Blog
/
Email
/
January 14, 2025

Why AI-powered Email Protection Became Essential for this Global Financial Services Leader

Hear the cybersecurity transformation story of this leading money transmitter, who facilitates more than $9 billion in remittances via thousands of agent locations across the US serving more than two million active customers.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Jan 2025

When agile cyber-attackers don’t stop, but pivot  

When he first joined this leading financial services provider, it was clear to the CISO that email security needed to be a top priority. The organization provides transfer services to millions of consumers via a network of thousands of agent locations across the US. Those agents are connected to hundreds of thousands of global payers to complete consumer transfers, ranging from leading financial institutions to small local businesses.

With this vast network of agents and payers, the provider relies on email as its primary communications channel. Transmitting billions of dollars every year, the organization is a prime target for cyber criminals looking to steal credentials, financial assets, and sensitive data.

Vulnerable to attacks with gaps in email security and visibility

The CISO discovered that employees were under constant attack by phishing emails impersonating his company’s own executives. The business email compromise (BEC) attacks were designed to deceive employees into sharing credentials or clicking on malicious links.

Upon discovering that their Microsoft 365 tenant lacked secure configuration, the CISO implemented necessary changes to strengthen the service, including enabling authentication controls. While his efforts significantly reduced BEC attacks, cyber criminals changed their tactics, sending employees malicious phishing emails from seemingly valid email accounts from trusted domains like Google and Yahoo. The emails passed through the organization’s native email filters without detection.

The CISO also sought to strengthen defenses against third-party supply chain attacks that could originate with any of the hundreds of thousands of third-party agents and payers the company works with around the world. While the larger institutions typically have sophisticated email security strategies in place, the smaller businesses may lack the cybersecurity expertise needed to effectively secure and manage their data, putting the organization at risk.

While the CISO knew the company was vulnerable to phishing and third-party threats, he didn’t have visibility across the flow of email. Without access to key metrics and valuable data, he couldn’t get the crucial insights needed to quickly identify possible threats and adjust security protocols.  

Skilled analysts bogged down with low-level tasks

Like many enterprise organizations, this leading financial services provider relied on a crew of highly skilled analysts to respond to alerts and analyze and triage emails most of their workday. “That shouldn’t be how we operate,” said the CISO. “My role and the role of my staff should be to focus on more strategic projects, support the business, and work on important new product development.”

Balancing user experience with mitigating threats

Enabling greater email security measures without negatively impacting the business, user experience, and customer satisfaction was a daunting challenge the CISO and his security team faced. Imposing restrictions that are too stringent could restrict communication, delay the delivery of important messages, or block legitimate emails – potentially slowing down money transfers, frustrating customers, affecting employee productivity, and impacting revenue. However, maintaining controls that are too permissive could result in serious outcomes like data theft, financial fraud, operational disruption, compliance penalties, and customer attrition.  

Self-Learning AI is a game changer

After conducting a thorough POC with several modern security solution providers, this global financial services provider chose the Darktrace / EMAIL an AI-driven email security platform. The CISO said they chose the solution for two key reasons:

First, Darktrace / EMAIL offers modern capabilities

  • Self-Learning AI uses business data to recognize anomalies in communication patterns and user behavior to stop known and unknown threats
  • Secures the organization’s entire mailflow across all inbound, outbound, and lateral email
  • Protects against account takeover attacks by identifying subtle anomalies in cloud SaaS
  • Catches sophisticated threats like impersonations, session token misuse, adversary-in-the-middle attacks, credential theft, and data exfiltration

Second, they pointed to Darktrace’s experience, innovation, and expertise

  • Deep cybersecurity and industry knowledge
  • Demonstrated customers successes worldwide
  • At the forefront of innovation and research, establishing new thresholds in cybersecurity, with technology advances backed by over 200 patents and pending applications

Moreover, and most importantly, this organization trusted Darktrace to deliver on its promises.  And according to the CISO, that’s just what happened.

Significantly reduced phishing threats and business risk

Since implementing Darktrace / EMAIL, the threat posed by BEC attacks has dropped sharply. “Phishing is not an issue that concerns me anymore. I estimate we are now identifying and blocking more than 85% of threats our previous solution was missing,” said the CISO. The biggest factor contributing to this success? The power of AI.

With Darktrace / EMAIL, this leadingglobal financial services provider is identifying and blocking more than 85% ofthe phishing email threats its previous solution missed.

AI wasn’t originally on the financial service provider’s list of criteria. But after seeing AI in action and understanding its potential to vastly scale their detection and response capabilities–without adding headcount, the CISO determined AI wasn’t an option but an imperative. “AI is essential when it comes to email security, it’s an absolute necessity,” he said.  

Darktrace / EMAIL’s Self-Learning AI is uniquely powerful because it learns the content and context of every internal and external user and can spot the subtle differences in behavioral patterns that point to possible social engineering attacks. Through patented behavioral anomaly detection, Darktrace / EMAIL continuously learns about the organization’s business and users, based on its own operations and data, adjusting security protocols accordingly.  

For example, when clients are transferring large amounts of money, they are required to send photos of their driver’s licenses and passports via email to the organization for verification – accounting for a large percentage of its’ inbound email. Darktrace / EMAIL recognizes that it’s normal for customers to send this sensitive information, and it also knows that it’s not normal for that same sensitive information to leave the organization via outbound mail. In addition, Darktrace identifies patterns in user behavior, including who employees communicate with and what kind of information they share. When user behavior falls outside of established norms, such as an email sent from the CFO to employees the CEO would not typically communicate with, Darktrace can take the appropriate action to remove the threat.  

“After the implementation, we gave the solution two weeks to ingest our data and learn the specifics of our business. After that, it was perfect, just amazing,” said the CISO.  

Boosted team productivity and elevated value to the business

With Darktrace / EMAIL, the organization has successfully scaled its detection and response efforts without scaling personnel. The security team has reduced the number of emails requiring manual investigation by 90%. And because analysts now have the benefit of Darktrace / EMAIL’s analytics and reporting, the investigation process is much easier and faster. “The impact of this solution on my team has been very positive,” said the CISO. “Darktrace / EMAIL essentially manages itself, freeing up time for our skilled analysts–and for myself–to focus on more important projects.”  

The security team has scaled its detection and response efforts without scaling personnel,reducing the number of emails it manually investigates by 90%

Increased visibility delivers business-critical insights

You can’t control what you can’t see, and with zero visibility into critical data and metrics, this financial services provider was at a serious disadvantage. That has all changed. “Something that I love about Darktrace / EMAIL is the visibility that it provides into key metrics from a single dashboard. We can now understand the behavior of our email flow and data traffic and can make insight-driven decisions to continuously optimize our email security. It’s awesome,” said the CISO.  

An efficient user interface also improves productivity and reduces mean time to action by enabling teams to easily visualize key data points and quickly evaluate what actions need to be taken. Darktrace / EMAIL was developed with that experience in mind, allowing users to access data and take quick action without having to constantly log into the solution.

Keeping the business focused on cybersecurity

The leadership of this global organization takes information security very seriously, understanding that cyber-attacks aren’t just an IT problem but a business problem. When it came to evaluating Darktrace, the CISO said numerous stakeholders were involved including C-level executives, infrastructure, and IT, which operates separately from information security. The CISO initially identified the need, conducted the market research, engaged the target vendors, and then brought the other decision makers into the process for the solution evaluation and final decision. “Our IT group, infrastructure team, CTO and CEO are all involved when it comes to making major cybersecurity investments. We always try to make these decisions jointly to ensure we are taking everything into consideration.”

The organization has reached a higher level of maturity when it comes to email cybersecurity. The ability to automate routine email detection and investigation tasks has both strengthened the organization’s cyber resilience and enabled the CISO and his team to contribute more to the business. His advice for other IT leaders facing the same email security and visibility challenges he once experienced: “For those companies that need greater insight and control over their email but have limited resources and people, AI is the answer.”  

Darktrace / Email solution brief screenshot

Secure Your Inbox with Cutting-Edge AI Email Protection

Discover the most advanced cloud-native AI email security solution to protect your domain and brand while preventing phishing, novel social engineering, business email compromise, account takeover, and data loss.

  • Gain up to 13 days of earlier threat detection and maximize ROI on your current email security
  • Experience 20-25% more threat blocking power with Darktrace / EMAIL
  • Stop the 58% of threats bypassing traditional email security

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

/

April 16, 2025

Introducing Version 2 of Darktrace’s Embedding Model for Investigation of Security Threats (DEMIST-2)

woman looking at laptop at deskDefault blog imageDefault blog image

DEMIST-2 is Darktrace’s latest embedding model, built to interpret and classify security data with precision. It performs highly specialized tasks and can be deployed in any environment. Unlike generative language models, DEMIST-2 focuses on providing reliable, high-accuracy detections for critical security use cases.

DEMIST-2 Core Capabilities:  

  • Enhances Cyber AI Analyst’s ability to triage and reason about security incidents by providing expert representation and classification of security data, and as a part of our broader multi-layered AI system
  • Classifies and interprets security data, in contrast to language models that generate unpredictable open-ended text responses  
  • Incorporates new innovations in language model development and architecture, optimized specifically for cybersecurity applications
  • Deployable across cloud, on-prem, and edge environments, DEMIST-2 delivers low-latency, high-accuracy results wherever it runs. It enables inference anywhere.

Cybersecurity is constantly evolving, but the need to build precise and reliable detections remains constant in the face of new and emerging threats. Darktrace’s Embedding Model for Investigation of Security Threats (DEMIST-2) addresses these critical needs and is designed to create stable, high-fidelity representations of security data while also serving as a powerful classifier. For security teams, this means faster, more accurate threat detection with reduced manual investigation. DEMIST-2's efficiency also reduces the need to invest in massive computational resources, enabling effective protection at scale without added complexity.  

As an embedding language model, DEMIST-2 classifies and creates meaning out of complex security data. This equips our Self-Learning AI with the insights to compare, correlate, and reason with consistency and precision. Classifications and embeddings power core capabilities across our products where accuracy is not optional, as a part of our multi-layered approach to AI architecture.

Perhaps most importantly, DEMIST-2 features a compact architecture that delivers analyst-level insights while meeting diverse deployment needs across cloud, on-prem, and edge environments. Trained on a mixture of general and domain-specific data and designed to support task specialization, DEMIST-2 provides privacy-preserving inference anywhere, while outperforming larger general-purpose models in key cybersecurity tasks.

This proprietary language model reflects Darktrace's ongoing commitment to continually innovate our AI solutions to meet the unique challenges of the security industry. We approach AI differently, integrating diverse insights to solve complex cybersecurity problems. DEMIST-2 shows that a refined, optimized, domain-specific language model can deliver outsized results in an efficient package. We are redefining possibilities for cybersecurity, but our methods transfer readily to other domains. We are eager to share our findings to accelerate innovation in the field.  

The evolution of DEMIST-2

Key concepts:  

  • Tokens: The smallest units processed by language models. Text is split into fragments based on frequency patterns allowing models to handle unfamiliar words efficiently
  • Low-Rank Adaptors (LoRA): Small, trainable components added to a model that allow it to specialize in new tasks without retraining the full system. These components learn task-specific behavior while the original foundation model remains unchanged. This approach enables multiple specializations to coexist, and work simultaneously, without drastically increasing processing and memory requirements.

Darktrace began using large language models in our products in 2022. DEMIST-2 reflects significant advancements in our continuous experimentation and adoption of innovations in the field to address the unique needs of the security industry.  

It is important to note that Darktrace uses a range of language models throughout its products, but each one is chosen for the task at hand. Many others in the artificial intelligence (AI) industry are focused on broad application of large language models (LLMs) for open-ended text generation tasks. Our research shows that using LLMs for classification and embedding offers better, more reliable, results for core security use cases. We’ve found that using LLMs for open-ended outputs can introduce uncertainty through inaccurate and unreliable responses, which is detrimental for environments where precision matters. Generative AI should not be applied to use cases, such as investigation and threat detection, where the results can deeply matter. Thoughtful application of generative AI capabilities, such as drafting decoy phishing emails or crafting non-consequential summaries are helpful but still require careful oversight.

Data is perhaps the most important factor for building language models. The data used to train DEMIST-2 balanced the need for general language understanding with security expertise. We used both publicly available and proprietary datasets.  Our proprietary dataset included privacy-preserving data such as URIs observed in customer alerts, anonymized at source to remove PII and gathered via the Call Home and aianalyst.darktrace.com services. For additional details, read our Technical Paper.  

DEMIST-2 is our way of addressing the unique challenges posed by security data. It recognizes that security data follows its own patterns that are distinct from natural language. For example, hostnames, HTTP headers, and certificate fields often appear in predictable ways, but not necessarily in a way that mirrors natural language. General-purpose LLMs tend to break down when used in these types of highly specialized domains. They struggle to interpret structure and context, fragmenting important patterns during tokenization in ways that can have a negative impact on performance.  

DEMIST-2 was built to understand the language and structure of security data using a custom tokenizer built around a security-specific vocabulary of over 16,000 words. This tokenizer allows the model to process inputs more accurately like encoded payloads, file paths, subdomain chains, and command-line arguments. These types of data are often misinterpreted by general-purpose models.  

When the tokenizer encounters unfamiliar or irregular input, it breaks the data into smaller pieces so it can still be processed. The ability to fall back to individual bytes is critical in cybersecurity contexts where novel or obfuscated content is common. This approach combines precision with flexibility, supporting specialized understanding with resilience in the face of unpredictable data.  

Along with our custom tokenizer, we made changes to support task specialization without increasing model size. To do this, DEMIST-2 uses LoRA . LoRA is a technique that integrates lightweight components with the base model to allow it to perform specific tasks while keeping memory requirements low. By using LoRA, our proprietary representation of security knowledge can be shared and reused as a starting point for more highly specialized models, for example, it takes a different type of specialization to understand hostnames versus to understand sensitive filenames. DEMIST-2 dynamically adapts to these needs and performs them with purpose.  

The result is that DEMIST-2 is like having a room of specialists working on difficult problems together, while sharing a basic core set of knowledge that does not need to be repeated or reintroduced to every situation. Sharing a consistent base model also improves its maintainability and allows efficient deployment across diverse environments without compromising speed or accuracy.  

Tokenization and task specialization represent only a portion of the updates we have made to our embedding model. In conjunction with the changes described above, DEMIST-2 integrates several updated modeling techniques that reduce latency and improve detections. To learn more about these details, our training data and methods, and a full write-up of our results, please read our scientific whitepaper.

DEMIST-2 in action

In this section, we highlight DEMIST-2's embeddings and performance. First, we show a visualization of how DEMIST-2 classifies and interprets hostnames, and second, we present its performance in a hostname classification task in comparison to other language models.  

Embeddings can often feel abstract, so let’s make them real. Figure 1 below is a 2D visualization of how DEMIST-2 classifies and understands hostnames. In reality, these hostnames exist across many more dimensions, capturing details like their relationships with other hostnames, usage patterns, and contextual data. The colors and positions in the diagram represent a simplified view of how DEMIST-2 organizes and interprets these hostnames, providing insights into their meaning and connections. Just like an experienced human analyst can quickly identify and group hostnames based on patterns and context, DEMIST-2 does the same at scale.  

DEMIST-2 visualization of hostname relationships from a large web dataset.
Figure 1: DEMIST-2 visualization of hostname relationships from a large web dataset.

Next, let’s zoom in on two distinct clusters that DEMIST-2 recognizes. One cluster represents small businesses (Figure 2) and the other, Russian and Polish sites with similar numerical formats (Figure 3). These clusters demonstrate how DEMIST-2 can identify specific groupings based on real-world attributes such as regional patterns in website structures, common formats used by small businesses, and other properties such as its understanding of how websites relate to each other on the internet.

Cluster of small businesses
Figure 2: Cluster of small businesses
Figure 3: Cluster of Russian and Polish sites with a similar numerical format

The previous figures provided a view of how DEMIST-2 works. Figure 4 highlights DEMIST-2’s performance in a security-related classification task. The chart shows how DEMIST-2, with just 95 million parameters, achieves nearly 94% accuracy—making it the highest-performing model in the chart, despite being the smallest. In comparison, the larger model with 2.78 billion parameters achieves only about 89% accuracy, showing that size doesn’t always mean better performance. Small models don’t mean poor performance. For many security-related tasks, DEMIST-2 outperforms much larger models.

Hostname classification task performance comparison against comparable open source foundation models
Figure 4: Hostname classification task performance comparison against comparable open source foundation models

With these examples of DEMIST-2 in action, we’ve shown how it excels in embedding and classifying security data while delivering high performance on specialized security tasks.  

The DEMIST-2 advantage

DEMIST-2 was built for precision and reliability. Our primary goal was to create a high-performance model capable of tackling complex cybersecurity tasks. Optimizing for efficiency and scalability came second, but it is a natural outcome of our commitment to building a strong, effective solution that is available to security teams working across diverse environments. It is an enormous benefit that DEMIST-2 is orders of magnitude smaller than many general-purpose models. However, and much more importantly, it significantly outperforms models in its capabilities and accuracy on security tasks.  

Finding a product that fits into an environment’s unique constraints used to mean that some teams had to settle for less powerful or less performant products. With DEMIST-2, data can remain local to the environment, is entirely separate from the data of other customers, and can even operate in environments without network connectivity. The size of our model allows for flexible deployment options while at the same time providing measurable performance advantages for security-related tasks.  

As security threats continue to evolve, we believe that purpose-built AI systems like DEMIST-2 will be essential tools for defenders, combining the power of modern language modeling with the specificity and reliability that builds trust and partnership between security practitioners and AI systems.

Conclusion

DEMIST-2 has additional architectural and deployment updates that improve performance and stability. These innovations contribute to our ability to minimize model size and memory constraints and reflect our dedication to meeting the data handling and privacy needs of security environments. In addition, these choices reflect our dedication to responsible AI practices.  

[related-resource]

Continue reading
About the author
Margaret Cunningham, PhD
Director, Security & AI Strategy, Field CISO

Blog

/

/

April 16, 2025

AI Uncovered: Introducing Darktrace Incident Graph Evaluation for Security Threats (DIGEST)

man looking at computer screenDefault blog imageDefault blog image

DIGEST advances how Cyber AI Analyst scores and prioritizes incidents. Trained on over a million anonymized incident graphs, our model brings deeper context to severity scoring by analyzing how threats are structured and how they evolve. DIGEST assesses threats as an expert, before damage is done. For more details beyond this overview, please read our Technical Research Paper.

Darktrace combines machine learning (ML) and artificial intelligence (AI) approaches using a multi-layered, multi-method approach. The result is an AI system that continuously ingests data from across an organization’s environment, learns from it, and adapts in real time. DIGEST adds a new layer to this system, specifically to our Cyber AI Analyst, the first and most experienced AI Analyst in cybersecurity, dedicated to refining how incidents are scored and prioritized. DIGEST improves what your team uses to focus on what matters the most first.

To build DIGEST, we combined Graph Neural Networks (GNNs) to interpret incident structure with Recurrent Neural Networks (RNNs) to analyze how incidents evolve over time. This pairing allows DIGEST to reliably determine the potential severity of an incident even at an early stage to give the Cyber AI Analyst a critical edge in identifying high-risk threats early and recognizing when activity is unlikely to escalate.

DIGEST works locally in real-time regardless of whether your Darktrace deployment is on prem or in the cloud, without requiring data to be sent externally for decisions to be made. It was built to support teams in all environments, including those with strict data controls and limited connectivity.

Our approach to AI is unique, drawing inspiration from multiple disciplines to tackle the toughest cybersecurity challenges. DIGEST demonstrates how a novel application of GNNs and RNNs improves the prioritization and triage of security incidents. By blending interdisciplinary expertise with innovative AI techniques, we are able to push the boundaries of what’s possible and deliver it where it is needed most. We are eager to share our findings to accelerate progress throughout the broader field of AI development.

DIGEST: Pattern, progression, and prioritization

Most security incidents start quietly. A device contacting an unusual domain. Credentials are used at unexpected hours. File access patterns shift. The fundamental challenge is not always detecting these anomalies but knowing what to address first. DIGEST gives us this capability.

To understand DIGEST, it helps to start with Cyber AI Analyst a critical component of our Self-Learning AI system and acts as a front-line triage partner in security investigations. It combines supervised and unsupervised machine learning (ML) techniques, natural language processing (NLP), and graph-based reasoning to investigate and summarize security incidents.

DIGEST was built as an additional layer of analysis within Cyber AI Analyst. It enhances its capabilities by refining how incidents are scored and prioritized, helping teams focus on what matters most more quickly. For a general view of the ML and AI methods that power Darktrace products, read our AI Arsenal whitepaper. This paper provides insights regarding the various approaches we use to detect, investigate, and prioritize threats.

Cyber AI Analyst is constantly investigating alerts and produces millions of critical incidents every year. The dynamic graphs produced by Cyber AI Analyst investigations represent an abstract understanding of security incidents that is fully anonymized and privacy preserving. This allowed us to use the Call Home and aianalyst.darktrace.com services to produce a dataset comprising the broad structure of millions of incidents that Cyber AI analyst detected on customer deployments, without containing any sensitive data. (Read our technical research paper for more details about our dataset).

The dynamic graphs from Cyber AI Analyst capture the structure of security incidents where nodes represent entities like users, devices or resources, and edges represent the multitude of relationships between them. As new activity is observed, the graph expands, capturing the progression of incidents over time. Our dataset contained everything from benign administrative behavior to full-scale ransomware attacks.

Unique data, unmatched insights

Key terms

Graph Neural Networks (GNNs): A type of neural network designed to analyze and interpret data structured as graphs, capturing relationships between nodes.

Recurrent Neural Networks (RNNs): A type of neural network designed to model sequences where the order of events matters, like how activity unfolds in a security incident.

The Cyber AI Analyst dataset used to train DIGEST reflects over a decade of work in AI paired with unmatched expertise in cybersecurity. Prior to training DIGEST on our incident graph data set, we performed rigorous data preprocessing to ensure to remove issues such as duplicate or ill-formed incidents. Additionally, to validate DIGEST’s outputs, expert security analysts assessed and verified the model’s scoring.

Transforming data into insights requires using the right strategies and techniques. Given the graphical nature of Cyber AI Analyst incident data, we used GNNs and RNNs to train DIGEST to understand incidents and how they are likely to change over time. Change does not always mean escalation. DIGEST’s enhanced scoring also keeps potentially legitimate or low-severity activity from being prioritized over threats that are more likely to get worse. At the beginning, all incidents might look the same to a person. To DIGEST, it looks like the beginning of a pattern.

As a result, DIGEST enhances our understanding of security incidents by evaluating the structure of the incident, probable next steps in an incident’s trajectory, and how likely it is to grow into a larger event.

To illustrate these capabilities in action, we are sharing two examples of DIGEST’s scoring adjustments from use cases within our customers’ environments.

First, Figure 1 shows the graphical representation of a ransomware attack, and Figure 2 shows how DIGEST scored incident progression of that ransomware attack. At hour two, DIGEST’s score escalated to 95% well before observation of data encryption. This means that prior to seeing malicious encryption behaviors, DIGEST understood the structure of the incident and flagged these early activities as high-likelihood precursors to a severe event. Early detection, especially when flagged prior to malicious encryption behaviors, gives security teams a valuable head start and can minimize the overall impact of the threat, Darktrace Autonomous Response can also be enabled by Cyber AI Analyst to initiate an immediate action to stop the progression, allowing the human security team time to investigate and implement next steps.

Graph representation of a ransomware attack
Figure 1: Graph representation of a ransomware attack
Timeline of DIGEST incident score escalation. Note that timestep does not equate to hours, the spike in score to 95% occurred approximately 2 hours into the attack, prior to data encryption.
Figure 2:  Timeline of DIGEST incident score escalation. Note that timestep does not equate to hours, the spike in score to 95% occurred approximately 2 hours into the attack, prior to data encryption.

In contrast, our second example shown in Figure 3 and Figure 4 illustrates how DIGEST’s analysis of an incident can help teams avoid wasting time on lower risk scenarios. In this instance, Figure 3 illustrates a graph of unusual administrative activity, where we observed connection to a large group of devices. However, the incident score remained low because DIGEST determined that high risk malicious activity was unlikely. This determination was based on what DIGEST observed in the incident's structure, what it assessed as the probable next steps in the incident lifecycle and how likely it was to grow into a larger adverse event.

Graph representation of unusual admin activity connecting to a large group of devices.
Figure 3: Graph representation of unusual admin activity connecting to a large group of devices.
Timeline of DIGEST incident scoring, where the score remained low as the unusual event was determined to be low risk.
Figure 4: Timeline of DIGEST incident scoring, where the score remained low as the unusual event was determined to be low risk.

These examples show the value of enhanced scoring. DIGEST helps teams act sooner on the threats that count and spend less time chasing the ones that do not.

The next phase of advanced detection is here

Darktrace understands what incidents look like. We have seen, investigated, and learned from them at scale, including over 90 million investigations in 2024. With DIGEST, we can share our deep understanding of incidents and their behaviors with you and triage these incidents using Cyber AI Analyst.

Our ability to innovate in this space is grounded in the maturity of our team and the experiences we have built upon in over a decade of building AI solutions for cybersecurity. This experience, along with our depth of understanding of our data, techniques, and strategic layering of AI/ML components has shaped every one of our steps forward.

With DIGEST, we are entering a new phase, with another line of defense that helps teams prioritize and reason over incidents and threats far earlier in an incident’s lifecycle. DIGEST understands your incidents when they start, making it easier for your team to act quickly and confidently.

DIGEST is available in Darktrace 6.3.

[related-resource]

Continue reading
About the author
Margaret Cunningham, PhD
Director, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI