Blog
/
AI
/
November 25, 2024

Why Artificial Intelligence is the Future of Cybersecurity

This blog explores the impact of AI on the threat landscape, the benefits of AI in cybersecurity, and the role it plays in enhancing security practices and tools.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Nov 2024

Introduction: AI & Cybersecurity

In the wake of artificial intelligence (AI) becoming more commonplace, it’s no surprise to see that threat actors are also adopting the use of AI in their attacks at an accelerated pace. AI enables augmentation of complex tasks such as spear-phishing, deep fakes, polymorphic malware generation, and advanced persistent threat (APT) campaigns, which significantly enhances the sophistication and scale of their operations. This has put security professionals in a reactive state, struggling to keep pace with the proliferation of threats.

As AI reshapes the future of cyber threats, defenders are also looking to integrate AI technologies into their security stack. Adopting AI-powered solutions in cybersecurity enables security teams to detect and respond to these advanced threats more quickly and accurately as well as automate traditionally manual and routine tasks. According to research done by Darktrace in the 2024 State of AI Cybersecurity Report improving threat detection, identifying exploitable vulnerabilities, and automating low level security tasks were the top three ways practitioners saw AI enhancing their security team’s capabilities [1], underscoring the wide-ranging capabilities of AI in cyber.  

In this blog, we will discuss how AI has impacted the threat landscape, the rise of generative AI and AI adoption in security tools, and the importance of using multiple types of AI in cybersecurity solutions for a holistic and proactive approach to keeping your organization safe.  

The impact of AI on the threat landscape

The integration of AI and cybersecurity has brought about significant advancements across industries. However, it also introduces new security risks that challenge traditional defenses.  Three major concerns with the misuse of AI being leveraged by adversaries are: (1) the increase of novel social engineering attacks that are harder to detect and able to bypass traditional security tools,  (2) the ease of access for less experienced threat actors to now deliver advanced attacks at speed and scale and (3) the attacking of AI itself, to include machine learning models, data corpuses and APIs or interfaces.

In the context of social engineering, AI can be used to create more convincing phishing emails, conduct advanced reconnaissance, and simulate human-like interactions to deceive victims more effectively. Generative AI tools, such as ChatGPT, are already being used by adversaries to craft these sophisticated phishing emails, which can more aptly mimic human semantics without spelling or grammatical error and include personal information pulled from internet sources such as social media profiles. And this can all be done at machine speed and scale. In fact, Darktrace researchers observed a 135% rise in ‘novel social engineering attacks’ across Darktrace / EMAIL customers in 2023, corresponding to the widespread adoption and use of ChatGPT [2].  

Furthermore, these sophisticated social engineering attacks are now able to circumvent traditional security tools. In between December 21, 2023, and July 5, 2024, Darktrace / EMAIL detected 17.8 million phishing emails across the fleet, with 62% of these phishing emails successfully bypassing Domain-based Message Authentication, Reporting, and Conformance (DMARC) verification checks [2].  

And while the proliferation of novel attacks fueled by AI is persisting, AI also lowers the barrier to entry for threat actors. Publicly available AI tools make it easy for adversaries to automate complex tasks that previously required advanced technical skills. Additionally, AI-driven platforms and phishing kits available on the dark web provide ready-made solutions, enabling even novice attackers to execute effective cyber campaigns with minimal effort.

The impact of adversarial use of AI on the ever-evolving threat landscape is important for organizations to understand as it fundamentally changes the way we must approach cybersecurity. However, while the intersection of cybersecurity and AI can have potentially negative implications, it is important to recognize that AI can also be used to help protect us.

A generation of generative AI in cybersecurity

When the topic of AI in cybersecurity comes up, it’s typically in reference to generative AI, which became popularized in 2023. While it does not solely encapsulate what AI cybersecurity is or what AI can do in this space, it’s important to understand what generative AI is and how it can be implemented to help organizations get ahead of today’s threats.  

Generative AI (e.g., ChatGPT or Microsoft Copilot) is a type of AI that creates new or original content. It has the capability to generate images, videos, or text based on information it learns from large datasets. These systems use advanced algorithms and deep learning techniques to understand patterns and structures within the data they are trained on, enabling them to generate outputs that are coherent, contextually relevant, and often indistinguishable from human-created content.

For security professionals, generative AI offers some valuable applications. Primarily, it’s used to transform complex security data into clear and concise summaries. By analyzing vast amounts of security logs, alerts, and technical data, it can contextualize critical information quickly and present findings in natural, comprehensible language. This makes it easier for security teams to understand critical information quickly and improves communication with non-technical stakeholders. Generative AI can also automate the creation of realistic simulations for training purposes, helping security teams prepare for various cyberattack scenarios and improve their response strategies.  

Despite its advantages, generative AI also has limitations that organizations must consider. One challenge is the potential for generating false positives, where benign activities are mistakenly flagged as threats, which can overwhelm security teams with unnecessary alerts. Moreover, implementing generative AI requires significant computational resources and expertise, which may be a barrier for some organizations. It can also be susceptible to prompt injection attacks and there are risks with intellectual property or sensitive data being leaked when using publicly available generative AI tools.  In fact, according to the MIT AI Risk Registry, there are potentially over 700 risks that need to be mitigated with the use of generative AI.

Generative AI impact on cyber attacks screenshot data sheet

For more information on generative AI's impact on the cyber threat landscape download the Darktrace Data Sheet

Beyond the Generative AI Glass Ceiling

Generative AI has a place in cybersecurity, but security professionals are starting to recognize that it’s not the only AI organizations should be using in their security tool kit. In fact, according to Darktrace’s State of AI Cybersecurity Report, “86% of survey participants believe generative AI alone is NOT enough to stop zero-day threats.” As we look toward the future of AI in cybersecurity, it’s critical to understand that different types of AI have different strengths and use cases and choosing the technologies based on your organization’s specific needs is paramount.

There are a few types of AI used in cybersecurity that serve different functions. These include:

Supervised Machine Learning: Widely used in cybersecurity due to its ability to learn from labeled datasets. These datasets include historical threat intelligence and known attack patterns, allowing the model to recognize and predict similar threats in the future. For example, supervised machine learning can be applied to email filtering systems to identify and block phishing attempts by learning from past phishing emails. This is human-led training facilitating automation based on known information.  

Large Language Models (LLMs): Deep learning models trained on extensive datasets to understand and generate human-like text. LLMs can analyze vast amounts of text data, such as security logs, incident reports, and threat intelligence feeds, to identify patterns and anomalies that may indicate a cyber threat. They can also generate detailed and coherent reports on security incidents, summarizing complex data into understandable formats.

Natural Language Processing (NLP): Involves the application of computational techniques to process and understand human language. In cybersecurity, NLP can be used to analyze and interpret text-based data, such as emails, chat logs, and social media posts, to identify potential threats. For instance, NLP can help detect phishing attempts by analyzing the language used in emails for signs of deception.

Unsupervised Machine Learning: Continuously learns from raw, unstructured data without predefined labels. It is particularly useful in identifying new and unknown threats by detecting anomalies that deviate from normal behavior. In cybersecurity, unsupervised learning can be applied to network traffic analysis to identify unusual patterns that may indicate a cyberattack. It can also be used in endpoint detection and response (EDR) systems to uncover previously unknown malware by recognizing deviations from typical system behavior.

Types of AI in cybersecurity
Figure 1: Types of AI in cybersecurity

Employing multiple types of AI in cybersecurity is essential for creating a layered and adaptive defense strategy. Each type of AI, from supervised and unsupervised machine learning to large language models (LLMs) and natural language processing (NLP), brings distinct capabilities that address different aspects of cyber threats. Supervised learning excels at recognizing known threats, while unsupervised learning uncovers new anomalies. LLMs and NLP enhance the analysis of textual data for threat detection and response and aid in understanding and mitigating social engineering attacks. By integrating these diverse AI technologies, organizations can achieve a more holistic and resilient cybersecurity framework, capable of adapting to the ever-evolving threat landscape.

A Multi-Layered AI Approach with Darktrace

AI-powered security solutions are emerging as a crucial line of defense against an AI-powered threat landscape. In fact, “Most security stakeholders (71%) are confident that AI-powered security solutions will be better able to block AI-powered threats than traditional tools.” And 96% agree that AI-powered solutions will level up their organization’s defenses.  As organizations look to adopt these tools for cybersecurity, it’s imperative to understand how to evaluate AI vendors to find the right products as well as build trust with these AI-powered solutions.  

Darktrace, a leader in AI cybersecurity since 2013, emphasizes interpretability, explainability, and user control, ensuring that our AI is understandable, customizable and transparent. Darktrace’s approach to cyber defense is rooted in the belief that the right type of AI must be applied to the right use cases. Central to this approach is Self-Learning AI, which is crucial for identifying novel cyber threats that most other tools miss. This is complemented by various AI methods, including LLMs, generative AI, and supervised machine learning, to support the Self-Learning AI.  

Darktrace focuses on where AI can best augment the people in a security team and where it can be used responsibly to have the most positive impact on their work. With a combination of these AI techniques, applied to the right use cases, Darktrace enables organizations to tailor their AI defenses to unique risks, providing extended visibility across their entire digital estates with the Darktrace ActiveAI Security Platform™.

Credit to: Ed Metcalf, Senior Director Product Marketing, AI & Innovations - Nicole Carignan VP of Strategic Cyber AI for their contribution to this blog.

CISOs guide to buying AI white paper cover

To learn more about Darktrace and AI in cybersecurity download the CISO’s Guide to Cyber AI here.

Download the white paper to learn how buyers should approach purchasing AI-based solutions. It includes:

  • Key steps for selecting AI cybersecurity tools
  • Questions to ask and responses to expect from vendors
  • Understand tools available and find the right fit
  • Ensure AI investments align with security goals and needs
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

More in this series

No items found.

Blog

/

Compliance

/

November 25, 2025

UK Cyber Security & Resilience Bill: What Organizations Need to Know

Default blog imageDefault blog image

Why the Bill has been introduced

The UK’s cyber threat landscape has evolved dramatically since the 2018 NIS regime was introduced. Incidents such as the Synnovis attack against hospitals and the British Library ransomware attack show how quickly operational risk can become public harm. In this context, the UK Department for Science, Innovation and Technology estimates that cyber-attacks cost UK businesses around £14.7 billion each year.

At the same time, the widespread adoption of AI has expanded organisations’ attack surfaces and empowered threat actors to launch more effective and sophisticated activities, including crafting convincing phishing campaigns, exploiting vulnerabilities and initiating ransomware attacks at unprecedented speed and scale.  

The CSRB responds to these challenges by widening who is regulated, accelerating incident reporting and tightening supply chain accountability, while enabling rapid updates that keep pace with technology and emerging risks.

Key provisions of the Cyber Security and Resilience Bill

A wider set of organisations in scope

The Bill significantly broadens the range of organisations regulated under the NIS framework.

  • Managed service providers (MSPs) - medium and large MSPs, including MSSPs, managed SOCs, SIEM providers and similar services,will now fall under NIS obligations due to their systemic importance and privileged access to client systems. The Information Commissioner’s Office (ICO) will act as the regulator. Government analysis anticipates that a further 900 to 1,100 MSPs will be in scope.
  • Data infrastructure is now recognised as essential to the functioning of the economy and public services. Medium and large data centres, as well as enterprise facilities meeting specified thresholds, will be required to implement appropriate and proportionate measures to manage cyber risk. Oversight will be shared between DSIT and Ofcom, with Ofcom serving as the operational regulator.
  • Organisations that manage electrical loads for smart appliances, such as those supporting EV charging during peak times, are now within scope.

These additions sit alongside existing NIS-regulated sectors such as transport, energy, water, health, digital infrastructure, and certain digital services (including online marketplaces, search engines, and cloud computing).

Stronger supply chain requirements

Under the CSRB, regulators can now designate third-party suppliers as ‘designated critical suppliers’ (DCS) when certain threshold criteria are met and where disruption could have significant knock-on effects. Designated suppliers will be subject to the same security and incident-reporting obligations as Operators of Essential Services (OES) and Relevant Digital Service Providers (RDSPs).

Government will scope the supply chain duties for OES and RDSPs via secondary legislation, following consultation. infrastructure incidents where a single supplier’s compromise caused widespread disruption.

Faster incident reporting

Sector-specific regulators, 12 in total, will be responsible for implementing the CSRB, allowing for more effective and consistent reporting. In addition, the CSRB introduces a two-stage reporting process and expands incident reporting criteria. Regulated entities must submit an initial notification within 24 hours of becoming aware of a significant incident, followed by an incident report within 72 hours. Incident reporting criteria are also broadened to capture incidents beyond those which actually resulted in an interruption, ensuring earlier visibility for regulators and the National Cyber Security Centre (NCSC). The importance of information sharing across agencies, law enforcement and regulators is also facilitated by the CSRB.

The reforms also require data centres and managed service providers to notify affected customers where they are likely to have been impacted by a cyber incident.

An agile regulatory framework

To keep pace with technological change, the CSRB will enable the Secretary of State to update elements of the framework via secondary legislation. Supporting materials such as the NCSC Cyber Assessment Framework (CAF) are to be "put on a stronger footing” allowing for requirements to be more easily followed, managed and updated. Regulators will also now be able to recover full costs associated with NIS duties meaning they are better resourced to carry out their associated responsibilities.

Relevant Managed Service Providers must identify and take appropriate and proportionate measures to manage risks to the systems they rely on for providing services within the UK. Importantly, these measures must, having regard to the state of the art, ensure a level of security appropriate to the risk posed, and prevent or minimise the impact of incidents.

The Secretary of State will also be empowered to issue a Statement of Strategic Priorities, setting cross-regime outcomes to drive consistency across the 12 competent authorities responsible for implementation.

Penalties

The enforcement framework will be strengthened, with maximum fines aligned with comparable regimes such as the GDPR, which incorporate maximums tied to turnover. Under the CSRB, maximum penalties for more serious breaches could be up to £17 million or 4% of global turnover, whichever is higher.

Next steps

The Bill is expected to progress through Parliament over the course of 2025 and early 2026, with Royal Assent anticipated in 2026. Once enacted, most operational measures will not take immediate effect. Instead, Government will bring key components into force through secondary legislation following further consultation, providing regulators and industry with time to adjust practices and prepare for compliance.

Anticipated timeline

  • 2025-2026: Parliamentary scrutiny and passage;
  • 2026: Royal Assent;  
  • 2026 consultation: DSIT intends to consult on detailed implementation;
  • From 2026 onwards: Phased implementation via secondary legislation, following further consultation led by DSIT.

How Darktrace can help

The CSRB represents a step change in how the UK approaches digital risk, shifting the focus from compliance to resilience.

Darktrace can help organisations operationalise this shift by using AI to detect, investigate and respond to emerging threats at machine speed, before they escalate into incidents requiring regulatory notification. Proactive tools which can be included in the Darktrace platform allow security teams to stress-test defences, map supply chain exposure and rehearse recovery scenarios, directly supporting the CSRB’s focus on resilience, transparency and rapid response. If an incident does occur, Darktrace’s autonomous agent, Cyber AI Analyst, can accelerate investigations and provide a view of every stage of the attack chain, supporting timely reporting.  

Darktrace’s AI can provide organisations with a vital lens into both internal and external cyber risk. By continuously learning patterns of behaviour across interconnected systems, Darktrace can flag potential compromise or disruption to detect supply chain risk before it impacts your organisation.

In a landscape where compliance and resilience go hand in hand, Darktrace can equip organisations to stay ahead of both evolving threats and evolving regulatory requirements.

[related-resource]

Continue reading
About the author
The Darktrace Community

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI