Blog
/
AI
/
February 6, 2022

Ransomware Groups Aim for Maximum Disruption

Discover key ransomware trends and effective strategies to safeguard your organization. Marcus Fowler provides insights on combating cyber threats!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Marcus Fowler
CEO of Darktrace Federal and SVP of Strategic Engagements and Threats
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Feb 2022

In parallel to the global COVID-19 pandemic, there has been a growing ransomware pandemic. Darktrace researchers discovered that ransomware attacks on US organizations tripled in 2021 compared to 2020, and attacks on UK organizations doubled.

This crisis brought 30 nations together to discuss a counter-ransomware initiative focused on cryptocurrency regulation, security resilience, attack disruption, and international cyber diplomacy. Despite these landmark policies and law enforcement efforts, it’s safe to say that ransomware will remain as a top priority threat and is not going anywhere.

As ransomware permeates, cyber-attackers will continue evolving techniques in 2022

Ransomware gangs are becoming more sophisticated in how they select targets and how they carry out attacks. Many organizations think that ransomware shouldn’t be a serious concern if they have backups in place because they can quickly bring business operations back online. But modern attacks are about more than encryption or data exfiltration; they focus on maximizing disruption to business operations, including targeting backups for encryption and deletion. In 2022, we could see ransomware gangs target cloud service providers as well as backup and archiving providers.

Critical infrastructure organizations and businesses will continue to assess how quickly they can restore operations in the aftermath of an attack and how extensively they will be able to rely on, and the costs required for cyber insurers to cover entire ransom payments and costly systems repairs.

In early January, Microsoft researchers found evidence of malware targeting multiple Ukrainian organizations deploying what appeared to be ransomware but was actually a wiper. The malware displays a ransom note then executes the wiper when the target device is powered down. If adopted by other non-state actors, this evolution goes beyond ransomware, and some organizations won’t be able to survive these types of attacks.

Sophisticated ransomware gangs will expand their detailed targeting efforts from only ‘big game hunting,’ where they target large and well-known targets, to use more resources directly targeting midsize and smaller organizations. With increased scalability through automation and leveraging supply chain attacks, ransomware gangs will have the resources to expand their operations. Large organizations have more substantial budgets and more people, and they can prioritize resources to deal with ransomware’s effects — it will be far more difficult for small businesses.

Not only are ransomware operators expanding whom they can target, but the group of cyber-attackers able to execute attacks is expanding. The rise of Ransomware-as-a-Service (RaaS) gives low-skilled threat actors access to sophisticated malware strains, lowering the barrier to entry for attackers. RaaS has expanded the criminal ecosystem to include lower-level threat actors who find and attack the targets before installing the malicious software. Threat actors are increasingly using bots to automate the initial attack that gets them a foothold in the system.

There is also a varying degree of professionalism amongst cyber-criminals, from seasoned veterans (with current or previous nation-state experience) to ‘script kiddies’ with little expertise. This array translates to greater potential for untested or reckless use of sophisticated tools by unsophisticated actors.

Ransomware groups will bounce back

Ransomware groups are resilient. Even if government pressures force ransomware groups to disband or criminally charge them, they will continue to rebrand and crop back up. For example, DarkSide, confirmed by the FBI to be behind the attack on Colonial Pipeline, shut down a week after the attack. Shortly after, BlackMatter emerged, widely believed to be a rebranded version of the same cyber-crime group.

Figure 1: Darktrace breaks down the stages of a BlackMatter ransomware attack targeting a marketing firm in the US

Earlier this year, Russia’s security agency announced that it had arrested several members belonging to the notorious REvil ransomware gang and neutralized its operations. While this is a significant step against a major group, it is unlikely to reflect a long-term change in Russian policy towards cyber-criminal gangs. These arrests almost certainly do not mark the end of REvil.

Five ransomware groups have formed a cartel to exchange data and ‘best’ practices. These groups include Wizard Spider (linked to the Ryuk and Conti ransomware strains), Twisted Spider (which developed Maze and uses Egregor), Viking Spider (the group behind Ragnar), and LockBit.

Even if government pressures force ransomware groups to disband or criminally charge ransomware gangs, these groups will continue to rebrand and crop back up with even more sophisticated techniques and capabilities.

A static ‘hardened’ perimeter defense isn’t the answer – a dynamic self-defending one is

For organizations to build systems to withstand cyber-attacks, security leaders need to think and, more importantly, defend beyond the initial breach to maximize continuity of business operations. Security defenses like firewalls centered on defending the cyber perimeter are not enough to protect against evolving threats.

A truly dynamic defense is achievable. Organizations need to actively enforce ‘normal’ for businesses and disrupt attacks at the earliest indicators of malicious anomalous behavior, such as file encryption or data exfiltration. Security technology needs to learn, make micro-decisions, and take proportional responses to detect and stop attacks early enough before data exfiltration or encryption occurs.

Attackers are acutely aware of Threat Intelligence-reliant defensive tools they need to evade and know the limitations of the legacy, siloed approach many organizations employ. Attackers are finding valuable information, exfiltrating the files, and encrypting the data in a short period. The race condition and response window for defenders to detect and stop attacks is getting smaller; security teams and solution responses must get faster.

Cyber security is no longer a human-scale problem. Organizations need to adopt AI-based protections that can defend against increasingly automated ransomware attacks. In an era of fast-moving cyber-attacks, and with threat actors deliberately striking when security teams are out of the office, AI technologies have become essential in taking targeted action to contain attacks without interrupting normal business.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Marcus Fowler
CEO of Darktrace Federal and SVP of Strategic Engagements and Threats

More in this series

No items found.

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

Default blog imageDefault blog image

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk: In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy


Prompt Injection Moves from Theory to Front-Page Breach: We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken: When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact: One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target: Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy


Increased commercialization of generative AI and AI assistants in cyber attacks: One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

 

-- Toby Lewis, Global Head of Threat Analysis


Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI