Blog
/
Email
/
July 11, 2023

Detecting and Responding to Vendor Email Compromises (VEC)

Learn how Darktrace detected and responded to a March 2023 Vendor Email Compromise (VEC) attacks on customer in the energy industry. Read more here!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Jul 2023

Threat Trends: Email Landscape

As organizations and security teams around the world continue to improve their cyber hygiene and strengthen the defenses of their digital environments, threat actors are being forced to adapt and employ more advanced, sophisticated attack methods to achieve their goals.

Vendor Email Compromise (VEC) is one such elaborate and sophisticated type of Business Email Compromise (BEC) attack which exploits pre-existing trusted business relationships to impersonate vendors, with the goal of launching a targeted attack on the vendor’s customers [1].  

In March 2023, Darktrace/Email™ detected an example of a VEC attack on the network of a customer in the energy sector. Darktrace’s Self-Learning AI worked to successfully neutralize the VEC attack before it was able to take hold, by blocking the malicious emails so that they did not reach the inboxes of the intended recipients.

Business Email Compromise (BEC)

BEC is the practice of using deceitful emails to trick an organization into transferring funds or divulging sensitive information to a malicious actor. BEC attacks can have devastating financial consequences for organizations, with the FBI reporting a total of USD 2.7 billion in losses from BEC attacks in 2022 [2].  Along with ransomware attacks, BEC attacks are one of the greatest cyber threats facing organizations.

Vendor Email Compromise (VEC)

VEC represents a “new milestone in the evolution of BEC attacks” having taken BEC attacks “to a whole new level of sophistication” [3]. Traditional BEC attacks involve the impersonation of an upper or middle-management employee by a cybercriminal, who attempts to trick a senior executive or employee with access to the company’s finances into transferring funds [4]. Thus, they are crafted to target a specific individual within an organization.

On the other hand, VEC attack campaigns take this attack style even further as they tend to require a greater understanding of existing vendor-customer business relationships. A cyber-criminal gains access to a legitimate vendor account, the process of which may take months to design and fully implement, and uses the account to spread malicious emails to the vendor’s customers. VEC attacks are complex and difficult to detect, however they share some common features [1,3]:

1. Reconnaissance on the vendor and their customer base – the threat actor conducts in-depth research in an attempt to be as convincing as possible in their impersonation efforts. This process may take weeks or months to complete.

2. Credential stealing through phishing campaigns – the threat actor tricks the vendor’s employees into revealing confidential data or corporate credentials in order to gain access to one of the email accounts belonging to the vendor.

3. Account takeover - once the attacker has gained access to one of the vendor’s email accounts, they will create mailbox rules which forward emails meeting certain conditions (such as having ‘Invoice’ in their subject line) to the threat actor’s inbox. This is typically a lengthy process and requires the malicious actors to harvest as much sensitive information as they need in order to successfully masquerade as vendor employees.

4. Deceitful emails are sent to the vendor’s customers – the attacker crafts and sends a highly sophisticated and difficult to detect email campaign to targeted individuals amongst the vendor’s customers. These emails, which may be embedded into existing email threads, will typically contain instructions on how to wire money to the bank account of an attacker.

There have been many high-profile cases of BEC attacks over the years, one of the most famous being the vendor-impersonating BEC attacks carried out between 2013 and 2015 [5]. This BEC campaign resulted in victim companies transferring a total of USD 120 million to bank accounts under the attacker’s control. As the threat of BEC, and in particular VEC, attacks continue to rise, so too does the importance of being able to detect and respond to them.

Observed VEC Attack  

In March 2023, Darktrace/Email observed a VEC attack on an energy company. Email communication between this customer and one of their third-party vendors was common and took place as part of expected business activity, earning previous emails tags such as “Known Domain Relationship”, “Known Correspondent”, and “Established Domain Relationship”. These tags identify the sender relationship as trusted, causing Darktrace’s AI to typically attribute an anomaly score of 0% to emails from this third-party sender.

Just fifty minutes after the above legitimate email was observed, a group of suspicious emails were sent from the same domain, indicating that the trusted third-party had been compromised. Darktrace’s AI picked up on the peculiarity of these emails straight away, detecting elements of the mails which were out of character compared to the sender’s usual pattern of life, and as a result attributing these emails a 100% anomaly score despite the trusted relationship between the customer and sender domain. These suspicious emails were part of a targeted phishing attack, sent to high value individuals such as the company’s CTO and various company directors.  

Figure 1: Darktrace/Email's interface highlighting tags indicating the trusted relationship between the third-party domain and the customer.

Using methods outside of Darktrace’s visibility, a malicious actor managed to hijack the corporate account of a senior employee of this vendor company. The actor abused this email account to send deceitful emails to multiple employees at the energy company, including senior executives.

Figure 2: This screenshot shows Darktrace/Email’s assessment of emails from the vendor account pre-compromise and post-compromise.

Each of the emails sent by the attacker contained a link to a malicious file hosted inside a SharePoint repository associated with a university that had no association with the energy company. The malicious actor therefore appears to have leveraged a previously hijacked SharePoint repository to host their payload.

Cyber-criminals frequently use legitimate file storage domains to host malicious payloads as traditional gateways often fail to defend against them using reputation checks. The SharePoint file which the attacker sought to distribute to employees of the energy company likely provided wire transfer or bank account update instructions. If the attacker had succeeded in delivering these emails to these employees’ mailboxes, then the employees may have been tricked into performing actions resulting in the transfer of funds to a malicious actor. However, the attacker’s attempts to deliver these emails were thwarted by Darktrace/Email.

Darktrace Coverage

Despite the malicious actor sending their deceitful emails from a trusted vendor account, a range of anomalies were detected by Darktrace’s AI, causing the malicious emails to be given a 100% anomaly score and thus held from their recipients’ mailboxes. Such abnormalities, which represented a deviation in normal behavior, included:

  • The presence of an unexpected, out of character file storage link (known to be used for hosting malicious content)
  • The geographical source of the email
  • The anomalous linguistic structure and content of the email body, which earned the emails a high inducement score
Figure 3: Darktrace/Email’s overview of one of the malicious VEC emails it observed.

Darktrace has a series of models designed to trigger when anomalous features, such as those described above, are detected. The emails which made up this particular VEC attack breached a number of notable Darktrace/Email models. The presence of the suspicious link in the emails caused multiple link-related models to breach, which in turn elicited Darktrace RESPOND™ to perform its ‘double lock link’ action – an action which ensures that a user who has clicked on it cannot follow it to its original source. Models which breached due to the suspicious SharePoint link include:

Link / Link To File Storage

  • Link / Low Link Association
  • Link / New Unknown Link
  • Link / Outlook Hijack
  • Link / Relative Sender Anomaly + New Unknown Link
  • Link / Unknown Storage Service
  • Link / Visually Prominent Link Unexpected for Sender
  • Unusual / Unusual Login Location + Unknown Link

The out-of-character and suspicious linguistic aspects of the emails caused the following Darktrace/Email models to breach:

  • High Anomaly Sender
  • Proximity / Phishing
  • Proximity / Phishing and New Activity
  • Unusual / Inducement Shift High
  • Unusual / Undisclosed Recipients
  • Unusual / Unusual Login Location
  • Unusual / Off Topic

Due to the combination of suspicious features that were detected, tags such as ‘Phishing Link’ and ‘Out of Character’ were also added to these emails by Darktrace/Email. Darktrace’s coverage of these emails’ anomalous features ultimately led Darktrace RESPOND to perform its most severe inhibitive action, ‘hold message’. Applying this action stopped the emails from entering their recipients’ mailboxes. By detecting deviations from the sender’s normal email behavior, Darktrace/Email was able to completely neutralize the emails, and prevent them from potentially leading to significant financial harm.

Conclusion

Despite bypassing the customer’s other security measures, Darktrace/Email successfully identified and held these malicious emails, blocking them from reaching the inboxes of the intended recipients and thus preventing a successful targeted VEC attack. The elaborate and sophisticated nature of VEC attacks makes them particularly perilous to customers, and they can be hard to detect due to their exploitation of trusted relationships, and in this case, their use of legitimate services to host malicious files.

Darktrace’s anomaly-based approach to threat detection means it is uniquely placed to identify deviations in common email behavior, while its autonomous response capabilities allow it to take preventative action against emerging threats without latency.

Credits to: Sam Lister, Senior Analyst, for his contributions to this blog.

Appendices

MITRE ATT&CK Mapping

Tactic - Techniques

Resource Development

  • T1586.002 – Compromise Accounts: Email Accounts
  • T1584.006 – Compromise Infrastructure: Web Services
  • T1608.005 – Stage Capabilities: Link Target

Initial Access

  • T1195 – Supply Chain Compromise
  • T1566.002 – Phishing : Spearphishing Link

References

[1] https://www.cloudflare.com/en-gb/learning/email-security/what-is-vendor-email-compromise/

[2] https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf

[3] https://heimdalsecurity.com/blog/vendor-email-compromise-vec/

[4] https://www.ncsc.gov.uk/files/Business-email-compromise-infographic.pdf  

[5] https://www.justice.gov/usao-sdny/pr/lithuanian-man-sentenced-5-years-prison-theft-over-120-million-fraudulent-business

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
David Ison
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI