utilized in the supply chain attack to move laterally within the 3CX environment, and allow for C2 communication [3], these malware families are detailed below:

  • TaxHaul: when executed it decrypts shellcode payload, observed by Mandiant to persist via DLL search-order hijacking.
  • Coldcat: complex downloader, which also beacons to a C2 infrastructure.
  • PoolRat: collects system information and executes commands. This is the malware that was found to affect macOS systems.
  • IconicStealer: served as a third stage payload on 3CX systems to steal data or information.

Furthermore, it was also reported early on by Kaspersky that a backdoor named Gopuram, routinely used by the North Korean threat actors Lazarus and typically used against cryptocurrency companies, was also used as a second stage payload on a limited number of 3CX’s customers compromised systems. [5]

3CX detections observed by Darktrace

CrowdStrike and SentinelOne, two of the major detection platforms with which Darktrace partners through security integrations, initially revealed that their platforms had identified the campaign appeared to be targeting 3CXDesktopApp customers in March 2023. 

At this time, Darktrace was also observing this activity and alerting customers to unusual behavior on their networks. [1][7] Darktrace DETECT identified activity related to the supply chain compromise primarily through host-level alerts associated with CrowdStrike and SentinelOne integrations, as well as model breaches related to lateral movement and C2 activity. 

Some of the activity related to the 3CX supply chain compromise that Darktrace detected was observed solely via integration models picking up executable and Microsoft Software Installer (msi) file downloads for the 3CXDesktopApp, suggesting the compromise likely was stopped at the endpoint device. 

CrowdStrike integration model breach identifying 3CXDesktopApp[.]exe as possible malware
Figure 1: CrowdStrike integration model breach identifying 3CXDesktopApp[.]exe as possible malware on March 30, 2023.
showcases the Model Breach Event Log for the CrowdStrike integration model breach
Figure 2: The above figure, showcases the Model Breach Event Log for the CrowdStrike integration model breach shown in Figure 1.

In another case highlighted in Figure 3 and 4, security platforms were associating 3CX as malicious. The device in these figures was observed downloading a 3CXDesktopApp executable followed by an msi file about an hour later. This pattern of activity correlates with the compromise process that had been on reported, where the “SmoothOperator” malware that affected 3CX systems was able to persist through DLL side-loading of malicious DLL files delivered with benign executable files, making it difficult for traditional security tools to detect. [2][3][7]

The activity in this case was detected by the DETECT integration model, ‘High Severity Integration Malware Detection’ and was later blocked by the Darktrace RESPOND/Network model, ‘Antigena Significant Anomaly from Client Block’ which applied the “Enforce Pattern of Life” action to intercept the malicious download that was taking place. Darktrace RESPOND uses AI to learn every devices normal pattern of life and act autonomously to enforce its normal activity. In this event, RESPOND would not only intercept the malicious download that was taking place on the device, but also not allow the device to significantly deviate from its normal pattern of activity.

The Model Breach Event log for the device displays the moment in which the SentinelOne integration model breached for the 3CXDesktopApp.exe file
Figure 3: The Model Breach Event log for the device displays the moment in which the SentinelOne integration model breached for the 3CXDesktopApp.exe file followed subsequently by the RESPOND model, ‘Antigena Significant Anomaly from Client Block’, on March 29, 2023.
Another ‘High Severity Integration Malware Detection’ breached
Figure 4: Another ‘High Severity Integration Malware Detection’ breached for the same device in Figure 3 approximately one hour later because of the msi file, 3CXDesktopApp-18.12.416.msi, which also led to the Darktrace RESPOND model, ‘Antigena Significant Anomaly from Client Block’, on March 29, 2023.

In a separate case, Darktrace also detected a device performing unusual SMB drive writes for the file ‘3CXDesktopApp-18.10.461.msi’. This breached the DETECT model ‘SMB Drive Write’. This model detects when a device starts writing files to another internal device it does not usually communicate with via the SMB protocol using the admin$ or drive shares.

This Model Breach Event log highlights the moment Darktrace captured the msi application file for the 3CXDesktopApp being transferred internally on this customer’s network
Figure 5: This Model Breach Event log highlights the moment Darktrace captured the msi application file for the 3CXDesktopApp being transferred internally on this customer’s network, this was picked up as new activity for the device on March 28, 2023. 

In a couple of other cases observed by Darktrace, connections detected were made from affected devices to 3CX compromise related endpoints. In Figure 6, the device in question was detected connecting to the endpoint, journalide[.]org. This breached the model, ‘Suspicious Self-Signed SSL’, which looks for connections being made to an endpoint with a self-signed SSL certificate which is designed to look legitimate, as self-signed certificates are often used in malware communication.

Model Breach Event log for connections to the 3CX C2 related endpoint
Figure 6: Model Breach Event log for connections to the 3CX C2 related endpoint, journalide[.]org, these connections breached the model Suspicious Self-Signed SSL on April 24, 2023.

On another Darktrace customer environment, a 3CX C2 endpoint, pbxphonenetwork[.]com, had already been added to the Watched Domains list around the time reports of the 3CX application software being malicious had been reported. The Watched Domains list allows Darktrace to detect if any device on the network makes connections to these domains with more scrutiny and breach a model for further visibility of threats on the network. Activity in this case was detected and subsequently blocked by a Darktrace RESPOND action, “Block connections to 89.45.67[.]160 port 443 and pbxphonenetwork[.]com on port 443”, blocking the device from connecting to this 3CX C2 endpoints on the spot (see Figure 7). This activity subsequently breached the RESPOND model, ‘Antigena Watched Domain Block’. 

Figure 7: History log of the Darktrace RESPOND action applied to the device breaching the Darktrace RESPOND model, Antigena Watched Domain Block and applying the action, “Block connections to 89.45.67[.]160 port 443 and pbxphonenetwork[.]com on port 443” on March 31, 2023.

Darktrace Coverage 

Utilizing integrations with Darktrace such as those with CrowdStrike and SentinelOne, Darktrace was able to detect and respond to activity identified as malicious 3CX activity by CrowdStrike and SentinelOne as seen in Figures 1, 2, 3, and 4. This activity breached the following Darktrace DETECT models: 

  • Integration / CrowdStrike Alert
  • Security Integration / High Severity Integration Malware Detection

Darktrace was also able to identify lateral movement activity such as in the case illustrated in Figure 5.

  • Compliance / SMB Drive Write

Lastly, C2 beaconing activity from malicious endpoints associated with the 3CX compromise was also detected as seen in Figure 6, this activity breached the following Darktrace DETECT model:

  • Anomalous Connection / Suspicious Self-Signed SSL

For customers with Darktrace RESPOND configured in autonomous response mode, Darktrace RESPOND models also breached to activity related to the 3CX supply chain compromise as seen in Figures 3, 4, and 7. Below are the models that breached and the following autonomous actions that were applied:

  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block, “Enforce pattern of life”
  • Antigena / Network / External Threat / Antigena Watched Domain Block, “Block connections to 89.45.67[.]160 port 443 and pbxphonenetwork[.]com on port 443”

Conclusion 

The first known cascading supply chain compromise occurred inopportunely for 3CX but conveniently for UNC 4736 North Korean threat actors. This “SmoothOperator” compromise was detected by endpoint security platforms such as CrowdStrike who was at the cusp of this discovery when it became one of the first platforms to report on malicious activity related to the 3CX DesktopApp supply chain compromise.  

Although still novel at the time and largely without reported indicators of compromise, Darktrace was able to capture and identify activity related to the 3CX compromise across its customer base, as well as respond autonomously to contain it. Darktrace was able to amplify security integrations with CrowdStrike and SentinelOne, and via anomaly-based model breaches, contribute unique insights by highlighting activity in varied parts of the 3CX supply chain compromise kill chain. The “SmoothOperator” supply chain attack proves that the Darktrace suite of products, including DETECT and RESPOND, can not only act autonomously to identify and respond to novel threats, but also work with security integrations to further amplify intervention and prevent cyber disruption on customer networks. 

Credit to Nahisha Nobregas, SOC Analyst and Trent Kessler, SOC Analyst.

Appendices

MITRE ATT&CK Framework

Resource Development

  • T1588 Obtain Capabilities  
  • T1588.004 Digital Certificates
  • T1608 Stage Capabilities  
  • T1608.003 Install Digital Certificate

Initial Access

  • T1190 Exploit Public-Facing Application
  • T1195 Supply Chain Compromise  
  • T1195.002 Compromise Software Supply Chain

Persistence

  • T1574 Hijack Execution Flow
  • T1574.002 DLL Side-Loading

Privilege Escalation

  • T1055 Process Injection
  • T1574 Hijack Execution Flow  
  • T1574.002 DLL Side-Loading

Command and Control

  • T1071 Application Layer Protocol
  • T1071.001 Web Protocols
  • T1071.004 DNS  
  • T1105 Ingress Tool Transfer
  • T1573 Encrypted Channel

List of IOCs

C2 Hostnames

  • journalide[.]org
  • pbxphonenetwork[.]com

Likely C2 IP address

  • 89.45.67[.]160

References

  1. https://www.crowdstrike.com/blog/crowdstrike-detects-and-prevents-active-intrusion-campaign-targeting-3cxdesktopapp-customers/
  2. https://www.bleepingcomputer.com/news/security/3cx-confirms-north-korean-hackers-behind-supply-chain-attack/
  3. https://www.mandiant.com/resources/blog/3cx-software-supply-chain-compromise
  4. https://www.securityweek.com/cascading-supply-chain-attack-3cx-hacked-after-employee-downloaded-trojanized-app/
  5. https://securelist.com/gopuram-backdoor-deployed-through-3cx-supply-chain-attack/109344/
  6. https://www.bleepingcomputer.com/news/security/3cx-hack-caused-by-trading-software-supply-chain-attack/
  7. https://www.sentinelone.com/blog/smoothoperator-ongoing-campaign-trojanizes-3cx-software-in-software-supply-chain-attack/
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Nahisha Nobregas
SOC Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

December 11, 2024

/
No items found.

Darktrace’s view on Operation Lunar Peek: Exploitation of Palo Alto firewall devices (CVE 2024-2012 and 2024-9474)

Default blog imageDefault blog image

Introduction: Spike in exploitation and post-exploitation activity affecting Palo Alto firewall devices

As the first line of defense for many organizations, perimeter devices such as firewalls are frequently targeted by threat actors. If compromised, these devices can serve as the initial point of entry to the network, providing access to vulnerable internal resources. This pattern of malicious behavior has become readily apparent within the Darktrace customer base. In 2024, Darktrace Threat Research analysts identified and investigated at least two major campaigns targeting internet-exposed perimeter devices. These included the exploitation of PAN-OS firewall exploitation via CVE 2024-3400 and FortiManager appliances via CVE 2024-47575.

More recently, at the end of November, Darktrace analysts observed a spike in exploitation and post-exploitation activity affecting, once again, Palo Alto firewall devices in the days following the disclosure of the CVE 2024-0012 and CVE-2024-9474 vulnerabilities.

Threat Research analysts had already been investigating potential exploitation of the firewalls’ management interface after Palo Alto published a security advisory (PAN-SA-2024-0015) on November 8. Subsequent analysis of data from Darktrace’s Security Operations Center (SOC) and external research uncovered multiple cases of Palo Alto firewalls being targeted via the likely exploitation of these vulnerabilities since November 13, through the end of the month. Although this spike in anomalous behavior may not be attributable to a single malicious actor, Darktrace Threat Research identified a clear increase in PAN-OS exploitation across the customer base by threat actors likely utilizing the recently disclosed vulnerabilities, resulting in broad patterns of post-exploitation activity.

How did exploitation occur?

CVE 2024-0012 is an authentication bypass vulnerability affecting unpatched versions of Palo Alto Networks Next-Generation Firewalls. The vulnerability resides in the management interface application on the firewalls specifically, which is written in PHP. When attempting to access highly privileged scripts, users are typically redirected to a login page. However, this can be bypassed by supplying an HTTP request where a Palo Alto related authentication header can be set to “off”.  Users can supply this header value to the Nginx reverse proxy server fronting the application which will then send it without any prior processing [1].

CVE-2024-9474 is a privilege escalation vulnerability that allows a PAN-OS administrator with access to the management web interface to execute root-level commands, granting full control over the affected device [2]. When combined, these vulnerabilities enable unauthenticated adversaries to execute arbitrary commands on the firewall with root privileges.

Post-Exploitation Patterns of Activity

Darktrace Threat Research analysts examined potential indicators of PAN-OS software exploitation via CVE 2024-0012 and CVE-2024-9474 during November 2024. The investigation identified three main groupings of post-exploitation activity:

  1. Exploit validation and initial payload retrieval
  2. Command and control (C2) connectivity, potentially featuring further binary downloads
  3. Potential reconnaissance and cryptomining activity

Exploit Validation

Across multiple investigated customers, Darktrace analysts identified likely vulnerable PAN-OS devices conducting external network connectivity to bin services. Specifically, several hosts performed DNS queries for, and HTTP requests to Out-of-Band Application Security Testing (OAST) domains, such as csv2im6eq58ujueonqs0iyq7dqpak311i.oast[.]pro. These endpoints are commonly used by network administrators to harden defenses, but they are increasingly used by threat actors to verify successful exploitation of targeted devices and assess their potential for further compromise. Although connectivity involving OAST domains were prevalent across investigated incidents, this activity was not necessarily the first indicator observed. In some cases, device behavior involving OAST domains also occurred shortly after an initial payload was downloaded.

Darktrace model alert logs detailing the HTTP request to an OAST domain immediately following PAN-OS device compromise.
Figure 1: Darktrace model alert logs detailing the HTTP request to an OAST domain immediately following PAN-OS device compromise.

Initial Payload Retrieval

Following successful exploitation, affected devices commonly performed behaviors indicative of initial payload download, likely in response to incoming remote command execution. Typically, the affected PAN-OS host would utilize the command line utilities curl and Wget, seen via use of user agents curl/7.61.1 and Wget/1.19.5 (linux-gnu), respectively.

In some cases, the use of these command line utilities by the infected devices was considered new behavior. Given the nature of the user agents, interaction with the host shell suggests remote command execution to achieve the outgoing payload requests.

While additional binaries and scripts were retrieved in later stages of the post-exploitation activity in some cases, this set of behaviors and payloads likely represent initial persistence and execution mechanisms that will enable additional functionality later in the kill chain. During the investigation, Darktrace analysts noted the prevalence of shell script payload requests. Devices analyzed would frequently make HTTP requests over the usual destination port 80 using the command line URL utility (curl), as seen in the user-agent field.

The observed URIs often featured requests for text files, such as “1.txt”, or shell scripts such as “y.sh”. Although packet capture (PCAP) samples were unavailable for review, external researchers have noted that the IP address hosting such “1.txt” files (46.8.226[.]75) serves malicious PHP payloads. When examining the contents of the “y.sh” shell script, Darktrace analysts noticed the execution of bash commands to upload a PHP-written web shell on the affected server.

PCAP showing the client request and server response associated with the download of the y.sh script from 45.76.141[.]166. The body content of the HTTP response highlights a shebang command to run subsequent code as bash script. The content is base64 encoded and details PHP script for what appears to be a webshell that will likely be written to the firewall device.
Figure 2: PCAP showing the client request and server response associated with the download of the y.sh script from 45.76.141[.]166. The body content of the HTTP response highlights a shebang command to run subsequent code as bash script. The content is base64 encoded and details PHP script for what appears to be a webshell that will likely be written to the firewall device.

While not all investigated cases saw initial shell script retrieval, affected systems would commonly make an external HTTP connection, almost always via Wget, for the Executable and Linkable Format (ELF) file “/palofd” from the rare external IP  38.180.147[.]18.

Such requests were frequently made without prior hostname lookups, suggesting that the process or script initiating the requests already contained the external IP address. Analysts noticed a consistent SHA1 hash present for all identified instances of “/palofd” downloads (90f6890fa94b25fbf4d5c49f1ea354a023e06510). Multiple open-source intelligence (OSINT) vendors have associated this hash sample with Spectre RAT, a remote access trojan with capabilities including remote command execution, payload delivery, process manipulation, file transfers, and data theft [3][4].

Figure 3: Advanced Search log metrics highlighting details of the “/palofd” file download over HTTP.

Several targeted customer devices were observed initiating TLS/SSL connections to rare external IPs with self-signed TLS certificates following exploitation. Model data from across the Darktrace fleet indicated some overlap in JA3 fingerprints utilized by affected PAN-OS devices engaging in the suspicious TLS activity. Although JA3 hashes alone cannot be used for process attribution, this evidence suggests some correlation of source process across instances of PAN-OS exploitation.

These TLS/SSL sessions were typically established without the specification of a Server Name Indication (SNI) within the TLS extensions. The SNI extension prevents servers from supplying an incorrect certificate to the requesting client when multiple sites are hosted on the same IP. SSL connectivity without SNI specification suggests a potentially malicious running process as most software establishing TLS sessions typically supply this information during the handshake. Although the encrypted nature of the connection prevented further analysis of the payload packets, external sources note that JavaScript content is transmitted during these sessions, serving as initial payloads for the Sliver C2 platform using Wget [5].

C2 Communication and Additional Payloads

Following validation and preliminary post-compromise actions, examined hosts would commonly initiate varying forms of C2 connectivity. During this time, devices were frequently detected making further payload downloads, likely in response to directives set within C2 communications.

Palo Alto firewalls likely exploited via the newly disclosed CVEs would commonly utilize the Sliver C2 platform for external communication. Sliver’s functionality allows for different styles and formatting for communication. An open-source alternative to Cobalt Strike, this framework has been increasingly popular among threat actors, enabling the generation of dynamic payloads (“slivers”) for multiple platforms, including Windows, MacOS, Linux.

These payloads allow operators to establish persistence, spawn new shells, and exfiltrate data. URI patterns and PCAPs analysis yielded evidence of both English word type encoding within Sliver and Gzip formatting.

For example, multiple devices contacted the Sliver-linked IP address 77.221.158[.]154 using HTTP to retrieve Gzip files. The URIs present for these requests follow known Sliver Gzip formatted communication patterns [6]. Investigations yielded evidence of both English word encoding within Sliver, identified through PCAP analysis, and Gzip formatting.

Sample of URIs observed in Advanced Searchhighlighting HTTP requests to 77.221.158[.]154 for Gzip content suggest of Sliver communication.
Figure 4: Sample of URIs observed in Advanced Searchhighlighting HTTP requests to 77.221.158[.]154 for Gzip content suggest of Sliver communication.
PCAP showing English word encoding for Sliver communication observed during post-exploitation C2 activity.
Figure 5: PCAP showing English word encoding for Sliver communication observed during post-exploitation C2 activity.

External connectivity during this phase also featured TCP connection attempts over uncommon ports for common application protocols. For both Sliver and non-Sliver related IP addresses, devices utilized destination ports such as 8089, 3939, 8880, 8084, and 9999 for the HTTP protocol. The use of uncommon destination ports may represent attempts to avoid detection of connectivity to rare external endpoints. Moreover, some external beaconing within included URIs referencing the likely IP of the affected device. Such behavior can suggest the registration of compromised devices with command servers.

Targeted devices also proceeded to download additional payloads from rare external endpoints as beaconing/C2 activity was ongoing. For example, the newly registered domain repositorylinux[.]org (IP: 103.217.145[.]112) received numerous HTTP GET requests from investigated devices throughout the investigation period for script files including “linux.sh” and “cron.sh”. Young domains, especially those that present as similar to known code repositories, tend to host harmful content. Packet captures of the cron.sh file reveal commands within the HTTP body content involving crontab operations, likely to schedule future downloads. Some hosts that engaged in connectivity to the fake repository domain were later seen conducting crypto-mining connections, potentially highlighting the download of miner applications from the domain.

Additional payloads observed during this time largely featured variations of shell scripts, PHP content, and/or executables. Typically, shell scripts direct the device to retrieve additional content from external servers or repositories or contain potential configuration details for subsequent binaries to run on the device. For example, the “service.sh” retrieves a tar-compressed archive, a configuration JSON file as well as a file with the name “solr” from GitHub, potentially associated with the Apache Solr tool used for enterprise search. These could be used for further enumeration of the host and/or the network environment. PHP scripts observed may involve similar web shell functionality and were retrieved from both rare external IPs identified as well by external researchers [7]. Darktrace also detected the download of octet-stream data occurring mid-compromise from an Amazon Web Services (AWS) S3 bucket. Although no outside research confirmed the functionality, additional executable downloads for files such as “/initd”(IP: 178.215.224[.]246) and “/x6” (IP: 223.165.4[.]175) may relate to tool ingress, further Trojan/backdoor functionality, or cryptocurrency mining.

Figure 7: PCAP specifying the HTTP response headers and body content for the service.sh file request. The body content shown includes variable declarations for URLs that will eventually be called by the device shell via bash command.

Reconnaissance and Cryptomining

Darktrace analysts also noticed additional elements of kill chain operations from affected devices after periods of initial exploit activity. Several devices initiated TCP connections to endpoints affiliated with cryptomining pools such as us[.]zephyr[.]herominers[.]com and  xmrig[.]com. Connectivity to these domains indicates likely successful installation of mining software during earlier stages of post-compromise activity. In a small number of instances, Darktrace observed reconnaissance and lateral movement within the time range of PAN-OS exploitation. Firewalls conducted large numbers of internal connectivity attempts across several critical ports related to privileged protocols, including SMB and SSH. Darktrace detected anonymous NTLM login attempts and new usage of potential PAN-related credentials. These behaviors likely constitute attempts at lateral movement to adjacent devices to further extend network compromise impact.

Model alert connection logs detailing the uncommon failed NTLM logins using an anonymous user account following PAN-OS exploitation.
Figure 8: Model alert connection logs detailing the uncommon failed NTLM logins using an anonymous user account following PAN-OS exploitation.

Conclusion

Darktrace Threat Research and SOC analysts increasingly detect spikes in malicious activity on internet-facing devices in the days following the publication of new vulnerabilities. The latest iteration of this trend highlighted how threat actors quickly exploited Palo Alto firewall using authentication bypass and remote command execution vulnerabilities to enable device compromise. A review of the post-exploitation activity during these events reveals consistent patterns of perimeter device exploitation, but also some distinct variations.

Prior campaigns targeting perimeter devices featured activity largely confined to the exfiltration of configuration data and some initial payload retrieval. Within the current campaign, analysts identified a broader scope post-compromise activity consisting not only of payloads downloads but also extensive C2 activity, reconnaissance, and coin mining operations. While the use of command line tools like curl featured prominently in prior investigations, devices were seen retrieving a generally wider array of payloads during the latest round of activity. The use of the Sliver C2 platform further differentiates the latest round of PAN-OS compromises, with evidence of Sliver activity in about half of the investigated cases.

Several of the endpoints contacted by the infected firewall devices did not have any OSINT associated with them at the time of the attack. However, these indicators were noted as unusual for the devices according to Darktrace based on normal network traffic patterns. This reality further highlights the need for anomaly-based detection that does not rely necessarily on known indicators of compromise (IoCs) associated with CVE exploitation for detection. Darktrace’s experience in 2024 of multiple rounds of perimeter device exploitation may foreshadow future increases in these types of comprise operations.  

Credit to Adam Potter (Senior Cyber Analyst), Alexandra Sentenac (Senior Cyber Analyst), Emma Foulger (Principal Cyber Analyst) and the Darktrace Threat Research team.

References

[1]: https://labs.watchtowr.com/pots-and-pans-aka-an-sslvpn-palo-alto-pan-os-cve-2024-0012-and-cve-2024-9474/

[2]: https://security.paloaltonetworks.com/CVE-2024-9474

[3]: https://threatfox.abuse[.]ch/ioc/1346254/

[4]:https://www.virustotal.com/gui/file/4911396d80baff80826b96d6ea7e54758847c93fdbcd3b86b00946cfd7d1145b/detection

[5]: https://arcticwolf.com/resources/blog/arctic-wolf-observes-threat-campaign-targeting-palo-alto-networks-firewall-devices/

[6] https://www.immersivelabs.com/blog/detecting-and-decrypting-sliver-c2-a-threat-hunters-guide

[7] https://arcticwolf.com/resources/blog/arctic-wolf-observes-threat-campaign-targeting-palo-alto-networks-firewall-devices/

Appendices

Darktrace Model Alerts

Anomalous Connection / Anomalous SSL without SNI to New External

Anomalous Connection / Application Protocol on Uncommon Port  

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Posting HTTP to IP Without Hostname

Anomalous Connection / Rare External SSL Self-Signed

Anomalous File / EXE from Rare External Location

Anomalous File / Incoming ELF File

Anomalous File / Mismatched MIME Type From Rare Endpoint

Anomalous File / Multiple EXE from Rare External Locations

Anomalous File / New User Agent Followed By Numeric File Download

Anomalous File / Script from Rare External Location

Anomalous File / Zip or Gzip from Rare External Location

Anomalous Server Activity / Rare External from Server

Compromise / Agent Beacon (Long Period)

Compromise / Agent Beacon (Medium Period)

Compromise / Agent Beacon to New Endpoint

Compromise / Beacon for 4 Days

Compromise / Beacon to Young Endpoint

Compromise / Beaconing Activity To External Rare

Compromise / High Priority Tunnelling to Bin Services

Compromise / High Volume of Connections with Beacon Score

Compromise / HTTP Beaconing to New IP

Compromise / HTTP Beaconing to Rare Destination

Compromise / Large Number of Suspicious Failed Connections

Compromise / Large Number of Suspicious Successful Connections

Compromise / Slow Beaconing Activity To External Rare

Compromise / SSL Beaconing to Rare Destination

Compromise / Suspicious Beaconing Behavior

Compromise / Suspicious File and C2

Compromise / Suspicious HTTP and Anomalous Activity

Compromise / Suspicious TLS Beaconing To Rare External

Compromise / Sustained SSL or HTTP Increase

Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

Device / Initial Attack Chain Activity

Device / New User Agent

MITRE ATT&CK Mapping

Tactic – Technique

INITIAL ACCESS – Exploit Public-Facing Application

RESOURCE DEVELOPMENT – Malware

EXECUTION – Scheduled Task/Job (Cron)

EXECUTION – Unix Shell

PERSISTENCE – Web Shell

DEFENSE EVASION – Masquerading (Masquerade File Type)

DEFENSE EVASION - Deobfuscate/Decode Files or Information

CREDENTIAL ACCESS – Brute Force

DISCOVERY – Remote System Discovery

COMMAND AND CONTROL – Ingress Tool Transfer

COMMAND AND CONTROL – Application Layer Protocol (Web Protocols)

COMMAND AND CONTROL – Encrypted Channel

COMMAND AND CONTROL – Non-Standard Port

COMMAND AND CONTROL – Data Obfuscation

IMPACT – Resource Hijacking (Compute)

List of IoCs

IoC         –          Type         –        Description

  • sys.traceroute[.]vip     – Hostname - C2 Endpoint
  • 77.221.158[.]154     – IP - C2 Endpoint
  • 185.174.137[.]26     – IP - C2 Endpoint
  • 93.113.25[.]46     – IP - C2 Endpoint
  • 104.131.69[.]106     – IP - C2 Endpoint
  • 95.164.5[.]41     – IP - C2 Endpoint
  • bristol-beacon-assets.s3.amazonaws[.]com     – Hostname - Payload Server
  • img.dxyjg[.]com     – Hostname - Payload Server
  • 38.180.147[.]18     – IP - Payload Server
  • 143.198.1[.]178     – IP - Payload Server
  • 185.208.156[.]46     – IP - Payload Server
  • 185.196.9[.]154     – IP - Payload Server
  • 46.8.226[.]75     – IP - Payload Server
  • 223.165.4[.]175     – IP - Payload Server
  • 188.166.244[.]81     – IP - Payload Server
  • bristol-beaconassets.s3[.]amazonaws[.]com/Y5bHaYxvd84sw     – URL - Payload
  • img[.]dxyjg[.]com/KjQfcPNzMrgV     – URL - Payload
  • 38.180.147[.]18/palofd     – URL - Payload
  • 90f6890fa94b25fbf4d5c49f1ea354a023e06510     – SHA1 - Associated to file /palofd
  • 143.198.1[.]178/7Z0THCJ     – URL - Payload
  • 8d82ccdb21425cf27b5feb47d9b7fb0c0454a9ca     – SHA1 - Associated to file /7Z0THCJ
  • fefd0f93dcd6215d9b8c80606327f5d3a8c89712     – SHA1 - Associated to file /7Z0THCJ
  • e5464f14556f6e1dd88b11d6b212999dd9aee1b1     – SHA1 - Associated to file /7Z0THCJ
  • 143.198.1[.]178/o4VWvQ5pxICPm     – URL - Payload
  • 185.208.156[.]46/lUuL095knXd62DdR6umDig     – URL - Payload
  • 185.196.9[.]154/ykKDzZ5o0AUSfkrzU5BY4w     – URL - Payload
  • 46.8.226[.]75/1.txt     – URL - Payload
  • 223.165.4[.]175/x6     – URL - Payload
  • 45.76.141[.]166/y.sh     – URL - Payload
  • repositorylinux[.]org/linux.sh     – URL - Payload
  • repositorylinux[.]org/cron.sh     – URL - Payload

Continue reading
About the author
Adam Potter
Senior Cyber Analyst

Blog

/

December 11, 2024

/

Cloud

Cloud Security: Addressing Common CISO Challenges with Advanced Solutions

Default blog imageDefault blog image

Cloud adoption is a cornerstone of modern business with its unmatched potential for scalability, cost efficiency, flexibility, and net-zero targets around sustainability. However, as organizations migrate more workloads, applications, and sensitive data to the cloud it introduces more complex challenges for CISO’s. Let’s dive into the most pressing issues keeping them up at night—and how Darktrace / CLOUD provides a solution for each.

1. Misconfigurations: The Silent Saboteur

Misconfigurations remain the leading cause of cloud-based data breaches. In 2023 alone over 80%  of data breaches involved data stored in the cloud.1  Think open storage buckets or overly permissive permissions; seemingly minor errors that are easily missed and can snowball into major disasters. The fallout of breaches can be costly—both financially and reputationally.

How Darktrace / CLOUD Helps:

Darktrace / CLOUD continuously monitors your cloud asset configurations, learning your environment and using these insights to flag potential misconfigurations. New scans are triggered when changes take place, then grouped and prioritised intelligently, giving you an evolving and prioritised view of vulnerabilities, best practice and mitigation strategies.

2. Hybrid Environments: The Migration Maze

Many organizations are migrating to the cloud, but hybrid setups (where workloads span both on-premises and cloud environments) create unique challenges and visibility gaps which significantly increase complexity. More traditional and most cloud native security tooling struggles to provide adequate monitoring for these setups.

How Darktrace / CLOUD Helps:

Provides the ability to monitor runtime activity for both on-premises and cloud workloads within the same user interface. By leveraging the right AI solution across this diverse data set, we understand the behaviour of your on-premises workloads and how they interact with cloud systems, spotting unusual connectivity or data flow activity during and after the migration process.

This unified visibility enables proactive detection of anomalies, ensures seamless monitoring across hybrid environments, and provides actionable insights to mitigate risks during and after the migration process.

3. Securing Productivity Suites: The Last Mile

Cloud productivity suites like Microsoft 365 (M365) are essential for modern businesses and are often the first step for an organization on a journey to Infrastructure as a Service (IaaS) or Platform as a Service (PaaS) use cases. They also represent a prime target for attackers. Consider a scenario where an attacker gains access to an M365 account, and proceeds to; access sensitive emails, downloading files from SharePoint, and impersonating the user to send phishing emails to internal employees and external partners. Without a system to detect these behaviours, the attack may go unnoticed until significant damage is done.

How Darktrace helps:

Darktrace’s Active AI platform integrates with M365 and establishes an understanding of normal business activity, enabling the detection of abnormalities across its suite including Email, SharePoint and Teams. By identifying subtle deviations in behaviour, such as:

   •    Unusual file accesses

   •    Anomalous login attempts from unexpected locations or devices.

   •    Suspicious email forwarding rules created by compromised accounts.

Darktrace’s Autonomous Response can act precisely to block malicious actions, by disabling compromised accounts and containing threats before they escalate. Precise actions also ensure that critical business operations are maintained even when a response is triggered.  

4. Agent Fatigue: The Visibility Struggle

To secure cloud environments, visibility is critical. If you don’t know what’s there, how can you secure it? Many solutions require agents to be deployed on every server, workload, and endpoint. But managing and deploying agents across sprawling hybrid environments can be both complex and time-consuming when following change controls, and especially as cloud resources scale dynamically.

How Darktrace / CLOUD Helps:

Darktrace reduces or eliminates the need for widespread agent deployment. Its agentless by default, integrating directly with cloud environments and providing instant visibility without the operational headache. Darktrace ensures coverage with minimal friction. By intelligently graphing the relationships between assets and logically grouping your deployed Cloud resources, you are equipped with real-time visibility to quickly understand and protect your environment.

So why Darktrace / CLOUD?

Darktrace’s Self-Learning AI redefines cloud security by adapting to your unique environment, detecting threats as they emerge, and responding in real-time. From spotting misconfigurations to protecting productivity suites and securing hybrid environments. Darktrace / CLOUD simplifies cloud security challenges without adding operational burdens.

From Chaos to Clarity

Cloud security doesn’t have to be a game of endless whack-a-mole. With Darktrace / CLOUD, CISOs can achieve the visibility, control, and proactive protection they need to navigate today’s complex cloud ecosystems confidently.

[1] https://hbr.org/2024/02/why-data-breaches-spiked-in-2023

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security
Your data. Our AI.
Elevate your network security with Darktrace AI