Blog
/

Email

Cloud

Threat Finds

/
May 19, 2020

Understanding a SaaS Attack and How AI Can Investigate

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
May 2020
The Cyber AI Platform recently detected and investigated two incidents of SaaS account takeover in real-time. Learn about the importance of cyber security here!

Executive summary

  • Darktrace has observed a significant increase in attacks against SaaS platforms, including file storage, collaborative work, and email solutions.
  • This blog post details two example threats that are representative of the current threat landscape: an Office 365 business email compromise and a Box.com file sharing account compromise.
  • Organizations are recommended to enable multi-factor authentication to combat credential stuffing attacks and the re-use of stolen credentials from data dumps. It is further advised to actively monitor SaaS environments for in-progress cyber-attacks.
  • SaaS exacerbates the skill gap in security – identifying and investigating threats in SaaS environments is a different skill to traditional security operations skill-sets.

Introduction

The digital transformation – whether planned naturally or forced by the global pandemic – has increased the use of Software-as-a-Service (SaaS) solutions in modern organizations. The annual growth rate of the SaaS market is currently 18%, and as the workforce becomes increasingly remote throughout 2020, this is set to skyrocket.

Attackers have been targeting SaaS solutions for a long time – but almost nobody talks about how the Techniques, Tools & Procedures (TTPs) in SaaS attacks differ significantly from traditional TTPs seen in networks and endpoint attacks.

How do you create meaningful detections in SaaS environments that don’t have endpoint or network data? How can you investigate threats in a SaaS environment as an analyst? What does a ‘good’ SaaS event look like, and what does a threat look like? Finding skilled security analysts that can work in traditional IT environments is already hard – it gets even harder when trying to hire security people with SaaS domain knowledge.

SaaS consumers are left with only a few choices: either use the native SaaS security controls provided in each SaaS solution – and rely on the (non-)maturity of the SaaS provider – or go with a third party SaaS security solution, often in the form of Cloud Access Security Brokers (CASBs). Both cases are often not ideal.

This blog outlines two attacks we have recently observed in SaaS environments that are representative for the broader SaaS threat landscape: a Microsoft (Office) 365 business email compromise (BEC) and the compromise of a corporate Box.com account. The analysis serves to illuminate the sharp distinction between a traditional network attack and a SaaS compromise – demonstrating how using machine learning to detect anomalies in behavior offers crucial hope for defenders as SaaS applications define this new era of work.

Anonymized SaaS Threat 1: Office 365 Business Email Compromise

Figure 1: The timeline of attack for the Microsoft 365 Compromise

In this case of a classic BEC attack, a threat-actor infiltrated an employee’s Microsoft 365 account to access sensitive financial documents hosted in SharePoint, including pay slip and banking details. The attacker went on to make configuration changes to the hacked inbox, deleting items and making updates that may have allowed them to cover their tracks.

Darktrace first observed the employee’s account log in from unusual IP ranges. The particular account had never logged in from Bulgaria before, and the peer accounts belonging to those from the same department had not exhibited similar behavioral traits. This in itself was a low-level anomaly and not necessarily indicative of malicious activity – employees might change locations after all.

The unusual login location was then accompanied by an unusual login time and a new user-agent. All of these anomalies triggered Cyber AI Analyst – Darktrace’s automated threat investigation technology – to launch a deeper analysis.

Darktrace then identified that the account was starting to access highly sensitive information, including payroll information on a Sharepoint. Two examples that were highlighted by AI Analyst are shown below:

  • hxxps://anonymised[.]sharepoint[.]com/anonymised/pages/Understanding-my-payslip[.]aspx
  • hxxps:// anonymised [.]sharepoint[.]com/anonymised /pages/Changing-my-bank-details[.]aspx

The attacker tried to gain insights about payment information and credit card details, with the likely intention of changing the payroll details to an attacker-controlled bank account. But with its ability to automatically analyze events to piece together attack narratives, Cyber AI Analyst was able to put together these weak signals of a threat and illuminate the likely account compromise. The security team was then able to lock the account and alert the user, who subsequently changed their credentials.

Anonymized SaaS Threat 2: Box.com Compromise

Figure 2: The timeline of attack for the Box.com Compromise

Darktrace observed a case of unauthorized access to a corporate Box.com file storage account belonging to an employee of a global supply company. The Box.com account login took place in the US – the same country that this organization operates in – but from an unusual IP space and ASN. Made suspicious by this low-level anomaly, Cyber AI Analyst did further, ongoing investigations into the user’s activity.

The actor behind the account logged in to Box.com successfully, and then proceeded to download expense reports, invoices, and other financial documents. It became evident that the account started accessing files that were highly unusual for the account to access. Darktrace recognized that neither the account itself, nor its peer group were usually accessing the file called ‘PASSWORD SHEET.xlsx’.

With Cyber AI’s bespoke knowledge of ‘self’ for every member of the organization’s workforce, the technology was able to identify the threat immediately. The Darktrace Cyber AI Platform detected that the activity occurred at a highly unusual time for the legitimate user, and that the location of the actor’s IP address was also anomalous compared to the employee’s previous access locations for this particular SaaS service.

While accessing these documents may have been normal for the employee in another context, Darktrace Cyber AI’s deep understanding of user behavior and granular visibility within the Box.com application allowed it to spot the subtle signs of account compromise. Moreover, when Darktrace’s Cyber AI Analyst automatically investigated the threat, it was able to illuminate the wider narrative, understanding that each unauthorized file exposure was part of a connected incident and highlighted the breach as a key concern for the security team.

Conclusion

Traditional detection approaches like ‘more than X failed logins from Y’ are not enough to ensure sufficient security across SaaS applications. Keeping threat intelligence lists up to date is even more difficult, as most SaaS attacks don’t involve any Command & Control – just indiscriminate logins from remote devices. Attackers may use VPN, Tor, other compromised devices, dynamic DNS, or virtual private servers to further mask their tracks.

A more intricate and effective approach to SaaS security requires understanding the dynamic individual behind the account. SaaS applications are fundamentally platforms for humans to communicate – allowing them to exchange and store ideas and information. Abnormal, threatening behavior is therefore impossible to detect without a nuanced understanding of those unique individuals: where and when do they typically access a SaaS account, which files are they like to access, who do they typically connect with?

Cyber AI asks these questions, continuously analyzing data not only across SaaS platforms, but from the unique ‘patterns of life’ of every user and device in the organization as a whole. With this context, it can chain together seemingly disparate anomalies – unusual login times, login locations, access of new or unusual files, and hundreds of other indicators of threat. These anomalies then act as a trigger for more in-depth investigations via Cyber AI Analyst that can link the anomalies together and create a coherent attack narrative.

Both of the above SaaS attacks were comprehensively but succinctly investigated and fully reported on by the Darktrace’s Cyber AI Analyst, which then surfaced an easy-to-understand incident report, ready for executive review. For a more in-depth look at how Cyber AI Analyst investigated an emerging APT threat in the wild, read: Catching APT41 exploiting a zero-day vulnerability.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Max Heinemeyer
Global Field CISO

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

January 30, 2025

/
No items found.

Reimagining Your SOC: Overcoming Alert Fatigue with AI-Led Investigations  

Default blog imageDefault blog image

The efficiency of a Security Operations Center (SOC) hinges on its ability to detect, analyze and respond to threats effectively. With advancements in AI and automation, key early SOC team metrics such as Mean Time to Detect (MTTD) have seen significant improvements:

  • 96% of defenders believing AI-powered solutions significantly boost the speed and efficiency of prevention, detection, response, and recovery.
  • Organizations leveraging AI and automation can shorten their breach lifecycle by an average of 108 days compared to those without these technologies.

While tool advances have improved performance and effectiveness in the detection phase, this has not been as beneficial to the next step of the process where initial alerts are investigated further to determine their relevance and how they relate to other activities. This is often measured with the metric Mean Time to Analysis (MTTA), although some SOC teams operate a two-level process with teams for initial triage to filter out more obviously uninteresting alerts and for more detailed analysis of the remainder. SOC teams continue to grapple with alert fatigue, overwhelmed analysts, and inefficient triage processes, preventing them from achieving the operational efficiency necessary for a high-performing SOC.

Addressing this core inefficiency requires extending AI's capabilities beyond detection to streamline and optimize the following investigative workflows that underpin effective analysis.

Challenges with SOC alert investigation

Detecting cyber threats is only the beginning of a much broader challenge of SOC efficiency. The real bottleneck often lies in the investigation process.

Detection tools and techniques have evolved significantly with the use of machine learning methods, improving early threat detection. However, after a detection pops up, human analysts still typically step in to evaluate the alert, gather context, and determine whether it’s a true threat or a false alarm and why. If it is a threat, further investigation must be performed to understand the full scope of what may be a much larger problem. This phase, measured by the mean time to analysis, is critical for swift incident response.

Challenges with manual alert investigation:

  • Too many alerts
  • Alerts lack context
  • Cognitive load sits with analysts
  • Insufficient talent in the industry
  • Fierce competition for experienced analysts

For many organizations, investigation is where the struggle of efficiency intensifies. Analysts face overwhelming volumes of alerts, a lack of consolidated context, and the mental strain of juggling multiple systems. With a worldwide shortage of 4 million experienced level two and three SOC analysts, the cognitive burden placed on teams is immense, often leading to alert fatigue and missed threats.

Even with advanced systems in place not all potential detections are investigated. In many cases, only a quarter of initial alerts are triaged (or analyzed). However, the issue runs deeper. Triaging occurs after detection engineering and alert tuning, which often disable many alerts that could potentially reveal true threats but are not accurate enough to justify the time and effort of the security team. This means some potential threats slip through unnoticed.

Understanding alerts in the SOC: Stopping cyber incidents is hard

Let’s take a look at the cyber-attack lifecycle and the steps involved in detecting and stopping an attack:

First we need a trace of an attack…

The attack will produce some sort of digital trace. Novel attacks, insider threats, and attacker techniques such as living-off-the-land can make attacker activities extremely hard to distinguish.

A detection is created…

Then we have to detect the trace, for example some beaconing to a rare domain. Initial detection alerts being raised underpin the MTTD (mean time to detection). Reducing this initial unseen duration is where we have seen significant improvement with modern threat detection tools.

When it comes to threat detection, the possibilities are vast. Your initial lead could come from anything: an alert about unusual network activity, a potential known malware detection, or an odd email. Once that lead comes in, it’s up to your security team to investigate further and determine if this is this a legitimate threat or a false alarm and what the context is behind the alert.

Investigation begins…

It doesn’t just stop at a detection. Typically, humans also need to look at the alert, investigate, understand, analyze, and conclude whether this is a genuine threat that needs a response. We normally measure this as MTTA (mean time to analyze).

Conducting the investigation effectively requires a high degree of skill and efficiency, as every second counts in mitigating potential damage. Security teams must analyze the available data, correlate it across multiple sources, and piece together the timeline of events to understand the full scope of the incident. This process involves navigating through vast amounts of information, identifying patterns, and discerning relevant details. All while managing the pressure of minimizing downtime and preventing further escalation.

Containment begins…

Once we confirm something as a threat, and the human team determines a response is required and understand the scope, we need to contain the incident. That's normally the MTTC (mean time to containment) and can be further split into immediate and more permanent measures.

For more about how AI-led solutions can help in the containment stage read here: Autonomous Response: Streamlining Cybersecurity and Business Operations

The challenge is not only in 1) detecting threats quickly, but also 2) triaging and investigating them rapidly and with precision, and 3) prioritizing the most critical findings to avoid missed opportunities. Effective investigation demands a combination of advanced tools, robust workflows, and the expertise to interpret and act on the insights they generate. Without these, organizations risk delaying critical containment and response efforts, leaving them vulnerable to greater impacts.

While there are further steps (remediation, and of course complete recovery) here we will focus on investigation.

Developing an AI analyst: How Darktrace replicates human investigation

Darktrace has been working on understanding the investigative process of a skilled analyst since 2017. By conducting internal research between Darktrace expert SOC analysts and machine learning engineers, we developed a formalized understanding of investigative processes. This understanding formed the basis of a multi-layered AI system that systematically investigates data, taking advantage of the speed and breadth afforded by machine systems.

With this research we found that the investigative process often revolves around iterating three key steps: hypothesis creation, data collection, and results evaluation.

All these details are crucial for an analyst to determine the nature of a potential threat. Similarly, they are integral components of our Cyber AI Analyst which is an integral component across our product suite. In doing so, Darktrace has been able to replicate the human-driven approach to investigating alerts using machine learning speed and scale.

Here’s how it works:

  • When an initial or third-party alert is triggered, the Cyber AI Analyst initiates a forensic investigation by building multiple hypotheses and gathering relevant data to confirm or refute the nature of suspicious activity, iterating as necessary, and continuously refining the original hypothesis as new data emerges throughout the investigation.
  • Using a combination of machine learning including supervised and unsupervised methods, NLP and graph theory to assess activity, this investigation engine conducts a deep analysis with incidents raised to the human team only when the behavior is deemed sufficiently concerning.
  • After classification, the incident information is organized and processed to generate the analysis summary, including the most important descriptive details, and priority classification, ensuring that critical alerts are prioritized for further action by the human-analyst team.
  • If the alert is deemed unimportant, the complete analysis process is made available to the human team so that they can see what investigation was performed and why this conclusion was drawn.
Darktrace cyber ai analyst workflow, how it works

To illustrate this via example, if a laptop is beaconing to a rare domain, the Cyber AI Analyst would create hypotheses including whether this could be command and control traffic, data exfiltration, or something else. The AI analyst then collects data, analyzes it, makes decisions, iterates, and ultimately raises a new high-level incident alert describing and detailing its findings for human analysts to review and follow up.

For more information on Darktrace’s Cyber AI Analyst click here!

Unlocking an efficient SOC

To create a mature and proactive SOC, addressing the inefficiencies in the alert investigation process is essential. By extending AI's capabilities beyond detection, SOC teams can streamline and optimize investigative workflows, reducing alert fatigue and enhancing analyst efficiency.

This holistic approach not only improves Mean Time to Analysis (MTTA) but also ensures that SOCs are well-equipped to handle the evolving threat landscape. Embracing AI augmentation and automation in every phase of threat management will pave the way for a more resilient and proactive security posture, ultimately leading to a high-performing SOC that can effectively safeguard organizational assets.

Every relevant alert is investigated

The Cyber AI Analyst is not a generative AI system, or an XDR or SEIM aggregator that simply prompts you on what to do next. It uses a multi-layered combination of many different specialized AI methods to investigate every relevant alert from across your enterprise, native, 3rd party, and manual triggers, operating at machine speed and scale. This also positively affects detection engineering and alert tuning, because it does not suffer from fatigue when presented with low accuracy but potentially valuable alerts.

Retain and improve analyst skills

Transferring most analysis processes to AI systems can risk team skills if they don't maintain or build them and if the AI doesn't explain its process. This can reduce the ability to challenge or build on AI results and cause issues if the AI is unavailable. The Cyber AI Analyst, by revealing its investigation process, data gathering, and decisions, promotes and improves these skills. Its deep understanding of cyber incidents can be used for skill training and incident response practice by simulating incidents for security teams to handle.

Create time for cyber risk reduction

Human cybersecurity professionals excel in areas that require critical thinking, strategic planning, and nuanced decision-making. With alert fatigue minimized and investigations streamlined, your analysts can avoid the tedious data collection and analysis stages and instead focus on critical decision-making tasks such as implementing recovery actions and performing threat hunting.

Stay tuned for part 3/3

Part 3/3 in the Reimagine your SOC series explores the preventative security solutions market and effective risk management strategies.

Coming soon!

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

January 29, 2025

/

Inside the SOC

Bytesize Security: Insider Threats in Google Workspace

Default blog imageDefault blog image

What is an insider threat?

An insider threat is a cyber risk originating from within an organization. These threats can involve actions such as an employee inadvertently clicking on a malicious link (e.g., a phishing email) or an employee with malicious intent conducting data exfiltration for corporate sabotage.

Insiders often exploit their knowledge and access to legitimate corporate tools, presenting a continuous risk to organizations. Defenders must protect their digital estate against threats from both within and outside the organization.

For example, in the summer of 2024, Darktrace / IDENTITY successfully detected a user in a customer environment attempting to steal sensitive data from a trusted Google Workspace service. Despite the use of a legitimate and compliant corporate tool, Darktrace identified anomalies in the user’s behavior that indicated malicious intent.

Attack overview: Insider threat

In June 2024, Darktrace detected unusual activity involving the Software-as-a-Service (SaaS) account of a former employee from a customer organization. This individual, who had recently left the company, was observed downloading a significant amount of data in the form of a “.INDD” file (an Adobe InDesign document typically used to create page layouts [1]) from Google Drive.

While the use of Google Drive and other Google Workspace platforms was not unexpected for this employee, Darktrace identified that the user had logged in from an unfamiliar and suspicious IPv6 address before initiating the download. This anomaly triggered a model alert in Darktrace / IDENTITY, flagging the activity as potentially malicious.

A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.
Figure 1: A Model Alert in Darktrace / IDENTITY showing the unusual “.INDD” file being downloaded from Google Workspace.

Following this detection, the customer reached out to Darktrace’s Security Operations Center (SOC) team via the Security Operations Support service for assistance in triaging and investigating the incident further. Darktrace’s SOC team conducted an in-depth investigation, enabling the customer to identify the exact moment of the file download, as well as the contents of the stolen documents. The customer later confirmed that the downloaded files contained sensitive corporate data, including customer details and payment information, likely intended for reuse or sharing with a new employer.

In this particular instance, Darktrace’s Autonomous Response capability was not active, allowing the malicious insider to successfully exfiltrate the files. If Autonomous Response had been enabled, Darktrace would have immediately acted upon detecting the login from an unusual (in this case 100% rare) location by logging out and disabling the SaaS user. This would have provided the customer with the necessary time to review the activity and verify whether the user was authorized to access their SaaS environments.

Conclusion

Insider threats pose a significant challenge for traditional security tools as they involve internal users who are expected to access SaaS platforms. These insiders have preexisting knowledge of the environment, sensitive data, and how to make their activities appear normal, as seen in this case with the use of Google Workspace. This familiarity allows them to avoid having to use more easily detectable intrusion methods like phishing campaigns.

Darktrace’s anomaly detection capabilities, which focus on identifying unusual activity rather than relying on specific rules and signatures, enable it to effectively detect deviations from a user’s expected behavior. For instance, an unusual login from a new location, as in this example, can be flagged even if the subsequent malicious activity appears innocuous due to the use of a trusted application like Google Drive.

Credit to Vivek Rajan (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

SaaS / Resource::Unusual Download Of Externally Shared Google Workspace File

References

[1]https://www.adobe.com/creativecloud/file-types/image/vector/indd-file.html

MITRE ATT&CK Mapping

Technqiue – Tactic – ID

Data from Cloud Storage Object – COLLECTION -T1530

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI