Blog
/

Inside the SOC

Ransomware

/
October 26, 2022

Strategies to Prolong Quantum Ransomware Attacks

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Oct 2022
Learn more about how Darktrace combats Quantum Ransomware changing strategy for cyberattacks. Explore the power of AI-driven network cyber security!

Within science and engineering, the word ‘quantum’ may spark associations with speed and capability, referencing a superior computer that can perform tasks a classical computer cannot. In cyber security, some may recognize ‘quantum’ in relation to cryptography or, more recently, as the name of a new ransomware group, which achieved network-wide encryption a mere four hours after an initial infection.   

Although this group now has a reputation for carrying out fast and efficient attacks, speed is not their only tactic. In August 2022, Darktrace detected a Quantum Ransomware incident where attackers remained in the victim’s network for almost a month after the initial signs of infection, before detonating ransomware. This was a stark difference to previously reported attacks, demonstrating that as motives change, so do threat actors’ strategies. 

The Quantum Group

Quantum was first identified in August 2021 as the latest of several rebrands of MountLocker ransomware [1]. As part of this rebrand, the extension ‘.quantum’ is appended to filenames that are encrypted and the associated ransom notes are named ‘README_TO_DECRYPT.html’ [2].  

From April 2022, media coverage of this group has increased following a DFIR report detailing an attack that progressed from initial access to domain-wide ransomware within four hours [3]. To put this into perspective, the global median dwell time for ransomware in 2020 and 2021 is 5 days [4]. In the case of Quantum, threat actors gained direct keyboard access to devices merely 2 hours after initial infection. The ransomware was staged on the domain controller around an hour and a half later, and executed 12 minutes after that.   

Quantum’s behaviour bears similarities to other groups, possibly due to their history and recruitment. Several members of the disbanded Conti ransomware group are reported to have joined the Quantum and BumbleBee operations. Security researchers have also identified similarities in the payloads and C2 infrastructure used by these groups [5 & 6].  Notably, these are the IcedID initial payload and Cobalt Strike C2 beacon used in this attack. Darktrace has also observed and prevented IcedID and Cobalt Strike activity from BumbleBee across several customer environments.

The Attack

From 11th July 2022, a device suspected to be patient zero made repeated DNS queries for external hosts that appear to be associated with IcedID C2 traffic [7 & 8]. In several reported cases [9 & 10], this banking trojan is delivered through a phishing email containing a malicious attachment that loads an IcedID DLL. As Darktrace was not deployed in the prospect’s email environment, there was no visibility of the initial access vector, however an example of a phishing campaign containing this payload is presented below. It is also possible that the device was already infected prior to joining the network. 

Figure 1- An example phishing email used to distribute IcedID. If configured, Darktrace/Email would be able to detect that the email was sent from an anomalous sender, was part of a fake reply chain, and had a suspicious attachment containing compressed content of unusual mime type [11].    

 

Figure 2- The DNS queries to endpoints associated with IcedID C2 servers, taken from the infected device’s event log.  Additional DNS queries made to other IcedID C2 servers are in the list of IOCs in the appendices.  The repeated DNS queries are indicative of beaconing.


It was not until 22nd July that activity was seen which indicated the attack had progressed to the next stage of the kill chain. This contrasts the previously seen attacks where the progression to Cobalt Strike C2 beaconing and reconnaissance and lateral movement occurred within 2 hours of the initial infection [12 & 13]. In this case, patient zero initiated numerous unusual connections to other internal devices using a compromised account, connections that were indicative of reconnaissance using built-in Windows utilities:

·      DNS queries for hostnames in the network

·      SMB writes to IPC$ shares of those hostnames queried, binding to the srvsvc named pipe to enumerate things such as SMB shares and services on a device, client access permissions on network shares and users logged in to a remote session

·      DCE-RPC connections to the endpoint mapper service, which enables identification of the ports assigned to a particular RPC service

These connections were initiated using an existing credential on the device and just like the dwelling time, differed from previously reported Quantum group attacks where discovery actions were spawned and performed automatically by the IcedID process [14]. Figure 3 depicts how Darktrace detected that this activity deviated from the device’s normal behaviour.  

Figure 3- This figure displays the spike in active internal connections initiated by patient zero. The coloured dots represent the Darktrace models that were breached, detecting this unusual reconnaissance and lateral movement activity.

Four days later, on the 26th of July, patient zero performed SMB writes of DLL and MSI executables to the C$ shares of internal devices including domain controllers, using a privileged credential not previously seen on the patient zero device. The deviation from normal behaviour that this represents is also displayed in Figure 3. Throughout this activity, patient zero made DNS queries for the external Cobalt Strike C2 server shown in Figure 4. Cobalt Strike has often been seen as a secondary payload delivered via IcedID, due to IcedID’s ability to evade detection and deploy large scale campaigns [15]. It is likely that reconnaissance and lateral movement was performed under instructions received by the Cobalt Strike C2 server.   

Figure 4- This figure is taken from Darktrace’s Advanced Search interface, showing a DNS query for a Cobalt Strike C2 server occurring during SMB writes of .dll files and DCE-RPC requests to the epmapper service, demonstrating reconnaissance and lateral movement.


The SMB writes to domain controllers and usage of a new account suggests that by this stage, the attacker had achieved domain dominance. The attacker also appeared to have had hands-on access to the network via a console; the repetition of the paths ‘programdata\v1.dll’ and ‘ProgramData\v1.dll’, in lower and title case respectively, suggests they were entered manually.  

These DLL files likely contained a copy of the malware that injects into legitimate processes such as winlogon, to perform commands that call out to C2 servers [16]. Shortly after the file transfers, the affected domain controllers were also seen beaconing to external endpoints (‘sezijiru[.]com’ and ‘gedabuyisi[.]com’) that OSINT tools have associated with these DLL files [17 & 18]. Moreover, these SSL connections were made using a default client fingerprint for Cobalt Strike [19], which is consistent with the initial delivery method. To illustrate the beaconing nature of these connections, Figure 5 displays the 4.3 million daily SSL connections to one of the C2 servers during the attack. The 100,000 most recent connections were initiated by 11 unique source IP addresses alone.

Figure 5- The Advanced Search interface, querying for external SSL connections from devices in the network to an external host that appears to be a Cobalt Strike C2 server. 4.3 million connections were made over 8 days, even after the ransomware was eventually detonated on 2022-08-03.


Shortly after the writes, the attack progressed to the penultimate stage. The next day, on the 27th of July, the attackers moved to achieve their first objective: data exfiltration. Data exfiltration is not always performed by the Quantum ransomware gang. Researchers have noted discrepancies between claims of data theft made in their ransom notes versus the lack of data seen leaving the network, although this may have been missed due to covert exfiltration via a Cobalt Strike beacon [20]. 

In contrast, this attack displayed several gigabytes of data leaving internal devices including servers that had previously beaconed to Cobalt Strike C2 servers. This data was transferred overtly via FTP, however the attacker still attempted to conceal the activity using ephemeral ports (FTP in EPSV mode). FTP is an effective method for attackers to exfiltrate large files as it is easy to use, organizations often neglect to monitor outbound usage, and it can be shipped through ports that will not be blocked by traditional firewalls [21].   

Figure 6 displays an example of the FTP data transfer to attacker-controlled infrastructure, in which the destination share appears structured to identify the organization that the data was stolen from, suggesting there may be other victim organizations’ data stored. This suggests that data exfiltration was an intended outcome of this attack. 

Figure 6- This figure is from Darktrace’s Advanced Search interface, displaying some of the data transferred from an internal device to the attacker’s FTP server.

 
Data was continuously exfiltrated until a week later when the final stage of the attack was achieved and Quantum ransomware was detonated. Darktrace detected the following unusual SMB activity initiated from the attacker-created account that is a hallmark for ransomware (see Figure 7 for example log):

·      Symmetric SMB Read to Write ratio, indicative of active encryption

·      Sustained MIME type conversion of files, with the extension ‘.quantum’ appended to filenames

·      SMB writes of a ransom note ‘README_TO_DECRYPT.html’ (see Figure 8 for an example note)

Figure 7- The Model Breach Event Log for a device that had files encrypted by Quantum ransomware, showing the reads and writes of files with ‘.quantum’ appended to encrypted files, and an HTML ransom note left where the files were encrypted.

 

Figure 8- An example of the ransom note left by the Quantum gang, this one is taken from open-sources [22].


The example in Figure 8 mentions that the attacker also possessed large volumes of victim data.  It is likely that the gigabytes of data exfiltrated over FTP were leveraged as blackmail to further extort the victim organization for payment.  

Darktrace Coverage

 

Figure 9- Timeline of Quantum ransomware incident


If Darktrace/Email was deployed in the prospect’s environment, the initial payload (if delivered through a phishing email) could have been detected and held from the recipient’s inbox. Although DETECT identified anomalous network behaviour at each stage of the attack, since the incident occurred during a trial phase where Darktrace could only detect but not respond, the attack was able to progress through the kill chain. If RESPOND/Network had been configured in the targeted environment, the unusual connections observed during the initial access, C2, reconnaissance and lateral movement stages of the attack could have been blocked. This would have prevented the attackers from delivering the later stage payloads and eventual ransomware into the target network.

It is often thought that a properly implemented backup strategy is sufficient defense against ransomware [23], however as discussed in a previous Darktrace blog, the increasing frequency of double extortion attacks in a world where ‘data is the new oil’ demonstrates that backups alone are not a mitigation for the risk of a ransomware attack [24]. Equally, the lack of preventive defenses in the target’s environment enabled the attacker’s riskier decision to dwell in the network for longer and allowed them to optimize their potential reward. 

Recent crackdowns from law enforcement on ransomware groups have shifted these groups’ approaches to aim for a balance between low risk and significant financial rewards [25]. However, given the Quantum gang only have a 5% market share in Q2 2022, compared to the 13.2% held by LockBit and 16.9% held by BlackCat [26], a riskier strategy may be favourable, as a longer dwell time and double extortion outcome offers a ‘belt and braces’ approach to maximizing the rewards from carrying out this attack. Alternatively, the gaps in-between the attack stages may imply that more than one player was involved in this attack, although this group has not been reported to operate a franchise model before [27]. Whether assisted by others or driving for a risk approach, it is clear that Quantum (like other actors) are continuing to adapt to ensure their financial success. They will continue to be successful until organizations dedicate themselves to ensuring that the proper data protection and network security measures are in place. 

Conclusion 

Ransomware has evolved over time and groups have merged and rebranded. However, this incident of Quantum ransomware demonstrates that regardless of the capability to execute a full attack within hours, prolonging an attack to optimize potential reward by leveraging double extortion tactics is sometimes still the preferred action. The pattern of network activity mirrors the techniques used in other Quantum attacks, however this incident lacked the continuous progression of the group’s attacks reported recently and may represent a change of motives during the process. Knowing that attacker motives can change reinforces the need for organizations to invest in preventative controls- an organization may already be too far down the line if it is executing its backup contingency plans. Darktrace DETECT/Network had visibility over both the early network-based indicators of compromise and the escalation to the later stages of this attack. Had Darktrace also been allowed to respond, this case of Quantum ransomware would also have had a very short dwell time, but a far better outcome for the victim.

Thanks to Steve Robinson for his contributions to this blog.

Appendices

References

[1] https://community.ibm.com/community/user/security/blogs/tristan-reed/2022/07/13/ibm-security-reaqta-vs-quantum-locker-ransomware

 

[2] https://www.bleepingcomputer.com/news/security/quantum-ransomware-seen-deployed-in-rapid-network-attacks/

 

[3], [12], [14], [16], [20] https://thedfirreport.com/2022/04/25/quantum-ransomware/

 

[4] https://www.mandiant.com/sites/default/files/2022-04/M-Trends%202022%20Executive%20Summary.pdf

 

[5] https://cyware.com/news/over-650-healthcare-organizations-affected-by-the-quantum-ransomware-attack-d0e776bb/

 

[6] https://www.kroll.com/en/insights/publications/cyber/bumblebee-loader-linked-conti-used-in-quantum-locker-attacks

 

[7] https://github.com/pan-unit42/tweets/blob/master/2022-06-28-IOCs-for-TA578-IcedID-Cobalt-Strike-and-DarkVNC.txt 

 

[8] https://github.com/stamparm/maltrail/blob/master/trails/static/malware/icedid.txt

 

[9], [15] https://www.cynet.com/blog/shelob-moonlight-spinning-a-larger-web-from-icedid-to-conti-a-trojan-and-ransomware-collaboration/

 

[10] https://www.microsoft.com/security/blog/2021/04/09/investigating-a-unique-form-of-email-delivery-for-icedid-malware/

 

[11] https://twitter.com/0xToxin/status/1564289244084011014

 

[13], [27] https://cybernews.com/security/quantum-ransomware-gang-fast-and-furious/

 

[17] https://www.virustotal.com/gui/domain/gedabuyisi.com/relations

 

[18] https://www.virustotal.com/gui/domain/sezijiru.com/relations.

 

[19] https://github.com/ByteSecLabs/ja3-ja3s-combo/blob/master/master-list.txt 

 

[21] https://www.darkreading.com/perimeter/ftp-hacking-on-the-rise

 

[22] https://www.pcrisk.com/removal-guides/23352-quantum-ransomware

 

[23] https://www.cohesity.com/resource-assets/tip-sheet/5-ways-ransomware-renders-backup-useless-tip-sheet-en.pdf

 

[24] https://www.forbes.com/sites/nishatalagala/2022/03/02/data-as-the-new-oil-is-not-enough-four-principles-for-avoiding-data-fires/ 

 

[25] https://www.bleepingcomputer.com/news/security/access-to-hacked-corporate-networks-still-strong-but-sales-fall/

 

[26] https://www.bleepingcomputer.com/news/security/ransom-payments-fall-as-fewer-victims-choose-to-pay-hackers/ 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Nicole Wong
Cyber Security Analyst
Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

November 28, 2024

/

Cloud

Cloud security: addressing common CISO challenges with advanced solutions

Default blog imageDefault blog image

Cloud adoption is a cornerstone of modern business with its unmatched potential for scalability, cost efficiency, flexibility, and net-zero targets around sustainability. However, as organizations migrate more workloads, applications, and sensitive data to the cloud it introduces more complex challenges for CISO’s. Let’s dive into the most pressing issues keeping them up at night—and how Darktrace / CLOUD provides a solution for each.

1. Misconfigurations: The Silent Saboteur

Misconfigurations remain the leading cause of cloud-based data breaches. In 2023 alone over 80%  of data breaches involved data stored in the cloud.1  Think open storage buckets or overly permissive permissions; seemingly minor errors that are easily missed and can snowball into major disasters. The fallout of breaches can be costly—both financially and reputationally.

How Darktrace / CLOUD Helps:

Darktrace / CLOUD continuously monitors your cloud asset configurations, learning your environment and using these insights to flag potential misconfigurations. New scans are triggered when changes take place, then grouped and prioritised intelligently, giving you an evolving and prioritised view of vulnerabilities, best practice and mitigation strategies.

2. Hybrid Environments: The Migration Maze

Many organizations are migrating to the cloud, but hybrid setups (where workloads span both on-premises and cloud environments) create unique challenges and visibility gaps which significantly increase complexity. More traditional and most cloud native security tooling struggles to provide adequate monitoring for these setups.

How Darktrace / CLOUD Helps:

Provides the ability to monitor runtime activity for both on-premises and cloud workloads within the same user interface. By leveraging the right AI solution across this diverse data set, we understand the behaviour of your on-premises workloads and how they interact with cloud systems, spotting unusual connectivity or data flow activity during and after the migration process.

This unified visibility enables proactive detection of anomalies, ensures seamless monitoring across hybrid environments, and provides actionable insights to mitigate risks during and after the migration process.

3. Securing Productivity Suites: The Last Mile

Cloud productivity suites like Microsoft 365 (M365) are essential for modern businesses and are often the first step for an organization on a journey to Infrastructure as a Service (IaaS) or Platform as a Service (PaaS) use cases. They also represent a prime target for attackers. Consider a scenario where an attacker gains access to an M365 account, and proceeds to; access sensitive emails, downloading files from SharePoint, and impersonating the user to send phishing emails to internal employees and external partners. Without a system to detect these behaviours, the attack may go unnoticed until significant damage is done.

How Darktrace helps:

Darktrace’s Active AI platform integrates with M365 and establishes an understanding of normal business activity, enabling the detection of abnormalities across its suite including Email, SharePoint and Teams. By identifying subtle deviations in behaviour, such as:

   •    Unusual file accesses

   •    Anomalous login attempts from unexpected locations or devices.

   •    Suspicious email forwarding rules created by compromised accounts.

Darktrace’s Autonomous Response can act precisely to block malicious actions, by disabling compromised accounts and containing threats before they escalate. Precise actions also ensure that critical business operations are maintained even when a response is triggered.  

4. Agent Fatigue: The Visibility Struggle

To secure cloud environments, visibility is critical. If you don’t know what’s there, how can you secure it? Many solutions require agents to be deployed on every server, workload, and endpoint. But managing and deploying agents across sprawling hybrid environments can be both complex and time-consuming when following change controls, and especially as cloud resources scale dynamically.

How Darktrace / CLOUD Helps:

Darktrace reduces or eliminates the need for widespread agent deployment. Its agentless by default, integrating directly with cloud environments and providing instant visibility without the operational headache. Darktrace ensures coverage with minimal friction. By intelligently graphing the relationships between assets and logically grouping your deployed Cloud resources, you are equipped with real-time visibility to quickly understand and protect your environment.

So why Darktrace / CLOUD?

Darktrace’s Self-Learning AI redefines cloud security by adapting to your unique environment, detecting threats as they emerge, and responding in real-time. From spotting misconfigurations to protecting productivity suites and securing hybrid environments. Darktrace / CLOUD simplifies cloud security challenges without adding operational burdens.

From Chaos to Clarity

Cloud security doesn’t have to be a game of endless whack-a-mole. With Darktrace / CLOUD, CISOs can achieve the visibility, control, and proactive protection they need to navigate today’s complex cloud ecosystems confidently.

[1] https://hbr.org/2024/02/why-data-breaches-spiked-in-2023

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security

Blog

/

November 27, 2024

/

Inside the SOC

Behind the veil: Darktrace's detection of VPN exploitation in SaaS environments

Default blog imageDefault blog image

Introduction

In today’s digital landscape, Software-as-a-Service (SaaS) platforms have become indispensable for businesses, offering unparalleled flexibly, scalability, and accessibly across locations. However, this convenience comes with a significant caveat - an expanded attack surface that cyber criminals are increasingly exploiting. In 2023, 96.7% of organizations reported security incidents involving at least one SaaS application [1].

Virtual private networks (VPNs) play a crucial role in SaaS security, acting as gateways for secure remote access and safeguarding sensitive data and systems when properly configured. However, vulnerabilities in VPNs can create openings for attacks to exploit, allowing them to infiltrate SaaS environments, compromise data, and disrupt business operations. Notably, in early 2024, the Darktrace Threat Research team investigated the exploitation of zero-day vulnerabilities in Ivanti Connect Secure VPNs, which would allow threat actors to gain access to sensitive systems and execute remote code.

More recently, in August, Darktrace identified a SaaS compromise where a threat actor logged into a customer’s VPN from an unusual IP address, following an initial email compromise. The attacker then used a separate VPN to create a new email rule designed to obfuscate the phishing campaign they would later launch.

Attack Overview

The initial attack vector in this case appeared to be through the customer’s email environment. A trusted external contact received a malicious email from another mutual contact who had been compromised and forwarded it to several of the organization’s employees, believing it to be legitimate. Attackers often send malicious emails from compromised accounts to their past contacts, leveraging the trust associated with familiar email addresses. In this case, that trust caused an external victim to unknowingly propagate the attack further. Unfortunately, an internal user then interacted with a malicious payload included in the reply section of the forwarded email.

Later the same day, Darktrace / IDENTITY detected unusual login attempts from the IP 5.62.57[.]7, which had never been accessed by other SaaS users before. There were two failed attempts prior to the successful logins, with the error messages “Authentication failed due to flow token expired” and “This occurred due to 'Keep me signed in' interrupt when the user was signing in.” These failed attempts indicate that the threat actor may have been attempting to gain unauthorized access using stolen credentials or exploiting session management vulnerabilities. Furthermore, there was no attempt to use multi-factor authentication (MFA) during the successful login, suggesting that the threat actor had compromised the account’s credentials.

Following this, Darktrace detected the now compromised account creating a new email rule named “.” – a telltale sign of a malicious actor attempting to hide behind an ambiguous or generic rule name.

The email rule itself was designed to archive incoming emails and mark them as read, effectively hiding them from the user’s immediate view. By moving emails to the “Archive” folder, which is not frequently checked by end users, the attacker can conceal malicious communications and avoid detection. The settings also prevent any automatic deletion of the rules or forced overrides, indicating a cautious approach to maintaining control over the mailbox without raising suspicion. This technique allows the attacker to manipulate email visibility while maintaining a façade of normality in the compromised account.

Email Rule:

  • AlwaysDeleteOutlookRulesBlob: False
  • Force: False
  • MoveToFolder: Archive
  • Name: .
  • MarkAsRead: True
  • StopProcessingRules: True

Darktrace further identified that this email rule had been created from another IP address, 95.142.124[.]42, this time located in Canada. Open-source intelligence (OSINT) sources indicated this endpoint may have been malicious [2].

Given that this new email rule was created just three minutes after the initial login from a different IP in a different country, Darktrace recognized a geographic inconsistency. By analyzing the timing and rarity of the involved IP addresses, Darktrace identified the likelihood of malicious activity rather than legitimate user behavior, prompting further investigation.

Figure 1: The compromised SaaS account making anomalous login attempts from an unusual IP address in the US, followed by the creation of a new email rule from another VPN IP in Canada.

Just one minute later, Darktrace observed the attacker sending a large number of phishing emails to both internal and external recipients.

Figure 2: The compromised SaaS user account sending a high volume of outbound emails to new recipients or containing suspicious content.

Darktrace / EMAIL detected a significant spike in inbound emails for the compromised account, likely indicating replies to phishing emails.

Figure 3: The figure demonstrates the spike in inbound emails detected for the compromised account, including phishing-related replies.

Furthermore, Darktrace identified that these phishing emails contained a malicious DocSend link. While docsend[.]com is generally recognized as a legitimate file-sharing service belonging to Dropbox, it can be vulnerable to exploitation for hosting malicious content. In this instance, the DocSend domain in question, ‘hxxps://docsend[.]com/view/h9t85su8njxtugmq’, was flagged as malicious by various OSINT vendors [3][4].

Figure 4: Phishing emails detected containing a malicious DocSend link.

In this case, Darktrace Autonomous Response was not in active mode in the customer’s environment, which allowed the compromise to escalate until their security team intervened based on Darktrace’s alerts. Had Autonomous Response been enabled during the incident, it could have quickly mitigated the threat by disabling users and inbox rules, as suggested by Darktrace as actions that could be manually applied, exhibiting unusual behavior within the customer’s SaaS environment.

Figure 5: Suggested Autonomous Response actions for this incident that required human confirmation.

Despite this, Darktrace’s Managed Threat Detection service promptly alerted the Security Operations Center (SOC) team about the compromise, allowing them to conduct a thorough investigation and inform the customer before any further damage could take place.

Conclusion

This incident highlights the role of Darktrace in enhancing cyber security through its advanced AI capabilities. By detecting the initial phishing email and tracking the threat actor's actions across the SaaS environment, Darktrace effectively identified the threat and brought it to the attention of the customer’s security team.

Darktrace’s proactive monitoring was crucial in recognizing the unusual behavior of the compromised account. Darktrace / IDENTITY detected unauthorized access attempts from rare IP addresses, revealing the attacker’s use of a VPN to hide their location.

Correlating these anomalies allowed Darktrace to prompt immediate investigation, showcasing its ability to identify malicious activities that traditional security tools might miss. By leveraging AI-driven insights, organizations can strengthen their defense posture and prevent further exploitation of compromised accounts.

Credit to Priya Thapa (Cyber Analyst), Ben Atkins (Senior Model Developer) and Ryan Traill (Analyst Content Lead)

Appendices

Real-time Detection Models

  • SaaS / Compromise / Unusual Login and New Email Rule
  • SaaS / Compromise / High Priority New Email Rule
  • SaaS / Compromise / New Email Rule and Unusual Email Activity
  • SaaS / Compromise / Unusual Login and Outbound Email Spam
  • SaaS / Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Suspicious Login and Suspicious Outbound Email(s)
  • SaaS / Email Nexus / Possible Outbound Email Spam

Autonomous Response Models

  • Antigena / SaaS / Antigena Email Rule Block
  • Antigena / SaaS / Antigena Enhanced Monitoring from SaaS User Block
  • Antigena / SaaS / Antigena Suspicious SaaS Activity Block

MITRE ATT&CK Mapping

Technique Name Tactic ID Sub-Technique of

  • Cloud Accounts. DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS T1078.004 T1078
  • Compromise Accounts RESOURCE DEVELOPMENT T1586
  • Email Accounts RESOURCE DEVELOPMENT T1586.002 T1586
  • Internal Spearphishing LATERAL MOVEMENT T1534 -
  • Outlook Rules PERSISTENCE T1137.005 T1137
  • Phishing INITIAL ACCESS T1566 -

Indicators of Compromise (IoCs)

IoC – Type – Description

5.62.57[.]7 – Unusual Login Source

95.142.124[.]42– IP – Unusual Source for Email Rule

hxxps://docsend[.]com/view/h9t85su8njxtugmq - Domain - Phishing Link

References

[1] https://wing.security/wp-content/uploads/2024/02/2024-State-of-SaaS-Report-Wing-Security.pdf

[2] https://www.virustotal.com/gui/ip-address/95.142.124.42

[3] https://urlscan.io/result/0caf3eee-9275-4cda-a28f-6d3c6c3c1039/

[4] https://www.virustotal.com/gui/url/8631f8004ee000b3f74461e5060e6972759c8d38ea8c359d85da9014101daddb

Continue reading
About the author
Priya Thapa
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI