Blog
/
Proactive Security
/
January 2, 2023

Analyst's Guide to the ActiveAI Security Platform

Understand Darktrace's full functionality in preventing and detecting cyber threats, and how analysts can benefit from Darktrace's AI technology.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gabriel Hernandez
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Jan 2023

On countless occasions, Darktrace has observed cyber-attacks disrupting business operations by using a vulnerable internet-facing asset as a starting point for infection. Finding that one entry point could be all a threat actor needs to compromise an entire organization. With the objective to prevent such vulnerabilities from being exploited, Darktrace’s latest product family includes Attack Surface Management (ASM) to continuously monitor customer attack surfaces for risks, high-impact vulnerabilities and potential external threats. 

An attack surface is the sum of exposed and internet-facing assets and the associated risks a hacker can exploit to carry out a cyber-attack. Darktrace / Attack Surface Management uses AI to understand what external assets belong to an organization by searching beyond known servers, networks, and IPs across public data sources. 

This blog discusses how Darktrace / Attack Surface Management could combine with Darktrace / NETWORK to find potential vulnerabilities and subsequent exploitation within network traffic. In particular, this blog will investigate the assets of a large Australian company which operates in the environmental sciences industry.   

Introducing ASM

In order to understand the link between PREVENT and DETECT, the core features of ASM should first be showcased.

Figure 1: The PREVENT/ASM dashboard.

When facing the landing page, the UI highlights the number of registered assets identified (with zero prior deployment). The tool then organizes the information gathered online in an easily assessable manner. Analysts can see vulnerable assets according to groupings like ‘Misconfiguration’, ‘Social Media Threat’ and ‘Information Leak’ which shows the type of risk posed to said assets.

Figure 2: The Network tab identifies the external facing assets and their hierarchy in a graphical format.

The Network tab helps analysts to filter further to take more rapid action on the most vulnerable assets and interact with them to gather more information. The image below has been filtered by assets with the ‘highest scoring’ risk.

Figure 3: PREVENT/ASM showing a high scoring asset.

Interacting with the showcased asset selected above allows pivoting to the following page, this provides more granular information around risk metrics and the asset itself. This includes a more detailed description of what the vulnerabilities are, as well as general information about the endpoint including its location, URL, web status and technologies used.

  Figure 4: Asset pages for an external web page at risk.

Filtering does not end here. Within the Insights tab, analysts can use the search bar to craft personalized queries and narrow their focus to specific types of risk such as vulnerable software, open ports, or potential cybersquatting attempts from malicious actors impersonating company brands. Likewise, filters can be made for assets that may be running software at risk from a new CVE. 

Figure 5: Insights page with custom queries to search for assets at risk of Log4J exploitation.

For each of the entries that can be read on the left-hand side, a query that could resemble the one on the top right exists. This allows users to locate specific findings beyond those risks that are categorized as critical. These broader searches can range from viewing the inventory as a whole, to seeing exposed APIs, expiring certificates, or potential shadow IT. Queries will return a list with all the assets matching the given criteria, and users can then explore them further by viewing the asset page as seen in Figure 4.

Compromise Scenario

Now that a basic explanation of PREVENT/ASM has been given, this scenario will continue to look at the Australian customer but show how Darktrace can follow a potential compromise of an at-risk ASM asset into the network. 

Having certain ports open could make it particularly easy for an attacker to access an internet-facing asset, particularly those sensitive ones such as 3389 (RDP), 445 (SMB), 135 (RPC Epmapper). Alternatively, a vulnerable program with a well-known exploitation could also aid the task for threat actors.

In this specific case, PREVENT/ASM identified multiple external assets that belonged to the customer with port 3389 open. One of these assets can be labelled as ‘Server A'. Whilst RDP connections can be protected with a password for a given user, if those were weak to bruteforce, it could be an easy task for an attacker to establish an admin session remotely to the victim machine.

Figure 6: Insights tab query filtering for open RDP port 3389.

N or zero-day vulnerabilities associated with the protocol could also be exploited; for example, CVE-2019-0708 exploits an RCE vulnerability in Remote Desktop where an unauthenticated attacker connects to the target system using RDP and sends specially crafted requests. This vulnerability is pre-authentication and requires no user interaction. 

Certain protocols are known to be sensitive according to the control they provide on a destination machine. These are developed for administrative purposes but have the potential to ease an attacker’s job if accessible. Thanks to PREVENT/ASM, security teams can anticipate such activity by having visibility over those assets that could be vulnerable. If this RDP were successfully exploited, DETECT/Network would then highlight the unusual activity performed by the compromised device as the attacker moved through the kill chain.  

There are several models within Darktrace which monitor for risks against internet facing assets. For example, ‘Server A’ which had an open 3389 port on ASM registered the following model breach in the network:

Figure 7: Breach log showing Anomalous Server Activity / New Internet Facing System model for ‘Server A’.

A model like this could highlight a misconfiguration that has caused an internal device to become unexpectedly open to the internet. It could also suggest a compromised device that has now been opened to the internet to allow further exploitation. If the result of a sudden change, such an asset would also be detected by ASM and highlighted within the ‘New Assets’ part of the Insights page. Ultimately this connection was not malicious, however it shows the ability for security teams to track between PREVENT to DETECT and verify an initial compromise.  

A mock scenario can take this further. Using the continued example of an open port 3389 intrusion, new RDP cookies may be registered (perhaps even administrative). This could enable further lateral movement and eventual privilege escalation. Various DETECT models would highlight actions of this nature, two examples are below:

Figure 8: RDP Lateral Movement related model breaches on customer.

Alongside efforts to move laterally, Darktrace may find attempts at reconnaissance or C2 communication from compromised internet facing devices by looking at Darktrace DETECT model breaches including ‘Network Scan’, ‘SMB Scanning’ and ‘Active Directory Reconnaissance’. In this case the network also saw repeated failed internal connections followed by the ‘LDAP Brute-Force Activity model’ around the same time as the RDP activity. Had this been malicious, DETECT would then continue to provide visibility into the C2 and eventual malware deployment stages. 

With the combined visibility of both tools, Darktrace users have support for greater triage across the whole kill chain. For customers also using RESPOND, actions will be taken from the DETECT alerting to subsequently block malicious activity. In doing so, inputs will have fed across the whole Cyber AI Loop by having learnt from PREVENT, DETECT and RESPOND.

This feed from the Cyber AI Loop works both ways. In Figure 9, below, a DETECT model breach shows a customer alert from an internet facing device: 

Figure 9: Model breach on internet-facing server.

This breach took place because an established server suddenly started serving HTTP sessions on a port commonly used for HTTPS (secure) connections. This could be an indicator that a criminal may have gained control of the device and set it to listen on the given port and enable direct connection to the attacker’s machine or command and control server. This device can be viewed by an analyst in its Darktrace PREVENT version, where new metrics can be observed from a perspective outside of the network.

Figure 10: Assets page for server. PREVENT shows few risks for this asset. 

This page reports the associated risks that could be leveraged by malicious actors. In this case, the events are not correlated, but in the event of an attack, this backwards pivoting could help to pinpoint a weak link in the chain and show what allowed the attacker into the network. In doing so this supports the remediation and recovery process. More importantly though, it allows organizations to be proactive and take appropriate security measures required before it could ever be exploited.

Concluding Thoughts

The combination of Darktrace / Attack Surface Management with Darktrace / NETWORK provides wide and in-depth visibility over a company’s infrastructure. Through the Darktrace platform, this coverage is continually learning and updating based on inputs from both. ASM can show companies the potential weaknesses that a cybercriminal could take advantage of. In turn this allows them to prioritize patching, updating, and management of their internet facing assets. At the same time, Darktrace will show the anomalous behavior of any of these internet facing devices, enabling security teams or respond to stop an attack. Use of these tools by an analyst together is effective in gaining informed security data which can be fed back to IT management. Leveraging this allows normal company operations to be performed without the worry of cyber disruption.

Credit to: Emma Foulger, Senior Cyber Analyst at Darktrace

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gabriel Hernandez

More in this series

No items found.

Blog

/

/

May 8, 2025

Anomaly-based threat hunting: Darktrace's approach in action

person working on laptopDefault blog imageDefault blog image

What is threat hunting?

Threat hunting in cybersecurity involves proactively and iteratively searching through networks and datasets to detect threats that evade existing automated security solutions. It is an important component of a strong cybersecurity posture.

There are several frameworks that Darktrace analysts use to guide how threat hunting is carried out, some of which are:

  • MITRE Attack
  • Tactics, Techniques, Procedures (TTPs)
  • Diamond Model for Intrusion Analysis
  • Adversary, Infrastructure, Victims, Capabilities
  • Threat Hunt Model – Six Steps
  • Purpose, Scope, Equip, Plan, Execute, Feedback
  • Pyramid of Pain

These frameworks are important in baselining how to run a threat hunt. There are also a combination of different methods that allow defenders diversity– regardless of whether it is a proactive or reactive threat hunt. Some of these are:

  • Hypothesis-based threat hunting
  • Analytics-driven threat hunting
  • Automated/machine learning hunting
  • Indicator of Compromise (IoC) hunting
  • Victim-based threat hunting

Threat hunting with Darktrace

At its core, Darktrace relies on anomaly-based detection methods. It combines various machine learning types that allows it to characterize what constitutes ‘normal’, based on the analysis of many different measures of a device or actor’s behavior. Those types of learning are then curated into what are called models.

Darktrace models leverage anomaly detection and integrate outputs from Darktrace Deep Packet Inspection, telemetry inputs, and additional modules, creating tailored activity detection.

This dynamic understanding allows Darktrace to identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign.  On top of machine learning models for detection, there is also the ability to change and create models showcasing the tool’s diversity. The Model Editor allows security teams to specify values, priorities, thresholds, and actions they want to detect. That means a team can create custom detection models based on specific use cases or business requirements. Teams can also increase the priority of existing detections based on their own risk assessments to their environment.

This level of dexterity is particularly useful when conducting a threat hunt. As described above, and in previous ‘Inside the SOC’ blogs such a threat hunt can be on a specific threat actor, specific sector, or a  hypothesis-based threat hunt combined with ‘experimenting’ with some of Darktrace’s models.

Conducting a threat hunt in the energy sector with experimental models

In Darktrace’s recent Threat Research report “AI & Cybersecurity: The state of cyber in UK and US energy sectors” Darktrace’s Threat Research team crafted hypothesis-driven threat hunts, building experimental models and investigating existing models to test them and detect malicious activity across Darktrace customers in the energy sector.

For one of the hunts, which hypothesised utilization of PerfectData software and multi-factor authentication (MFA) bypass to compromise user accounts and destruct data, an experimental model was created to detect a Software-as-a-Service (SaaS) user performing activity relating to 'PerfectData Software’, known to allow a threat actor to exfiltrate whole mailboxes as a PST file. Experimental model alerts caused by this anomalous activity were analyzed, in conjunction with existing SaaS and email-related models that would indicate a multi-stage attack in line with the hypothesis.

Whilst hunting, Darktrace researchers found multiple model alerts for this experimental model associated with PerfectData software usage, within energy sector customers, including an oil and gas investment company, as well as other sectors. Upon further investigation, it was also found that in June 2024, a malicious actor had targeted a renewable energy infrastructure provider via a PerfectData Software attack and demonstrated intent to conduct an Operational Technology (OT) attack.

The actor logged into Azure AD from a rare US IP address. They then granted Consent to ‘eM Client’ from the same IP. Shortly after, the actor granted ‘AddServicePrincipal’ via Azure to PerfectData Software. Two days later, the actor created a  new email rule from a London IP to move emails to an RSS Feed Folder, stop processing rules, and mark emails as read. They then accessed mail items in the “\Sent” folder from a malicious IP belonging to anonymization network,  Private Internet Access Virtual Private Network (PIA VPN) [1]. The actor then conducted mass email deletions, deleting multiple instances of emails with subject “[Name] shared "[Company Name] Proposal" With You” from the  “\Sent folder”. The emails’ subject suggests the email likely contains a link to file storage for phishing purposes. The mass deletion likely represented an attempt to obfuscate a potential outbound phishing email campaign.

The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.
Figure 1: The Darktrace Model Alert that triggered for the mass deletes of the likely phishing email containing a file storage link.

A month later, the same user was observed downloading mass mLog CSV files related to proprietary and Operational Technology information. In September, three months after the initial attack, another mass download of operational files occurred by this actor, pertaining to operating instructions and measurements, The observed patience and specific file downloads seemingly demonstrated an intent to conduct or research possible OT attack vectors. An attack on OT could have significant impacts including operational downtime, reputational damage, and harm to everyday operations. Darktrace alerted the impacted customer once findings were verified, and subsequent actions were taken by the internal security team to prevent further malicious activity.

Conclusion

Harnessing the power of different tools in a security stack is a key element to cyber defense. The above hypothesis-based threat hunt and custom demonstrated intent to conduct an experimental model creation demonstrates different threat hunting approaches, how Darktrace’s approach can be operationalized, and that proactive threat hunting can be a valuable complement to traditional security controls and is essential for organizations facing increasingly complex threat landscapes.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO at Darktrace) and Zoe Tilsiter (EMEA Consultancy Lead)

References

  1. https://spur.us/context/191.96.106.219

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

May 6, 2025

Combatting the Top Three Sources of Risk in the Cloud

woman working on laptopDefault blog imageDefault blog image

With cloud computing, organizations are storing data like intellectual property, trade secrets, Personally Identifiable Information (PII), proprietary code and statistics, and other sensitive information in the cloud. If this data were to be accessed by malicious actors, it could incur financial loss, reputational damage, legal liabilities, and business disruption.

Last year data breaches in solely public cloud deployments were the most expensive type of data breach, with an average of $5.17 million USD, a 13.1% increase from the year before.

So, as cloud usage continues to grow, the teams in charge of protecting these deployments must understand the associated cybersecurity risks.

What are cloud risks?

Cloud threats come in many forms, with one of the key types consisting of cloud risks. These arise from challenges in implementing and maintaining cloud infrastructure, which can expose the organization to potential damage, loss, and attacks.

There are three major types of cloud risks:

1. Misconfigurations

As organizations struggle with complex cloud environments, misconfiguration is one of the leading causes of cloud security incidents. These risks occur when cloud settings leave gaps between cloud security solutions and expose data and services to unauthorized access. If discovered by a threat actor, a misconfiguration can be exploited to allow infiltration, lateral movement, escalation, and damage.

With the scale and dynamism of cloud infrastructure and the complexity of hybrid and multi-cloud deployments, security teams face a major challenge in exerting the required visibility and control to identify misconfigurations before they are exploited.

Common causes of misconfiguration come from skill shortages, outdated practices, and manual workflows. For example, potential misconfigurations can occur around firewall zones, isolated file systems, and mount systems, which all require specialized skill to set up and diligent monitoring to maintain

2. Identity and Access Management (IAM) failures

IAM has only increased in importance with the rise of cloud computing and remote working. It allows security teams to control which users can and cannot access sensitive data, applications, and other resources.

Cybersecurity professionals ranked IAM skills as the second most important security skill to have, just behind general cloud and application security.

There are four parts to IAM: authentication, authorization, administration, and auditing and reporting. Within these, there are a lot of subcomponents as well, including but not limited to Single Sign-On (SSO), Two-Factor Authentication (2FA), Multi-Factor Authentication (MFA), and Role-Based Access Control (RBAC).

Security teams are faced with the challenge of allowing enough access for employees, contractors, vendors, and partners to complete their jobs while restricting enough to maintain security. They may struggle to track what users are doing across the cloud, apps, and on-premises servers.

When IAM is misconfigured, it increases the attack surface and can leave accounts with access to resources they do not need to perform their intended roles. This type of risk creates the possibility for threat actors or compromised accounts to gain access to sensitive company data and escalate privileges in cloud environments. It can also allow malicious insiders and users who accidentally violate data protection regulations to cause greater damage.

3. Cross-domain threats

The complexity of hybrid and cloud environments can be exploited by attacks that cross multiple domains, such as traditional network environments, identity systems, SaaS platforms, and cloud environments. These attacks are difficult to detect and mitigate, especially when a security posture is siloed or fragmented.  

Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.  

Challenges in securing against cross-domain threats often come from a lack of unified visibility. If a security team does not have unified visibility across the organization’s domains, gaps between various infrastructures and the teams that manage them can leave organizations vulnerable.

Adopting AI cybersecurity tools to reduce cloud risk

For security teams to defend against misconfigurations, IAM failures, and insecure APIs, they require a combination of enhanced visibility into cloud assets and architectures, better automation, and more advanced analytics. These capabilities can be achieved with AI-powered cybersecurity tools.

Such tools use AI and automation to help teams maintain a clear view of all their assets and activities and consistently enforce security policies.

Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that makes cloud security accessible to all security teams and SOCs by using AI to identify and correct misconfigurations and other cloud risks in public, hybrid, and multi-cloud environments.

It provides real-time, dynamic architectural modeling, which gives SecOps and DevOps teams a unified view of cloud infrastructures to enhance collaboration and reveal possible misconfigurations and other cloud risks. It continuously evaluates architecture changes and monitors real-time activity, providing audit-ready traceability and proactive risk management.

Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.
Figure 1: Real-time visibility into cloud assets and architectures built from network, configuration, and identity and access roles. In this unified view, Darktrace / CLOUD reveals possible misconfigurations and risk paths.

Darktrace / CLOUD also offers attack path modeling for the cloud. It can identify exposed assets and highlight internal attack paths to get a dynamic view of the riskiest paths across cloud environments, network environments, and between – enabling security teams to prioritize based on unique business risk and address gaps to prevent future attacks.  

Darktrace’s Self-Learning AI ensures continuous cloud resilience, helping teams move from reactive to proactive defense.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI